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Kurzzusammenfassung

Diese Arbeit befafit sich mit Fragen der Quanteninformation mit unendlichdi-
mensionalen Systemen [kontinuierliche Variablen (KV)]. Wir untersuchen
die Separabilitdtseigenschaften von Gauflschen Zusténden solcher Systeme.
Das Separabilitatsproblem und das Destillierbarkeitsproblem fiir beliebige
Zweiparteien-KV-Systeme in Gaufischen Zustdnden werden durch Angabe eines
Separabilitéits- und eines Destillierbarkeitskriteriums vollstdndig gelost. Aufler-
dem untersuchen wir Verfahren zur Verschranktheitsreinigung. Wir zeigen, daf3
die Standard-Verfahren fiir Qubits robust gegeniiber fehlerhaft implementierten
Quantenoperationen sind. Fiir Gaufische Zustdnde finden wir ein universelles
Verfahren zur Reinigung samtlicher destillierbarer Zusténde und machen einen
konkreten Vorschlag zur quantenoptischen Implementierung eines praktikablen
Reinigungsverfahrens. Fiir den einfachsten Fall eines Dreiparteien-KV-Systems
geben wir eine notwendige und hinreichende Bedingung, die die vollstandige
Klassifizierung dieser Zustédnde geméafl ihren Verschrénktheitseigenschaften er-
laubt.

Abstract

This thesis treats several questions concerning quantum information theory of
infinite dimensional continuous variable (CV) systems. We investigate the sep-
arability properties of Gaussian states of such systems. Both the separability
and the distillability problem for bipartite Gaussian states are solved by deriving
operational ctiteria for these properties.

We consider multipartite Gaussian states and obtain a necessary and suffi-
cient condition that allows the complete classification of three-mode tripartite
states according to their separability properties.

Moreover we study entanglement distillation protocols. We show that the
standard protocols for qubits are robust against inperfect implementation of the
required quantum operations. For bipartite Gaussian states we find a universal
scheme to distill all distillable states and propose a concrete quantum optical
realization.

For this reprint (Oct. 2001) some errors in the original text have been
corrected, the references have been updated, and preprints that did appear
meanwhile have been reprinted in their published form.
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1 Introduction

1.1 Quantum Information

Quantum information (QI) research combines ideas from quantum physics, in-
formation theory, and computer science to study the implications that the laws
of quantum mechanics have on the capabilities of information processing de-
vices. A quantum computer [1, 2] uses quantum mechanical two-level systems
(“qubits”) instead of the customary classical bits to store information and uni-

tary transformations on the Hilbert space (@2)®” of a n-qubit to process this
information. The exponential growth of the dimension of the underlying Hilbert
space with the number of qubits holds the key for the quantum-speedup com-
pared to classical computers: A n qubit quantum register can be brought into a
state representing a superposition of 2" different numbers that can then, loosely
speaking, be processed simultaneously by the quantum computer. The hard part
is to access this information in an efficient way, circumventing the difficulties
arising from the fact that quantum information cannot be copied (“cloned”, [3])
nor accessed without degrading it. In the early 1980s it was conjectured [1] that
quantum mechanics might provide major advantages over classical physics for
these purposes and a few ingenious algorithms [4, 2] have meanwhile been found
that can indeed make use of this “quantum parallelism” to accelerate compu-
tation. Most notable among those are Shor’s algorithm for factorizing numbers
[5] and Grover’s algorithm for unstructured search [6]. While the potential of
quantum computers is most closely related to the superposition principle of
quantum mechanics and the way in which the dimension of coupled quantum
systems grows, the uncertainty principle can also be put to good use: it is the
foundation of protocols that allow the unconditionally secure distribution of se-
cret random keys [7] allowing for provable secure secret communication. Of all
applications of QI this is the one closest to real-life implementation [9].

While these applications are probably mostly still decades away, quantum in-
formation research has in the meantime produced many surprising insights into
the properties of quantum mechanics that are of fundamental interest regard-
less of potential applications. Maybe the most puzzling quantum mechanical
phenomenon is entanglement, that is the existence of unusually strong quantum
correlations between the components of a composite system. Since the famous
paper [11] which showed that quantum mechanics is not a complete, local real-
istic theory, and the later proof that one can actually experimentally test the
assumptions of local realism [12] has entanglement been a major topic of re-
search on the foundations of quantum mechanics. In recent years, the study
of entanglement from the point of view of quantum information has revealed
many strange and fascinating features of quantum mechanics. Many different
kinds of entanglement have been discovered. We are still only beginning to un-
derstand their classification, quantification, and application. It is this aspect of
QI research — the exploration of the properties of quantum states and quantum
operations — that the present Thesis is mainly concerned with. In particular
we will consider states of composite quantum systems, e.g. composed of the
Hilbert spaces of two spatially separated parties, usually called Alice and Bob,
that want to communicate with each other. Quantum correlations between
Alice’s and Bob’s systems enable them to perform tasks not possible by clas-
sical means. Given a state p of a bipartite quantum system there are at least
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three questions to ask corresponding to three major open problems of quantum
information theory.

Is p separable or is it entangled? A state is called entangled (or inseparable)
if there are genuine quantum correlations between the systems A and B., other-
wise it is separable. Inseparable states shared between A and B are necessary for
quantum communication tasks such as quantum teleportation [13] or quantum-
enhanced communication and as such a valuable resource. Separable states, on
the other hand, can be prepared from a product state by local operations and
provide no advantage compared to classical communication. Currently, there is
no general way known to answer this question for an arbitrary p. This “separa-
bility problem” is the subject of Sec. 2, and a practical solution (a “separability
criterion”) for the family of Gaussian states is presented in Subsec. 2.4.

If p is entangled — just how entangled is it? This question about the proper
quantification of entanglement has received much attention and many inequiv-
alent measures have been proposed, reflecting the various different kinds of
entanglement that have been discovered. This interesting subject ([14] recet
review) is not addressed in this Thesis.

A bit more technical is the third question: If p is entangled — can it be
transformed into a mazimally entangled state by local means? A state which can
be transformed this way is called distillable. As will be explained in Sec. 3, which
is devoted to the distillability problem, this question addresses the usefulness of
p for certain quantum communication tasks. In Subsec. 3.2 we give an answer
to this question for Gaussian states.

1.2 Continuous Quantum Variables

Continuous Variable (CV) systems offer an analog approach to quantum infor-
mation processing in contrast to the more customary digital approach based on
qubits. In a CV quantum computer the elementary unit of quantum information
is represented by a system with infinite dimensional Hilbert space H = I#(R),
for example a mode of the electromagnetic field. This allows to represent € R
in a CV quantum register instead of the binary digit. The use of infinite dimen-
sional systems for quantum communication was first proposed in [15], where
a quantum teleportation scheme and a implementation with quantum optical
means were suggested. The experimental realization [16] of this proposal in the
same year demonstrated the technological promise of quantum optical CV quan-
tum communication. The possibility of universal CV quantum computation was
explored in [17] and it was shown that there is a small set of experimentally ac-
cessible operations that form a “universal set” in the sense that any operation
on I?(R™) can be approximated arbitrarily well by concatenating members of
the set. Moreover it could be shown that CV quantum error correcting codes
can be constructed. Only through the clever use of such codes there is hope to
realize large-scale quantum computing despite the inevitable imperfections of
realistic systems.

But the main advantages of CV systems such as optical modes lies in the
area on quantum commaunication, especially for quantum cryptography [19, 20].
Light is probably the best choice as a carrier of information, and it is conceivable
that standard telecom fibers may in the future allow for quantum communica-
tion. The potential advantages of CV quantum communication compared to
qubits are mainly “technological” in nature: due to their much larger Hilbert
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space, CV systems may potentially provide much higher bandwidth for quantum
communication than, e.g., qubit-based setups. As an example serves the work
[21] which shows how arbitrary d-level systems can be encoded in a one CV
mode. This encoding is then used in [20] to devise a quantum key distribution
protocol that actually makes use of the high dimensionality of the CV system,
achieving a bandwidth which would only be limited by the imperfections of
the technical realization. Furthermore, some interesting CV states appear to
be quite robust against the most common types of noise, and lastly, the main
resource needed for quantum communication, namely quantum entanglement,
is surprisingly straight forward to generate in CV systems [16, 22]. This makes
CV systems a good place to study entanglement and quantum nonlocality ex-
perimentally.

While this Thesis is motivated in part by applications of quantum informa-
tion in communication and computation, it does not deal directly with such
applications. Instead, it is concerned with the quantum mechanical resource at
the heart of most communication protocols, namely entangled states of com-
posite quantum systems. Since due to the limitations of technology, current
experiments are not able to actually prepare all possible quantum states of
CV systems, but only members of the family of so-called Gaussian states, we
investigate the entanglement properties of Gaussian states of multi-party CV
systems.

1.3 Outline

This Thesis collects the work done on the on the separability properties of con-
tinuous quantum systems in Gaussian states. The four sections are all structured
similarly. After a brief introduction to the question addressed in the section
there follow reprints of one or more publications or submitted papers, which
constitute the main part of the Thesis and contain virtually all new results.
Sec. 2 discusses the separability of bipartite Gaussian states. We formulate
to separability problem and derive an separability criterion for all Gaussian
states. Sec. 3 is concerned with the property of distillability and shows that all
Gaussian states with negative partial transpose are distillable. In Sec. 4 actual
protocols to distill entangled Gaussian states are investigated and a practi-
cal purification protocol is presented. These results are almost entirely due to
Dr. Lu-Ming Duan, the principal author of [67, 68] and are included in this
Thesis only for completeness. Finally, in Sec. 5 the separability properties of
three-partite Gaussian states are studied. A criterion is obtained that allows to
completely classify all tripartite Gaussian states according to their separability
properties.

All these chapters make heavy use of many results on Gaussian states and
quasifree quantum operations and the corresponding notation. While each pub-
lication can be read for itself, the supplementing sections make use of the defini-
tions and lemmas that are collected in Appendix A. Some supplemental material
to the subjects covered in Sections 2 to 5.2 is provided in the Appendices B to
D.
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2 Separability of Gaussian States

Entanglement is maybe the most genuinely “quantum” property physical sys-
tems may possess. It occurs in composite systems and is a consequence of the
superposition principle and the fact that the proper Hilbert space to describe a
composite quantum system is the tensor product H = H4 ® Hp of the Hilbert
spaces H4 and Hp of the subsystems. This contrasts with classical systems,
where the phase space of a composite system is the direct sum of the subsystems’
phase spaces. The superposition principle immediately implies the existence of
states such as the Bell state

L
V2

which is the most popular example of a maximally entangled state that are
the essential ingredient of quantum information theory. The study of entangled
states of bipartite quantum systems is the main topic of this Thesis. In this
Section we provide tools to distinguish them from the “other”, less interesting
states, that are called separable.

In the first subsection we introduce the separability problem and review its
status in finite dimensions. The second subsection is concerned with separability
of Gaussian states of CV systems. It summarizes the results that have been
obtained so far, including those of [23, 60] that are reprinted in Subsections
2.3 and 2.4. The latter contains the main result of this section, a separability
criterion for all Gaussian states.

[+) = = (10 ®]0) + 1) @ 1)), (1)

2.1 Bipartite Quantum Systems

Definition 2.1 (Separable State)
A state p of a bipartite system H = Ha ® Hp is called separable if p is a
mizture of product states, i.e. if p can be written as [24]

A
p=> mp @p, 2)
k

where pi, > 0,>", pr, = 1, and p,iA),p,(cB) are states on Hy, Hp, resp.

A separable state can be prepared by local means, that is by performing local
quantum operations on a product state, where

Definition 2.2 (Local Operations (LOCC))
A linear map P : B(Ha ® Hp) — B(Ka ® Kpg) is called a local quantum
operation and we write P € LOCC(HAs @ Hp,Ka ® Kg) if

P=> Pak® Pu (3)
k

for completely positive maps Pyi : B(Hz) — B(Ky),z = a,b.

This allows for the most general transformations on the systems A and B (in-
cluding unitary evolution, generalized measurements, joining of ancilla systems,
and discarding of subsystems) and for coordination of these transformations by
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classical communication. Since all separable states can be prepared that way,
the correlations between the subsystems are purely classical in such a state: no
Bell-type inequality is violated, and there is no enhancement of computational
power or communication capacity.

States that are not separable are called inseparable or entangled. These
states are responsible for the peculiar non-local aspects of quantum mechanics
and therefore of interest for tests of quantum nonlocality as well as for appli-
cations in quantum communication and quantum computation. Consequently,
these states are at the center of virtually all work on quantum information, and
this Thesis is no exception.

The separability problem [64], that is the question whether a given state
p of a composite quantum system is separable or not, is one of the central
challenges of quantum information theory. A major effort has been devoted to
this problem in recent years, as evidenced by more than 500 E-prints in the
Los-Alamos archive! (www.arXiv.org) devoted to this subject.

In general it is quite difficult to determine, whether a given mixed state p of
a bipartite system is separable or not, since there are infinitely many ways to
write a general mixed state as a mixture of pure states. What one would like to
have is a separability criterion , that is, a necessary and sufficient condition for
separability that is easy to check, i.e. that can be directly calculated from the
density matrix of the state. A reformulation of (2) in terms of positive maps
indicates how to derive such conditions. First recall

Definition 2.3 (Positive Maps)
A map P on B(H) is called positive if X > 0= P(X) > 0. If P is positive and
1 ® P is positive on B(C™ @ H) for all n then P is called completely positive.

Positive, but not completely positive maps may reveal the inseparability of a
state. We have

Theorem 2.1 (Separability, [26])
The state p is separable if and only if for all positive maps P on B(H )

(Po1)(p) = 0. (4)

For any given positive (but not completely positive) map P this provides us
with a practical sufficient condition for inseparability. But this characterization
of separability is not a criterion, since there are many positive maps, and little
is known about this set (although it has been studied since the 1960s, see [30]).
For systems consisting of a two-level system on one side and a two- or three-
level system on the other condition (4) turns into a criterion: All positive maps
on €2 are of the form C; + Co7, where Cy,Co are completely positive and the
positive map 7 is transposition [27]: 7 (p) = p? (in some basis). Positive maps
that can be decomposed in this way are called decomposable. Therefore we have
following Theorem, which was conjectured by Peres [25] and then proved by the
Horodeckis [26].

Theorem 2.2 (Peres-Horodecki separability criterion, [25, 26])
A state p of two qubits (H = ©? ® ©?) is separable if and only if its density

LAt the latest count (25.4.2001) there were 511 E-prints with “separable”, “separability”
or “entangled”, “entanglement” in the title; among those alone 397 since 1999.
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matriz remains positive under partial transposition, i.e.
p € B(H) separable < p™ > 0. (5)

States with positive partial transpose are referred to as ppt states, states for
which p™ % 0 are npt states.

This is still true for H = C? ® €2 systems [26] but for higher dimensional
systems, no criterion is known. There exist only conditions that are either
necessary or sufficient for inseparability and turn into criteria for certain families
of states. A good current summary of known conditions for separability is
provided in [64].

The general question of inseparability for CV systems contains all the un-
solved finite dimensional cases and finding an answer to it is not attempted
here. Instead we consider the family of Gaussian states (see App. A.1) which
contains virtually all generic continuous variable states that can currently be
prepared experimentally.

2.2 Separability of Gaussian States

Specializing to Gaussian states greatly simplifies the problem of separability
compared to the general CV case. A Gaussian state is completely determined
by its correlation matrix (CM) ~ and displacement d (see App. A.l). Since
any such state is locally equivalent to a state with the same CM v and d = 0
all nonlocal properties of a Gaussian state are determined by its CM. Thus the
study of infinite dimensional density matrices can be replaced by finite dimen-
sional correlation matrices. We give a brief review of results on separability of
Gaussian states.

The first step towards the solution of the separability problem for Gaussian
states was done in [23, 59] where a separability criterion for two-mode Gaussian
states was proved; the equivalence of these conditions (not only for Gaussian
states) is proved in App. B.

In [23] (reprinted in Subsec. 2.3) it is shown that separable states must satisfy
a stronger form of the usual uncertainty relations for the quadrature operators
X, Pr, and that all inseparable Gaussian states of two modes do violate this
relation, which thus provides a separability criterion for these states.

A more elegant approach is due to Simon [59]. He noted that the charac-
teristic function (see A.1) of the transposed state p! is obtained from that of
p simply by multiplying all the momentum coordinates by —1. For a Gaussian
state p with CM ~ and displacement d we therefore have

5 =AyA and d= Ad, (6)

where A = diag(1,—1,1,—1,...,1,—1). Consequently, a Gaussian state has
nonpositive partial transpose if and only if the CM of the partially transposed
states is not a proper CM, i.e. iff (see Subsec. A.3, Lemma A.1)

Jai=(Basl)y(Aa 1) ZiJ, (7)

where A4 acts only on the modes of the first subsystem. Sometimes it is more
convenient to apply A4 on the rhs of this inequality and write v # iJy :=
iAgJA 4. With this, Simon showed explicitly, that npt is also necessary for
inseparability of two mode Gaussian states. This can be formulated as the
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Theorem 2.3 (Peres-Horodecki Criterion for 1 x 1 Gaussian States, [23, 59])
A Gaussian state of two modes with CM ~y is separable if and only if its partial
transpose is positive, i.e. if and only if gamma does not fulfill the condition (7),
i.€.

v >ida. (8)

Using the four local invariants xj (see Subsec. A.3, Eq. (68)) of 7, this can
be expressed in very compact form: The state is separable if and only if (see
Subsec. A.3, Eq. (71))

I4+171‘17$2+21’320. (9)

In general we consider Gaussian states of N x M systems consisting of N
modes at A’s and M modes at B’s location and a (2N + 2M) x (2N + 2M)
CM 7. Werner and Wolf [62] have reformulated the separability problem for
Gaussian states in a very useful way. They proved

Theorem 2.4 (Separability of Gaussian States, [62])
A Gaussian state with CM ~y is separable if and only if there exist CMs va,vB
such that

Y Z YA DYB- (10)

This shows that a Gaussian state is separable iff it can be written as a mixture
of Gaussian product states. The condition (10) does, however, not constitute
a separability criterion (and thus a solution of the separability problem for
Gaussian states), since it is in general not easy to decide whether such CMs
Ya,vB exists for a given .

The articles reprinted in the following two subsections prove a separability
criterion for two important special cases. The elementary case of two modes in
a Gaussian state (comparable to the two-qubit system in finite dimensions) is
treated in Subsec. 2.3, while in Subsec. 2.4 we show how to turn the condition
(10) into a practical separability criterion, which, for an arbitrary Gaussian
state, enables us to directly compute whether it is separable or not. This solves
the problem of separability for Gaussian states.
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2.3 Inseparability criterion for continuous variable sys-
tems

Lu-Ming Duan, Géza Giedke, J. Ignacio Cirac, and Peter Zoller,

An inseparability criterion based on the total variance of a pair of
FEinstein-Podolsky-Rosen type operators is proposed for continuous variable
systems. The criterion provides a sufficient condition for entanglement of any
two-party continuous variable states. Furthermore, for all the Gaussian states,
this criterion turns out to be a necessary and sufficient condition for
inseparability.

Phys. Rev. Lett. 84, 2722 (2000), E-print: quant-ph/9908056.
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An inseparability criterion based on the total variance of a pair of Einstein-Podolsky-Rosen type op-
erators is proposed for continuous variable systems. The criterion provides a sufficient condition for
entanglement of any two-party continuous variable states. Furthermore, for all Gaussian states, this cri-
terion turns out to be a necessary and sufficient condition for inseparability.

PACS numbers: 03.67.—a, 03.65.Bz, 42.50.Dv, 89.70.+c

It is now believed that guantum entanglement plays an
essentia role in al branches of quantum information the-
ory [1]. A problem of great importance is then to check
if a state, generally mixed, is entangled or not. Concern-
ing this problem, Peres proposed an inseparability crite-
rion based on partia transpose of the composite density
operator [2], which provides a sufficient condition for en-
tanglement. This criterion was later shown by Horodecki
to be a necessary and sufficient condition for inseparabil-
ity of the (2 X 2)- or (2 X 3)-dimensional states, but not
to be necessary any more for higher-dimensional states
[3,4]. Many recent protocols for quantum communication
and computation are based on continuous variable quan-
tum systems [5—-11], and the continuous variable optical
system has been used to experimentally realize the un-
conditional quantum teleportation [12]. Hence, it is de-
sirable to know if a continuous variable state is entangled
or not.

In this paper, we propose a simple inseparability crite-
rion for continuous variable states. The criterion is based
on the calculation of thetotal variance of apair of Einstein-
Podolsky-Rosen (EPR) type operators. We find that, for
any separable continuous variable states, the total variance
is bounded from below by a certain value resulting from
the uncertainty relation, whereas for entangled states this
bound can be exceeded. So, violation of this bound pro-
vides a sufficient condition for inseparability of the state.
We then investigate how strong the bound is for the set of
Gaussian states, which is of great practical importance. It
is shown that for a Gaussian state, the compliance with the
low bound by a certain pair of EPR type operators guar-
antees that the state has a P representation with positive
distribution, so the state must be separable. Hence we ob-
tain a necessary and sufficient inseparability criterion for
all of the Gaussian continuous variable states.

We say a quantum state p of two modes 1 and 2 is sepa-
rable if, and only if, it can be expressed in the following
form:

p= Z pipi1 ® pi, D
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where we assume p;; and p;; to be normalized states of
the modes 1 and 2, respectively, and p; = 0 to satisfy
2ipi =1L

A maximally entangled continuous variable state can be
expressed as a co-eigenstate of a pair of EPR type op-
erators [13], such as x; + X, and p; — p,. Therefore,
the total variance of these two operators reduces to zero
for maximally entangled continuous variable states. Of
course, the maximally entangled continuous variabl e states
are not physical, but for the physically entangled continu-
ous variable states—the two-mode squeezed states [14] —
this variance will rapidly tend to zero by increasing the
degree of squeezing. Interestingly, we find that, for any
separable state, there exists alower bound to the total vari-
ance. To be more general, we consider the following type
of EPR-like operators:

PaN ”~ 1 ”~

u = |a|X1 + — X2, (2a‘)
a

PaN N 1 ”~

v = lalp; — - P2 (2b)

where we assume a is an arbitrary (nonzero) real num-
ber. For any separable state, the total variance of any pair
of EPR-like operators in the form of Egs. (2a) and (2b)
should satisfy a lower bound indicated by the following
theorem:

Theorem 1.—Sufficient criterion for inseparability: For
any separable quantum state p, the total variance of a
pair of EPR-like operators defined by Egs. (28) and (2b)
with the commutators[x;, p;/] = i8,; (j,j' = 1,2) stis-
fies the inequality

(A%, + ((AD)?), = a* + i 3

Proof.—We can directly calculate the total variance
of the # and v operators using the decomposition (1)
of the density operator p, and finaly get the following
expression:

© 2000 The American Physical Society
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(AR, + (A0, = D pil(@) + (7)) — @), — @)

A~ | BN A~ 1 A
= ZP:’(&Z(X]Z):' + E<X%>i + a*(pi)i + ;(P%)i)
i

a

lal

+2

(Z iR = 3 p,»<fn>,»<faz>,-> = (i, — @,

= 3 pi( AR + 5 (AP + @R+ (P

2 2
+ Z pi(u); — (Z Pi<a>i> + Z pi(v); — (Z pi<$>i> :

In Eq. (4), the symbol (---); denotes the average
over the product density operator p;; ® p;,. It follows
from the uncertainty relation that ((Ax;)?); + ((Ap;)*); =
IIx;, p;]l = 1 for j = 1,2, and, moreover, by applying
the Cauchy-Schwarz inequaity (3, p;) (S, pi(i)?) =
s pilKu)i))?, we know that the last line of Eq. (4) is
bounded from below by zero. Hence, the total variance
of the two EPR-like operators u and v is bounded from
below by a? + ai for any separable state. This completes
the proof of the theorem.

Note that this theorem in fact gives a set of inequalities
for separable states. The operators x;,p; (j = 1,2) in
the definition (1) can be any local operators satisfying the
commutators[x;, pj] = id;;. Inparticular, if weapply an
arbitrary local unitary operation U; ® U, to the operators
u and v, the inequality (3) remains unchanged. Note also
that without loss of generality we have taken the operators
x; and p; dimensionless.

For inseparable states, the total variance of the z and
v operators is required by the uncertainty relation to be
larger than or equal to |a> — %I , which reducesto zero for
a = 1. For separable states the much stronger bound given
by Eg. (3) must be satisfied. A natural question is then
how strong isthe bound. Isit strong enough to ensure that,
if some inequality in the form of Eq. (3) is satisfied, the
state necessarily becomes separable? Of course, it will be
very difficult to consider this problem for arbitrary contin-
uous variable states. However, in recent experiments and

protocols for quantum communication [5—12], continuous |

(4)

1
X" (A1, A) = exp[—; (AL, AR AL, A§)M(A’,AR,A’,A§)T]

In Eq. (6), linear terms in the exponent are not included | where G,

since they can be easily removed by some loca displace-
ments of x;, p; and thus have no influence on separability
or inseparability of the state. The correlation property of
the Gaussian state is completely determined by the4 X 4
real symmetric correlation matrix M, which can be ex-
pressed as

G C

= (ch o) g

variable entanglement is generated by two-mode squeez-
ing or by beam splitters, and the communication noise
results from photon absorption and thermal photon emis-
sion. All of these processes lead to Gaussian states. So,
we will limit ourselves to consider Gaussian states, which
are of great practical importance. We find that the in-
equality (3) indeed gives a necessary and sufficient insepa-
rability criterion for all of the Gaussian states. To present
and prove our main theorem, we need first mention some
notations and results for Gaussian stetes.

It is convenient to represent a Gaussian state by its
Wigner characteristic function. A two-mode state with the
density operator p has the following Wigner characteristic
function [14]:

v"'r

X" (A1, A) =t p exp(nia; — )l’fair + hay — Aa,)]

=tr{ p exp[ivV2 (AIx, + Afpy + A%,

+ A5p2)l} ®)

where the parameters A; = A¥ + i)}, and the annihila-
tion operators a; = % (x; + ip;), with the quadrature
amplitudes x;, p; satisfying the commutators [x;, p;1] =
i (j,j' = 1,2). For aGaussian state, the Wigner char-
acteristic function y™)(A;, A,) is a Gaussian function of
A¥ and A} [14]. Without loss of generality, we can write
x™ (A1, A2) in the form

(6)

G,,and C are2 X 2 rea matrices. To study the
separability property, it is convenient to first transform the
Gaussian state to some standard forms through local linear
unitary Bogoliubov operations (LLUBOS) U; = U; ® U,.
In the Heisenberg picture, the general form of the LLUBO
U, is expressed as U (%, ;)T U = H; (3. p,)T for j =
1,2, where H; issome2 X 2 rea matrix with detH; = 1.
Any LLUBO is obtainable by combining the squeezing
transformation together with some rotations [15]. We have
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the following two lemmas concerning the standard forms
of the Gaussian state.

Lemma 1.—Standard form I:  Any Gaussian state pg
can be transformed through LLUBOSs to the standard form
| with the correlation matrix given by

n C

(m,m=1). (8

Proof.—A LLUBO on the state p transforms the cor-
relation matrix M in the Wigner characteristic function in
the following way:

<V1 v, >M< vi V{) 9)

where V; and V, are real matrices with detV; = detV, =
1. Since the matrices G; and G, in Eq. (7) are red
symmetric, we can choose first a LLUBO with orthogonal
V1 and V, which diagonalize G, and G,, and then alocal
squeezing operation which transforms the diagonalized
G, and G, into the matrices G| = nl, and G5 = ml,
respectively, where I isthe2 X 2 unit matrix. After these
two steps of operations, we assume that the matrix C in
Eq. (7) is changed into C’, which aways has a singular
value decomposition; thus it can be diagonaized by
another LLUBO with suitable orthogonal V; and V,. The
last orthogonal LLUBO no longer influences G| and G5
since they are proportional to the unit matrix. Hence, any
Gaussian state can be transformed by three-step LLUBOs
to the standard form I. The four parameters n, m, ¢, and
¢’ in the standard form | are related to the four invariants
detG,, detG,, detC, and detM of the correlation matrix
under LLUBOs by the equations detG, = n?, detG, =
m?, detC = cc/, and detM = (nm — ) (nm — ¢'?),
respectively.

Lemma 2.— Standard form I1:  Any Gaussian state pg
can be transformed through LLUBOSs into the standard
form 11 with the correlation matrix given by

np Cl
1 _ na c2
Mt =1 , (10)
(&) nip
where the n;, m;, and ¢; satisfy
— 1 -1
e (11a)
mp; — 1 my — 1
lerl = leal = Jom = Dmy = 1)
— = Dmy — 1. (11b)

Proof.—Any Gaussian state can be tranformed through
LLUBOs to the standard form |. We then apply two ad-
ditional local squeezing operations on the standard form I,
and get the state with the following correlation matrix:

2724

nri \Jrrc
c/
M = " vne (12)
Jrirc mro ’
¢ m
i L

where r; and r, are arbitrary sgueezing parameters. M’
in EQ. (12) has the standard form M!! (10) if r; and r,
satisfy the following two equations:

| Z -1
: == (13)

nr; — 1 mr, — 1°

lc'l

ryra

= r = Dmrs = 1)

Gz ) e

Our task remains to prove that Egs. (13) and (14) are
indeed satisfied by some positive r; and r, for arbitrary
Gaussian states. Without loss of generality, we assume
lc] = |c'l and n = m. From Eq. (13), r» can be ex-
pressed as a continuous function of r; with ry(ry = 1) =
1 and () =Sm.  Substituting this expression
ra(ry) into Eq. (14), we construct a function f(r)
by subtracting the right-hand side of Eq. (14) from
the left-hand side, i.e, f(r1) = left(14) — right(14).

r—®

Obviously, f(ri =1) = lc| — |¢/| =0, and f(r))~—
Jrim[le| — /n(m — %)] =0, where the inequality

lc| = 4/n(m — %) results from the physica con-
dition  ((Aug)?) + ((ADo)%) = |[uo, vo]l  with

m — %551 — [qVn X and vy = %22 It follows from
continuity that there must exist ar; € [1, %) which makes
f(ri = r;) =0. Therefore Egs. (13) and (14) have at
least one solution. This proves lemma 2.

We remark that, corresponding to a given standard form
| or l1, thereisaclass of Gaussian stateswhichisequivalent
under LLUBOSs. Note that separability or inseparability is
aproperty not influenced by LLUBOSs, so al of the Gauss-
ian states with the same standard forms have the same
separability or inseparability property. With the above
preparations, we now present the following main theorem:

Theorem 2.—Necessary and sufficient inseparability
criterion for Gaussian states: A Gaussian state pg is
separable if, and only if, when expressed in its standard
form I1, the inequality (3) is satisfied by the following two
EPR type operators

Jriralel —

uy =

PaN ”~ 1 Pay

U= apx; — a — X, (158)
le1] ao

v =ap, — 77— D2, (15b)
leal ao
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where aj = 1/ '=} = }/',:’j_f.

Proof.—The “only if” part follows directly from theo-
rem 1. Weonly need to provethe“if” part. Fromlemmaz2,
we can first transform the Gaussian state through LLUBOs
to the standard form Il. The state after transformation is
denoted by pd'. Then, substituting the expressions (15a)
and (15b) of # and ¥ into the inequality (3), and calcu-
lating ((An)?) + {(AD)?) by using the correlation matrix
MM, we get the following inequality:

s N+ Ny m; + mp
0
2 2a3

1
= letl = leal Za(z) + .,

ag
(16)

which, combined with Egs. (11), yields

lerl = J(n = D0y — 1), (172)

leal = \J(n2 = 1) (mz = 1).

The inequalities (17a) and (17b) ensures that the matrix
MM — I ispositive semidefinite. So there exists a Fourier
transformation to the following normal characteristic func-
tion of the state pg':

(17b)

n w l
XI(I)(M,)Q) Xgl)(/\l,)tz)eXp[Eﬂ/\lP + |/\2|2)}

1
— exp[—E ALAR M Ay — 1)
X (Al,)llf,)té,)\g)T] (18)

This means that p&' can be expressed as

pll = [ dadpPp)lap)pl. (9

w(here P(a,B) is the Fourier transformation of
n)

xi11 (A1, A7) and thus is a positive Gaussian function.
Equation (19) shows p¢' is separable. Since the original
Gaussian state pg; differs from p& by only some LLU-
BOs, it must also be separable. This completes the proof
of theorem 2.

Now we have a necessary and sufficient inseparability
criterion for all of the Gaussian states. We conclude
the paper by applying this criterion to a simple ex-
ample. Consider a two-mode sgueezed vacuum state
e~r@lm—aa)|yac) with the squeezing parameter r.
This state has been used in recent experiments for con-
tinuous variable quantum teleportation [12]. Suppose
that the two opticall modes are subject to indepen-
dent therma noise during transmission with the same

damping coefficient denoted by n and the same mean
therma photon number denoted by 7. It is easy to
show that, after time ¢, the standard correlation matrix
for this Gaussian state has the form of Eq. (8) with
n=m=cosh(2r)e 2" + 2n + 1)(1 — ¢ 2"") and
¢ = —c = €inh(2r)e 27" [16]. Therefore the insepa-
rability criterion means that, if the transmission time ¢
satisfies

1 1 —e %
< 2 In(l + 7 ) (20
the state is entangled; otherwise it becomes separable. In-
terestingly, Eq. (20) shows that, if there is only vacuum
fluctuation noise, i.e., m = 0 (this seems to be a good ap-
proximation for optical frequency), the initial squeezed
state is aways entangled. This result does not remain
true if thermal noise is present. In the limit 7 > 1, the
state is no longer entangled when the transmission time
I—e™>
t= .

Notenadded.—After submission of this work, we be-
came aware of a recent preprint by R. Simon (quant-ph/
9909044), which shows that the Peres-Horodecki crite-
rion also provides a necessary and sufficient condition for
inseparability of Gaussian continuous variable quantum
states.

This work was funded by the Austrian Science
Foundation and by the European TMR Network Quantum
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2.4 Separability Criterion for all bipartite Gaussian States

Geza Giedke, Barbara Kraus, Maciej Lewenstein, and J. Ignacio Cirac,

We provide a necessary and sufficient condition for separability of Gaussian
states of bipartite systems of arbitrarily many modes. The condition provides
an operational criterion since it can be checked by simple computation.
Moreover, it allows us to find a pure product—state decomposition of any given
separable Gaussian state. Our criterion is independent of the one based on
partial transposition, and is strictly stronger.

Phys. Rev. Lett. 87, 167904 (2001); E-print: quant-ph/0104050.
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We provide a necessary and sufficient condition for separability of Gaussian states of bipartite systems
of arbitrarily many modes. The condition provides an operational criterion since it can be checked by
simple computation. Moreover, it allows us to find a pure product-state decomposition of any given sepa-
rable Gaussian state. We also show that all bipartite Gaussian states with nonpositive partial transpose

are distillable.

DOI: 10.1103/PhysRevLett.87.167904

Entanglement is the basic ingredient in the philosophi-
cal implications of quantum theory. It also plays a cru-
cial role in some fundamental issues of this theory, such
as decoherence or the measurement process. Furthermore,
it is the basis of most applications in the field of quantum
information. However, in spite of their importance, the en-
tanglement properties of systems are far from being under-
stood. In particular, we do not even know how to answer
the following question [1]: given two systems A and B in a
state described by a density operator p, are those systems
entangled? This question constitutes the so-called separa-
bility problem, and it represents one of the most important
theoretical challenges of the emerging theory of quantum
information.

During the last few years a significant amount of work
in the field of quantum information has been devoted to
the separability problem [2]. Until now, the basic tool to
study this problem is a /inear map called partial transpo-
sition. Introduced in this context by Peres [3], it provides
us with a necessary condition for a density operator to be
separable. This condition turns out to be also sufficient in
two cases: (a) A and B are two qubits or one qubit and one
qutrit [4]; (b) A and B are two modes (continuous variable
systems) in a Gaussian state [5]. Thus, in these cases the
separability problem is fully solved. However, for higher
dimensional systems as well as in the case in which A and
B consist of several modes in a joint Gaussian state, par-
tial transposition alone does not provide a general criterion
for separability. In both cases, examples of states which
in spite of being entangled satisfy the partial transposition
criterion have been found [6,7].

In this Letter we solve the separability problem for
Gaussian states of an arbitrary number of modes per
site. Our method does not rely in any sense on partial
transposition, and therefore is entirely different from the
ones that have been introduced so far to study this prob-
lem [2]. It is based on a nonlinear map f: yy — Yn+1
between matrices yy which reveals whether a state p is
an entangled state or not. In addition, we show that if p
is entangled and has nonpositive partial transpose then it
is distillable [2,8].

167904-1 0031-9007/01/87(16)/167904(4)$15.00

PACS numbers: 03.65.Ud, 03.65.Ca, 03.67.Hk

Let us start by fixing the notation and recalling some
properties of correlation matrices (CMs). A Gaussian
state of n modes is completely characterized by a matrix
v € My, 2, (the set of 2n X 2n matrices), called corre-
lation matrix [9], whose elements are directly measurable
quantities. A matrix y € M, 5, is a CM if it is real, sym-
metric, and y — iJ, = 0. Here we use [10]

n _1
Jn = ®p_1J1, J1 E(? 0>~ (1

In the following we will consider two systems A and B,
composed of n and m modes, respectively, in a Gaussian
state. The corresponding CM will be written as

_ (A C0> _ .
Yo <C(])" BO = lJn,m (2)

where Ay € M2, 2, and By € M2y, 2, are CM themselves,
Cy € Mypom and J,,,, = J, ® J,,. In order to simplify
the notation, when it is clear from the context we will
not write the subscripts to the matrices J and we will
not specify the dimensions of the matrices involved in our
derivations. In [7] it was shown that a CM of the form
(2) is separable (i.e., it corresponds to a separable state) iff
there exist two CMs 7y, g, such that

Yo = YA © VB. (3)

This condition, even though it can be very useful to show
that some particular states are entangled [7,11], cannot be
directly used in practice to determine whether an arbitrary
state is entangled or not, since there is no way of determin-
ing y4 p in general. If one can determine them, however,
then one can automatically construct an explicit decompo-
sition of the corresponding density operator as a convex
combination of product states [7].

Below we present a criterion which allows one to deter-
mine whether a given CM, vy, is separable or not. To this
aim, we define a sequence of matrices {7y }y—o of the form
(2). The matrix yy+; is determined by a discrete map de-
fined as follows: (i) if yx is not a CM then yy+; = O;

© 2001 The American Physical Society 167904-1
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(i) if yn is a CM then

An+1 = By+1 = Ay — Re(Xy), (4a)
Cn+1 = —Im(Xy), (4b)

where Xy = Cy(By — iJ)~'CL [12]. Note that for N =
1 we have that Ay = Ay = By and Cy = —C;, are real
matrices. The importance of this sequence is that vy is
separable iff yy is a valid separable CM, and, after some
finite number of iterations, yy acquires a form in which
separability is simple to check. Moreover, starting from
that CM we are able to construct the CMs y4 g of Eq. (3)
for the original yo. Now we state several propositions from
which the above results follow. For two technical lemmas,
see the Appendix.

First we show that if yy is separable, so is yy . More-
over, the CMs vy, p associated to yy [cf. Eq. (3)] allow us
to construct the corresponding CMs for yy+;.

Proposition 1: If for some CMs yap, we have yy =
Y4 © yp then yN+1 = Y4 @ V4.

Proof: We use the equivalence (i)—(iii) of Lemma 1 to
obtain that By — C{,(AN — v4) 'Cy = vp = iJ, where
the last inequality follows from the fact that yp is a CM.
Using the equivalence (ii)—(iii)) of Lemma 1 we obtain
ya = Ay — Cy(By — i) 7'Cy = Ay41 + iCyi1,
where we have also used the map (4). According to
Lemma 2, this immediately proves the proposition. |

Now, we show that the converse of Proposition 1 is true.
That is, if yy41 is separable, so is yy. Apart from that,
the following proposition exhibits how to construct the
matrices y4 p [cf. Eq. (3)] related to yy starting from the
ones corresponding to Yy +1.

Proposition 2: If for some CM ys we have yn+1 =
YA ® ya then yy = ya ® yp for the CM

ys = By — Ch(Axy — ya) 'Cy. &)

Proof: We use Lemma 2 and the map (4) to transform
the ine7quality YN+1 = Y4 © Y4 into Ay — Cy(By —
iJ)"'Cy = ya. According to the equivalence (ii)—(iii) of
Lemma 1 this implies that yg = iJ. Since it is clear from
its definition (5), yp is also real and symmetric, it is a
CM. On the other hand, using the equivalence (i)—(iii) of
Lemma 1 we immediately obtain that yy = y4 ® yg. B

Using the fact that for N = 1, Ay = By and the sym-
metry of the corresponding matrix yy we have

Corollary 1: Under the conditions of Proposition 2, we
have yy = a4 ® Ya, and yx = (ya + yp)/2 = iJ is
a CM.

The above propositions imply that yo is separable iff
v 1s separable for all N > 0. Thus, if we find some yy
fulfilling (3) then v is separable. Thus, we can establish
now the main result of this work.

Theorem 1 (separability criterion):

(1) If for some N = 1 we have Ay # iJ then vy is not
separable.

167904-2

(2) If for some N = 1 we have
Ly = Ay — lICnllopl = iJ (6)

then 7y is separable [13].

Proof: (1) It follows directly from Proposition 1;
(2) We will show that yy = Ly & Ly, so that according
to Proposition 2 vy is separable. We have

ICnllopl  Cn >
. (D
CZT\; ”CN”op]l

so that we just have to prove that the last matrix is posi-
tive. But using Lemma 1 this is equivalent to ||C Nllgp]l =

7’N=LN€BLN+<

C;, Cy, which is always the case. [ |

This theorem tells us how to proceed in order to deter-
mine if a CM is separable or not. We just have to iterate
the map (4) until we find that either Ay is no longer a CM
or Ly is a CM. In the first case, we have that 7y, is not
separable, whereas in the second one it is separable. If we
wish to find a decomposition of the corresponding density
operator as a convex sum of product vectors we simply use
the construction given in Corollary 1 until N = 1 and then
the one of Proposition 2. This will give us the CMs y4 g,
such that yo = y4 ® 7yp, from which the decomposition
can be easily found [7].

In order to check how fast our method converges we
have taken families of CMs and applied to them our cri-
terion. We find that typically with less than five iterations
we are able to decide whether a given CM is entangled
or not. The most demanding states for the criterion are
those which lie very close to the border of the set of sepa-
rable states (see Proposition 3 below). We challenged
the criterion by applying it to states close to this bor-
der and still the convergence was very fast (always below
30 steps). Figure 1 illustrates this behavior. We have taken
n = m = 2 modes, an entangled CM vy, of the GHZ form
[14] (Fig. 1a) and an entangled CM vy, with positive par-
tial transpose [7] (Fig. 1b). We produced two families of
CMs as y,»(€) = y,p + €l. We have determined €,

(a) . (b)
20 Ent. Sep. Ent. |

T
-k

Sep.

ol .

0. S~ -

0 S I Lo [ L
5 10 10 5 5 10 10 5
-log(le-g,l/e,)  -log(le-g;l/ey)
FIG. 1. Number of steps as a function € for CMs of the

form y,,(€) = y.» + €l where: (a) y, taken from Eq. (1) in
Ref. [14] with r = 1/4, and €, = 0.305774915510(1); (b) v,
taken from Eq. (9) in Ref. [7] and €, = 0.097 866 790 222 8(4).
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such that y, 5 (€) become separable. In Fig. 1 we see that
in both cases, as we approach €, exponentially fast, the
number of needed steps increases linearly. The same be-
havior is found using instead of 1 other positive projectors
with different ranks and for different initial CMs. Even
though we have tested numerically the rapid convergence
of our method, we still have to prove that, except for a zero
measure set, it can decide whether a CM is entangled or not
after a finite number of steps [15]. We start by considering
the set of separable states, defined by yg = y4 ® yp with
vap = iJ. If we just consider those with y4 > iJ, we
will omit a zero measure set. But then we can show that
after a finite number of steps these separable states will be
detected by our procedure.

Proposition 3: If yo = ya ® yp with y4 = iJ + €1,
then there exists some

1
N <Ny = :(”AOHtr —2n) +1, (8)

for which condition (6) is fulfilled.
Proof: Using Proposition 1 we have that for all N,

Ay — iJ = €l. 9)

Thus, 0 =< Re(Xy) = Ay — Ay+1. Since all the matri-
ces in this expression are positive, taking the trace norm
we have [|Aylle — lAn+1lle = lIRe(Xy)llr. Adding both
sides of this equation from N = 0 to Ny, taking into
account that ||---|lx = [|--|lop, and ||[Re(Xpy)llop =
ICn+1llop [since Re(Xy) = *iIm(Xy)], we have

No—1

D lcyllop = llAolle = llAw,lle = llolle — 21,

N=0

where the last inequality is a consequence of the fact that
Ay = iJ for all N. Thus, among {CN}x(’:l there must
be at least one for which ||Cyllop = €. Thus, Ay —
ICnllopl = Ay — €1 = 0 where for the last inequality
we have used Eq. (9), and therefore, for that particular
value of N, condition (6) must be fulfilled. |

It is worth stressing that from the proof of Proposi-
tion 3 it follows directly that if yq is separable, then the
sequence yy converges to a fixed point Yo = Ax ® B,
where A = B, = iJ are CMs. For the sake of com-
pleteness, we now show that if vy, is inseparable, then
we can always detect it in a finite number of steps. We
will use the fact that the CMs of inseparable Gaussian
states form an open set, a fact that follows directly from
condition (3). Therefore, if 7y is inseparable, there al-
ways exist €g > 0 such that if € < €y then yy + €1 is
still inseparable and thus condition (6) is never fulfilled.
However, if y¢ were separable, then, according to Proposi-
tion 3, yo + €1 should fulfill that condition before reach-
ing N = Ny. This can be summarized as follows.

Corollary 2: If y is inseparable then there exists some
€ >0 such that starting out from vy, =7y + €,
condition (6) is not fulfilled for any N = Ny =
(lAolle — 2n)/e.
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Together, Proposition 3 and Corollary 2 show that—
whether 7y is separable or not, and except for a set of
measure zero— we will be able to detect it in a finite num-
ber of steps. However, as mentioned above, according to
our numerical calculations we see that the process always
converges very fast and in practice one can directly use the
method sketched after Theorem 1.

To conclude this Letter, we show that not only separa-
bility but also distillability [2,8], can be determined for all
Gaussian states. The proof is based on the result that for
1 X 1 Gaussian states nonpositive partial transpose (npt)
implies distillability [16]. This result can be extended to
all bipartite Gaussian states, i.e., a Gaussian density matrix
p is distillable iff its partial transpose is not positive. For
the proof, it suffices to show that any n X m npt Gaussian
state can be locally transformed into an 1 X 1 npt Gaussian
state. This is achieved as follows: For Gaussian states, the
npt condition is equivalent to y # iJ [7]. Hence, for every
npt CM 1y there exists a vector z = z4 ® zp € C2n+m)
such that for some € > 0 we have

Ay —ihz=-e<o. (10)

It is always possible to pick z such that (Rez,)?J Imz, #
0 for both x = A, B. But then there exist symplectic maps
Sa,Sp such that S, maps span{Rez,,Imz,} to span{ey, >}
[17]. It follows that 2, = S Iz, have nonzero entries only
in the first two components. Thus not only is 2T[(S, @
Sp)Ty(Sy ® Sp) — iJ]z < 0 but by construction this still
holds for the CM of the reduced state obtained by discard-
ing all but the first mode at each side. Discarding subsys-
tems is a local operation, hence all npt Gaussian states can
be transformed locally into an npt 1 X 1 state and are thus
distillable by [16]. |

To summarize, we have obtained a necessary and suf-
ficient condition for Gaussian states to be separable. The
condition provides an operational criterion in that it can be
easily checked by direct computation. It is worth mention-
ing that our criterion can be used to study the separability
properties with respect to bipartite splittings of multipartite
systems in Gaussian states [11,18]. Our criterion is based
on a nonlinear map that is more powerful than partial trans-
position. In addition we proved that a bipartite Gaussian
state is distillable if and only if it has nonpositive partial
transpose. While in general, i.e., for non-Gaussian states,
both the separability and the distillability problems remain
open, these results represent a significant step towards un-
derstanding the separability problem, which is one of the
most challenging problems in the field of quantum infor-
mation. With the results presented here, one can decide for
any bipartite Gaussian state by direct computation whether
it is distillable and/or inseparable: it is distillable iff it is
npt, and it is separable iff yy = iJ V N.
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Appendix.—In this Appendix we present the lemmas
which are needed in order to prove Propositions 1 and 2.
Let us consider three real matrices 0 = A = AT € M, .,
0=B=B"€e My, CE M,,, and

A C
M = <CT B> = MT € Mn+m,n+m~ (11

Lemma 1: The following statements are equivalent:

M =0.

(i) ker(B) C ker(C) and A — CB~'CT = 0.

(iii) ker(A) C ker(CT) and B — CTA™'C = 0 [12].

Proof: We will just prove the first equivalence since the
other one is analogous. We use that M = 0 iff for any two
real vectors ¢ € IR” and b € IR”

a’Aa + b"Bb + a"Cb + b'CTa = 0. (12)

Conversely, A — CB~'CT = 0 iff for any a € IR" we
have

a'Aa — a"CcB'CTa = 0. (13)

(i) = (ii): We assume (12). First, ker(B) C ker(C) since
otherwise we could always choose a b € ker(B) so that
—2aTCh > a’Aa. Second, if we choose b = —B~1CTa
then we obtain (13). (ii) = (i): We now assume (13).
Then, A = CB~'CT + P, where P = 0. Defining a =
B 'CTa, we have that CTa = Ba [since ker(B) C
ker(C)], and thus the left-hand side of (12) can be
expressed as a’Pa + (@ + b)'B(a + b), which is
positive. |

In the derivations of Propositions 1 and 2 we have not
included explicitly the conditions imposed by the present
lemma on the kernels of B and C. However, one can
easily verify that all the problems that may arise from these
kernels are eliminated by using pseudoinverses [12] instead
of inverses of matrices.

Let us consider two real matrices A = AT € M, , and
c=-Ccle M, ,, and

A C
M = <CT A) =M" € My,,,. (14)

Lemma?2: M =0iff A + iC = 0.
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Proof: This follows from the observation that M is real,
and that for any pair of real vectors a,b € IR" we have
(a — ib)"A+iC)(a—ib)=(a®b)Mae®b). R
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3 Distillability of Gaussian States

This section discusses distillability — a property that even more than separability
determines the usefulness of quantum states for quantum communication. In
the first subsection we motivate and define distillability and review the current
knowledge on this topic (for this also see [64]) as the background on which the
work on distillability of Gaussian states ([61], reprinted in Subsec. 3.2) was done.
Section 4 then deals with actual entanglement distillation protocols.

3.1 The Distillability Problem

The fact that the state p of a bipartite system is inseparable shows that quantum
correlations between the subsystems exist. This is necessary for p to offer any
advantages over classical means of communication. But specific applications us-
ing entangled states for quantum communication — such as teleportation [13, 15]
or quantum key distribution [8, 20] — are usually formulated for pure entangled
states. In realistic situations, however, noise and imperfections are unavoidable,
and therefore in practice one has to deal with mixed states. These can only be
used directly in those protocols if they are sufficiently close to the ideal pure
state. For example, if A and B want to employ an entanglement-based quantum
key distribution protocol [8, 20], then, in principle, the noise might be due to an
eavesdropping attempt and the protocol cannot guarantee more than a certain
imperfect level of security. Therefore a mixed entangled state will in general
not be directly useful, in particular if long-distance quantum communication is
considered.

But if it is entangled, the mixed state p still represents a potentially valuable
resource and the question arises, whether it can be made useful by local oper-
ations (see Def. 2.2). This is the question of distillability: if Alice and Bob are
provided with a sufficiently large number of copies of the state p can they trans-
form it into a “purified” state p’ that is arbitrarily close to a pure maximally
entangled state ¥ by LOCC? We define

Definition 3.1 (Distillable State)

A state p of a bipartite quantum system on Ha®H g is distillable if Ve > 0 there
exists ann > 0 and a local quantum operation P € LOCC(HS" @HE", KA®KER)
such that

W@IP(™") [) =1~ (11)
for a pure mazimally entangled state |) € K4 @ Kp.

The existence of undistillable, bound entangled states was shown in [28, 29]. This
proved that distillability is a property that has to be established independently
of separability. More on entanglement distillation and its relevance for long-
distance quantum communication in Sec. 4.

3.1.1 Finite dimensional systems

Up until now, no practical necessary and sufficient condition for distillability is
known. Clearly, a state must be entangled if it is to be distillable. In addition,
it was shown in [29] that all entanglement distillation protocols preserve ppt
and that therefore npt is a necessary condition for distillability. For the special
case of systems composed of a qubit and a d-level system (H = C? @ C9) it
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was shown [37, 40] that this condition is also sufficient. Thus for this case the
distillability problem is solved, but in general, it is still open.

In [29] it was shown that p is distillable iff for some number N of copies of p
we can project p®V into a two-dimensional subspace at either side such that the
resulting state on €2 ® C? is distillable, i.e. has npt. This condition is, however,
very hard to check for a general state.

A practical sufficient condition for distillability is provided by the same au-
thors in [39]. There the so-called reduction criterion (RC), a sufficient condition
for inseparability, is introduced, and it is shown that this condition is also suf-
ficient for distillability. The RC makes use of the positive map P defined for
states on C™

P:p—tr(p) —p. (12)

It is shown in [39] that this map is decomposable (see p. 7). Clearly, separable
states remain positive under P ® 1, and a negative eigenvalue of P® 1(p) proves
p inseparable. Formulated as a criterion for distillability, the RC then states

Theorem 3.1 (Reduction Criterion of Distillability, [39])
If for a bipartite state p on C" ® C™ it holds that

(Pe1)(p) 20 (13)

then p is distillable.

For a long time all states known to be distillable satisfied Ineq. (13) and it
was already shown in [39] that for certain distilliation protocols this was also a
necessary condition. But very recently it was shown [42] that there are distillable
states for which (13) is not fulfilled. This leaves open the question whether all
npt states can be distilled. Up until now all known examples of undistillable,
bound entangled states have ppt. There is evidence, though, that there are
states that are undistillable, although their partial transpose is negative [40, 41].
These are the Werner states [24] Wy defined for pairs of d-level systems by

1

Wy=—
T2

[(1=X/d1+(N-1/d)V], (14)
where V' is the permutation operator, defined by V(z ® y) = y @  and —1 <
A < 1. It is shown in [40, 41] that for d > 2 and any finite n > 0 there is a finite
range of values of A for which these states are not n-distillable in the sense that
Wf" cannot be projected to a 2 x 2 npt state. Numerical results indicate that
all these states are in fact undistillable for any n. Note that the Werner states
are the key to question whether npt implies distillability. This comes from the
fact that any state of two d-level systems can be transformed into Wy (for some
A) by local operations [34, 40, 41] in such a way, that (non)positivity of the
partial transpose is preserved. Hence, if all npt Werner states can be distilled,
then all npt states can.

If there are indeed bound entangled npt states, this would have surprising
consequences for quantum information [42]: it would imply that one of the
most interesting measures of entanglement, distillable entanglement [36, 31], is
not convex and not additive, which are both properties one might naively expect
of entanglement measures.
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3.1.2 Continuous Variable Systems

The study of distillability for infinite dimensional systems has begun only re-
cently. However, since the most promising applications of CV states are in
quantum communication and many tasks in this area are based on (pure) en-
tangled states, it is of particular importance to identify the distillable CV states.

On the one hand it was shown that there exist generically infinite dimensional
ppt bound entangled states [63] and later that there are also Gaussian ppt bound
entangled states. On the other hand, entanglement distillation protocols for
certain pure [66, 65] and mixed entangled states were presented [67].

In [61] (reprinted in Subsec. 3.2) we prove that for Gaussian states npt
is necessary and sufficient for distillability. To this end we first extend the
RC to infinite dimensions and then proceed in three steps. First, it is shown
that symmetric states (see Subsec. A.6, p. 90) are distillable by the reduction
criterion. In the second step, we show that every entangled state of two modes
can be symmetrized by local operations in a way that maintains inseparability
(and thus npt by [23, 59]). Since the proof of this step is somewhat concentrated
in [61], we give some more details in App. C. In the last step we show that
any npt N x M Gaussian state can be locally transformed into a distillable
two-mode state. Interestingly, no collective action is needed for this step, thus
all distillable Gaussian states are 1-distillable in the sense of [40]. This shows
that among Gaussian states, there seem to exist only two qualitatively different
types of entanglement, namely npt-entanglement (free) and ppt-entanglement
(bound).
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3.2 Distillability Criterion for all Gaussian States
Geza Giedke, Lu-Ming Duan, Peter Zoller, and J. Ignacio Cirac,

We prove that all inseparable Gaussian states of two modes can be distilled
into maximally entangled pure states by local operations. Using this result we
show that a bipartite Gaussian state of arbitrarily many modes can be
distilled if and only if its partial transpose is not positive.

Quant. Inf. Comp. 1, 79 (2001); E-print: quant-ph/0104072.
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We prove that all inseparable Gaussian states of two modes can be distilled into max-
imally entangled pure states by local operations. Using this result we show that a
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The existence of pure entangled states of two or more systems entails the possibility of find-
ing new applications of Quantum Mechanics, in particular in the fields of computation and
communication [1]. In practice, however, systems are exposed to interactions with the envi-
ronment, that transform pure into mized states, which may no longer be useful for quantum
communication. Fortunately, there exist methods to recover pure entangled states from mixed
ones in certain situations. These processes are called entanglement distillation (or purifica-
tion} [2], and consist of local operations and classical communication transforming several
copies of a mixed entangled state into (approximately) pure entangled states which can then
be used for quantum communication. In fact, applying this method in the appropriate way
one can construct quantum repeaters [3] that should allow efficient quantum communication
over arbitrarily long distances even via a noisy channel.

For this reason it is important to determine whether a given state is distillable or not. In
general, the answer to this question is not known. At the moment we only have conditions
that are necessary or sufficient for distillability, but not both. Clearly, only inseparable states
can be distilled. Moreover, as shown by Horodecki et al. [4], there exists a stronger necessary
condition, namely that p must have non-positive partial transpose (npt). In fact, there are
entangled states which are not distillable since their density matrices remain positive under
partial transposition [5]. Furthermore, there is evidence that this condition is not sufficient,
since there exist npt states that nevertheless seem to be undistillable [6]. The existence
of undistillable npt states would have interesting consequences such as non-additivity and
non-convexity of the entanglement of formation [7].

On the other hand, a useful sufficient criterion, the so-called reduction criterion [8], has
been established. It states that, given a state p on the composite Hilbert space H = HAQH 5,
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if there exists a vector ) € H such that

(Wltrp® 1 —pl) <O. (1)

then the state p is distillable. Here, trp stands for the partial trace with respect to the second
subsystem. An important aspect of this criterion is that if one can find a state |¢) satisfying
(1), then one can explicitly construct a protocol to distill p.

Up until now, nearly all work on the distillability problem has considered states of finite
dimensional systems, see [9] for a current overview. In particular it was shown that states
systems consisting of one qubit and an N-level, N > 2 system are distillable if and only if
(iff) they are npt [10, 6]. An alternative setting for quantum information processing, which
considers infinite dimensional systems [continuous variables (CV) or “modes”]| in Gaussian
states is receiving increasing attention recently [11, 12]. For CV systems some distillation
protocols for particular states have been proposed [13], and the existence of bound entangled
states has been proved [14, 15], but the question of distillability in general has not been
addressed.

In this article we answer this question completely for all Gaussian states. We will prove
that

Theorem 1 (Distillability Criterion)

A Gaussian state of N x M modes is distillable if and only if its partial transpose is negative.

This shows that there are no npt bound entangled Gaussian states and, in particular, that
for systems of 1 x N modes all entangled states (npt is necessary for inseparability of such
systems [15, 16, 17]) are distillable and thus useful for quantum communication. Moreover,
our proof, which is based in part on the reduction criterion, provides an explicit protocol that
accomplishes distillation for all those states. After introducing the necessary notation and
properties of Gaussian states, the remainder of the present paper is devoted to the proof of
Theorem 1.

We consider bipartite systems composed of two subsystems, A and B, which cousist of
N and M “modes” [distinguishable infinite dimensional quantum systems with Hilbert space
L2(R) ], respectively. The joint system is referred to as a “N x M system”. It is convenient
to describe the state p of such a system by its characteristic function (e.g., [18])

x(z) = tr[pD(z)]. (2)
Here = = (q1,p1,.--,an+ M, PN+ ) € RPNV 12Mig 5 real vector and
D(z) = et 2@ XetPePr) (3)

where X}, and P, are operators satisfying the canonical commutation relations (A = 1). A
characteristic function x uniquely defines a state p,. In the following we exclusively consider
Gaussian states, i.e. states for which x is a Gaussian function of z [19]

x(z) = e—%wTww—idTw7 (4)

where v is the correlation matriz (CM) and d € R2V+2Mthe displacement. Thus, a Gaussian
state is fully characterized by its CM ~ and displacement d. These states are of particular
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interest, since they comprise essentially all CV states that can be prepared in the lab with
current technology.

A matrix v is the CM of a physical state iff (e.g. [22]) it is strictly positive, real, symmetric
2(N 4+ M) x 2(N + M) and satisfies

v>JTy7h, (5)

where Jy = @y Ji [20] with J; = ( (1) _01 >

Simon [17] noted that for CV states partial transposition is equivalent to the orthogonal
transformation Ag{qa,pa,98,p8) = (q4,P4,98, —PB) on phase space, i.e., the momentum
coordinates referring to B are inverted. For a Gaussian state this means that its CM is
changed to 4 = ApyAp and the displacement to Agd. A Gaussian state with CM ~ has
negative partial transpose (npt) iff ¥ does not satisfy Ineq. (5) [17, 15], or, equivalently, iff

vy # Iy, (6)

where J = ApJAT is the “partially transposed” J in which the Ji’s corresponding to B’s
modes are replaced by —J;.

The first part of the proof of the theorem is concerned with the special case of a bipartite
two-mode Gaussian state: N = M = 1. Auny such state can be transformed into what we
called the standard form, using local unitary operations only [16, 17]. For a state in standard
form the displacement d = 0 and the CM ~ has the simple form

= 5 ) ™

where

_ Mg 0 _ ny 0 _ ks 0
(5 2)a=(5 e (5 )

The local unitaries needed to achieve this form are linear Bogoliubov transformations, i.e.,
generated by Hamiltonians that are at most quadratic in the operators X o, P » The four
real parameters (n,,ns, ks, kp) fully characterize a 1 x 1 Gaussian state up to local linear
Bogoliubov transformations (LLBT). They can be easily calculated from the four LLBT-
invariant determinants det A, det B, det C, and dety as follows:

ne = Vdet A,n, = Vdet B,k k, = det C, (9a)

(nens — k2)(ngny — kz) = det ~. (9b)

Without loss of generality we choose k, > |k,|. We call a state symmetric, if n, = ny = n,
or, equivalently, if det A = det B.

Now we are prepared [or the proof of Theorem 1. We state the three main steps of the
proof in three lemmas, which we prove in the remainder of this article.
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Lemma 1 (Distillability of Symmetric 1 x 1 States)
A symmetric 1 X 1 Gaussian state with non-positive partial transpose is distillable.

Lemma 2 (Symmetrization of 1 x 1 States)

Every 1 x 1 Gaussian state with non-positive partial transpose can be locally transformed into

a symmetric npt state.

Lemma 3 (Concentrating Inseparability in two Modes)

Every N x M Gaussian state with non-positive partial transpose can be locally transformed

wmto a 1 X 1 npt state.

Proof of Theorem 1: The “only if’-part of the Theorem was proven proven by the

Horodeckis in [4]. The “if”-part is clearly implied by these three Lemmas, since by Lemma 3

the N x M case can be reduced to the 1 X 1 case, and that case by Lemma 2 to the symmetric

case. =
For the proof of Lemmas 1 and 2, it is useful to re-express the conditions (5,6) for 1 x 1

states in terms of the parameters (9). We find that v is CM of a physical state iff

(nams — k2)(namp — ko) + 1

TaNp — kz

n2 +nj + 2k, kp, (10a)

>
> 1, (10b)

and that v is CM of an inseparable (or, equivalently, npt) state, iff in addition it holds that
(nanpy — k2)(namy — k) +1 < n2 +np — 2k,ky. (11)

Proof of Lemma 1: For this we use that a state is distillable, if there exists a pure state
|1} such that Ineq. (1) holds. This condition was proved in [8] to be sufficient for distillability
of finite dimensional systems. Its extension to infinite dimensions is straightforward: and
proved in the appendix.

We show now that for any symmetric npt Gaussian state p Ineq. (1) is satisfied with |¢)
taken as the pure two-mode squeezed state |)) = —— 3" tanh” r |nn) for sufficiently large
r > 0. Note that |¢) is a symmetric Gaussian state in standard form. We denote its CM by
vy and the four parameters (9) are n, = np = cosh2r, k, = —k, = sinh 2r. Let 7, denote the

CM of p. With these choices, Ineq. (1) becomes [21]

2 [det(Verpp + Versw)] 7 — 4[det(y, + 7)) * < 0. (12)

In the limit of large 7 (keeping only the leading terms in e”) this becomes after some simple
algebra.

(n—kg)(n+kp) <1 (13)

But Ineq. (13) is implied by the inseparability criterion for symmetric states: if n, = ny = n
then Ineq. (11) simplifies to

In? — kokp — 1] < n(ky, — kp). (14)

For inseparable states we observe [17] that kyk, < 0, which together with Ineq. (10b) implies
that the LHS of Ineq. (14) is equal to n? — k,k, — 1 which can be transformed to (n —k;)(n+
kp) + n(ky — kp) — 1 from which Ineq. (13) follows immediately. L]
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Since the local operation that will be shown to achieve symmetrization involves a measure-
ment, it is more convenient to describe the state here by its Wigner function [18]. It is related
to the characteristic function by symplectic Fourier transformation and thus is Gaussian for
Gaussian states. The Wigner CM ~yyy is related to the (characteristic) CM by vy = JTy~1J.
We denote the four LLBT-invariant parameters for the Wigner CM [which are defined as
in (9)] by (Na, N, Kz, Kp). We use the following easily checked facts: just as the standard
form of ~, the standard form of vy can be obtained by LLBTs. A state is symmetric iff
N, = Np. The conditions (10,11) can be formulated equivalently in terms of the parameters
(Ngy Ny, K, K;)). While (10a, 11) are identical for the Wigner parameters, in (10b) “>” is
changed to “<”. We refer to these conditions for the Wigner parameters as (10W, 11W) in
the following.

Proof of Lemma 2: If the state is not symmetric, it means that the reduced state at
one of the two sides has larger entropy than the other. This suggests to let a pure state
interact with the “hotter” side to cool it down. This must be done without destroying the
entanglement of p. We proceed as follows: p is transformed to its Wigner standard form with
parameters (Ng, Ny, K, K,,). Now assume that Ny < N,, i.e., B is the hotter side [24]. Take
an ancilla mode in the vacuum state and couple it to B’s mode by a beam splitter [23] with

transmittivity cos?§. After a measuring the ancilla’s X-operator [25] results a state p with
Wigner CM 4w of the form (7) with

i 1 ¢?N, + s’D, 0
0 AN, + s2N,Ny J?

B _ 1 Nb 0 C~, _ 1 cKw 0
Ty 0 [ENy+3s%v )" 7 T o 0 cKpv )’
where the abbreviations ¢ = cosf, s = sinf,v = 2N, + ¢2, and D, , = N, N, — Kip were
used. The condition for symmetry, det A = det B requires

N: - N}

tan?f=—2 b
YT N, - DN,

(15)
Checking (11W) for 4 one sees that the inequality is just multiplied by (N, tan? §-+1)"% > 0;
therefore the transformed state is inseparable iff the original one was inseparable. It remains
to show that there always exists a € to satisfy (15), i.e., that the right hand side of Eq. (15) is
positive. The numerator is positive since we have chosen N < N,, the denominator is positive
since Ny < N, and the second part of condition (10W) imply that (N, — D, Np) > 0 and the
first part of (10W) assures that (N, — DeNp)(Ny — DpN,) > (N K, + NyK,)? > 0, hence
all Gaussian states in Wigner standard form can be symmetrized this way. But since every
Gaussian state can be brought into Wigner standard form by local unitaries, this completes
the proof of Lemma 2. =
To finish the proofs, we now turn to the general case of N x M modes. Let v be the CM
of a npt state.
Proof of Lemma 3: The condition (6) is equivalent to v ¥ iJ [15]. Hence, for every npt
state with CM ~ there exists a vector z € C2N+tM) gych that for some € > 0

Ay —i)z < —e <. (16)
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The idea of the proof is that v can be locally transformed such that at both sides all but
one mode can be discarded, and the resulting (reduced) 1 x 1 state is still npt. Then it is
distillable by Lemmas 1 and 2.

Write z in Eq. (16) as z = 24 @ 2(B) with real and imaginary parts zﬁw), zi@), (z = A, B).
We can always find a z such that 2{*) and zi(w) are not skew-orthogonal, i.e. (zﬁm))TJ zfm) #0
for both @ = A, B [26].

Now we have to find two symplectic transformations S,,z = A, B that map the span of
{zﬁw),zy)} to the span of {e1,es}, where e; = (1,0,...,0) etc. After performing the local
transformation S = S4 @ S, both A and B can discard all but the first mode of their
systems and still have an npt entangled {and thus distillable) state. That such symplectic
transformations S4, Sp always exist is seen as follows: let f1 = 2., foa = —2;/ (z;m Jz;); we
can always extend f1, f into a symplectic basis [27] fi. : k =1,...,2n such that f5 Jfor11 =
Okt o Jfa =0= fQTk_HJfng. Then S defined by Sey = fy, is symplectic [27] and S~! maps

span{z,, z; } to span{ey,es}, i.e.

5@ = 671 — g ey + byey, (17)
az,b, € C. Consequently we have for 4 := (S4 @ Sg)Tv(Sa ® SB)
(W @ 2BN1(5 — i)z @ 2B)) < 0. (18)

Using Eq. (17) we see that only the matrix elements (§)y with k,{ = 1,2, N + 1,N 4+ 2
contribute to the lhs of Eq. (18). Thus Ineq. (18) does not change if we replace 4 by the
two-mode CM 4,4 obtained from 4 by discarding all rows and columns referring to modes
other than 1 and N + 1. This is the CM of the state in which A and B discard all but their
first mode each. Thus Ineq. (18) shows that the state p,.q corresponding to 4,.q is npt. But
Pred 18 a two-mode state and thus distillable by the first part of the proof. =

Note that all the operations needed to transform a general N x M npt state into a sym-
metric 1 x 1 entangled state can be implemented quantum optically with current technology:
they require nothing but squeezers, beam splitters, phase shifters [23], homodyne measure-
ments, and the discarding of subsystems. Once a state has been transformed to symmetric
standard form, the protocol of Ref. [8] can be used to obtain maximally entangled states in
a finite dimensional Hilbert space. While a practical distillation protocol for such Gaussian
states remains to be found (see however [13)), it is worth noting, that the main part of the
universal protocol of [8], namely the filtering operation and the joint measurement, are for
symmetric Gaussian states implemented by the procedure of Duan et al.[13]; for details see
[12, ch. IL.8].

In conclusion, we have answered the distillability question for all Gaussian states: such
states are distillable if and only if they are npt. In particular, all entangled Gaussian states
of 1 x N modes are distillable, and there exist no npt bound entangled Gaussian states.
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Appendix A

We show that Ineq. (1) implies distillability even for dimH = co. Let {|k) : k = 0,1, ...} be
1),...,|n}}, Py, the orthogonal projector on

an orthonormal basis of H, let H,, = span{|0},
H,, and let p be a density matrix on H® H. Let £{p) = trpp® 1 — p be the map occuring on
the lefthand side of (1). Assume that 3|¢p) € H, e > 0 such that (| £(p)|¢¥) < —e < 0. Since
pn = Py, pPy, converges in the weak topology to p, there is N > 0 such that (| £(pn) |¥) <
—¢/2 for all n > N. Thus p can be projected by local operations onto a distillable state px

and is therefore itself distillable. n
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4 Entanglement Purification Protocols

While the previous Section was concerned with the property of distillability,
we now turn to the operations by which distillable states are transformed into
directly usable, (almost) pure, highly entangled states. Sequences of opera-
tions which achieve this goal are referred to as entanglement purification (or
distillation) protocols (EPP). Again, we first review the paradigmatic case of
entangled qubits and then turn to more recent work on EPPs for Gaussian
States and their physical implementation.

4.1 Finite Dimensions

As discussed above, the main motivation to study entanglement purification
is to restore entangled states that are necessarily degraded by their passage
through a noisy communication channel back to usable, pure form.

One way to address (or rather avoid) this problem is the use of quantum
error correcting codes (QECCs) [72]: encoding locally created maximally en-
tangled state before transmission in a sufficiently high-dimensional code space
it can be protected against all kinds of errors, and decoding it, A and B re-
ceive an entangled state as close to the original one as desired. But for this the
coherent manipulation of many quantum systems, and, in effect, a full-fledged
quantum computer is necessary. Moreover, QECCs are designed to protect an
arbitrary unknown state against errors, whereas in the situation under consid-
eration it would suffice to protect a particular, known, maximally entangled
state. Therefore one may ask whether there are simpler methods to faithfully
distribute entangled states over large distances, and this is what entanglement
purification protocols help to achieve.

The EPPs that have been proposed so far [32, 33, 34, 35, 39, 43] (some of
which have been realized experimentally [44]) all fall into one of three distinct
classes: “filtering”, “recurrence”, or “hashing” protocols. Since a combination
of all three is needed for the (according to current knowledge) most efficient and
general protocol, all three will be sketched in the following.

4.1.1 EPPs for qubits

The conceptionally simplest EPPs are the filtering protocols [32, 33, 39]. They
work as follows: Alice and Bob share a (mixed) entangled states p and both
perform a generalized measurement and communicate the result to each other.
For some measurement outcomes the resulting state is closer to the desired
maximally entangled state than p. Alice and Bob keep only those states and
discard the rest. “Closeness” is in this context measured by the fidelity F, i.e.
the overlap F = (3| p|¢) of the state p with the desired state. Depending on
the initial state it is in some cases possible to choose the measurements in such
a way that resulting state is as close to the maximally entangled state as desired
(at the expense of this result becoming less and less probable), a simple example
of this case is given in [36].

One major advantage of this kind of protocol is its simplicity: a single op-
eration on an individual system is sufficient to achieve purification, that is, col-
lective operations are not needed. Also, it allows in some cases to distill states
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arbitrarily close to a product state and therefore vanishingly little entanglement,
see e.g. [36, TI1.A.2].

But many states cannot be purified by individual operations. For example,
it is not even possible to increase the fidelity of a Werner state W by local op-
erations on an individual pair [38]. This is where the second type of purification
protocol, the “recurrence” protocol, first proposed for qubits in [34], becomes
useful. The recurrence protocol allows to distill all entangled Werner of two
qubits in the following way: Alice and Bob share a N identical pairs each in a
Werner state with fidelity F' > 1/2. perform collective local operations on pairs
of entangled states.

A B
p
- _p - - T random bilateral rotation
bilateral CNOT;_,
PA PB 12
measure target bits
keep source if outcomes agree
~— — — — — — —e

Figure 1: The “recurrence” entanglement purification protocol [34].

A distillation procedure that allows to distill every entangled two-qubit state
p can be constructed by combining the protocols [34] and [33]. If the fully
entangled fraction of p, defined as the max{ (1| p |¢)) : ¢ maximally entangled }
is lager than 1/2, then p can be locally transformed into a Werner state with
fidelity F' > 1/2 and then distilled by the recurrence protocol. Otherwise, there
is a filtering measurement which purifies p into a state with fully entangled
fraction > 1/2. In fact, this can be generalized to d-level systems. In [39] this
generalized protocol — which can distill all states that are currently known to
be distillable — is developed. Since it will serve as a basis for a universal EPP
for Gaussian states we give a brief review in Subsec. D.1.

The main drawback of this protocol is, that it is quite “wasteful” with the
resource entanglement. If a protocol allows to obtain on average m pairs of
fidelity I out of n initial pairs of fidelity F' we define the yield of the protocol by
Y (F’, F) = m/n. For both the filtering and the recurrence method the Y (F’, F')
vanishes as F/ — 1: their asymptotic yield of pure singlets is zero. The third
class of EPPs addresses this problem. If the initial Werner state p has sufficiently
high fidelity, then the “hashing” protocol [36] that performs collective operations
on a large number of entangled pairs has limp 1 Y/(F', F) = Y;. Y} is given by
Yy =1— S(F), where S(F) is the (von Neumann) entropy of the Werner state
with fidelity F. This gives a positive yield for F' > Fy ~ 0.82. Thus according
to current knowledge the best universal purification protocol uses (if necessary)
filtering to obtain states of sufficiently high fully entangled fraction and then
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the recurrence protocol (actually a improved version [35]) to produce Werner
states of fidelity F' > Fy, which are then distilled by the hashing method.
First experiments realizing entanglement purification were reported in [44].

4.1.2 Bridging large distances: The Quantum Repeater

While EPPs are an important building block for long-distance quantum com-
munication, they are, on their own, not sufficient to achieve this task. The
problem that still remains is that only entangled states can be purified and that
if the channel is too long and noisy, it does not allow the direct distribution of
entangled pairs. Especially for long-distance communication this will inevitably
be the case, since both absorption losses and depolarization errors scale expo-
nentially with the length of the channel. For example, if the entangled state is
encoded in the polarization of a pair of photons, which are then sent through
an optical fiber the probability of arrival decreases exponentially with distance,
as does the fidelity of the transmitted state. The central idea of the quantum
repeater is to divide a long quantum channel into shorter segments, which are
first purified separately and then “connected”, building up entanglement over
the longer compound channel consisting of two segments. In the repeater pro-
tocol this is done by teleporting [13] a member of the pair in the right hand
segment through the pair in the left hand segment, see Fig. 2. Since teleporta-
tion through an imperfect channel degrades the output, after several connections
it is necessary to purify the new pairs (that now bridge a larger distance) before
further connections can be made. While the combination of purification and

Figure 2: Entanglement swapping: C performs a teleportation of “his” member
of the pair AC to B using the pair CB.

teleportation allows to create entanglement over arbitrary distance, the ques-
tion remains how much this “costs”: how many entangled pairs across the initial
segments are necessary to obtain one high fidelity pair across the whole chan-
nel? The important point of [52] is that it shows that the needed resources grow
only polynomially with the length of the channel. This shows that the quantum
repeater is as efficient as alternative approaches to long-distance communication
based on QECCs [72], but — as shown in [52] — is both less sophisticated and
more robust than the latter.
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4.2 Entanglement Purification with Imperfect Means

The importance of EPPs and the quantum repeater rests on the fact that they
would allow to cope with the limitations and imperfections of real-life quantum
communication systems, in particular with noisy channels. But the discussion of
these imperfections has been incomplete so far, since we always (tacitly) assumed
the local operations of which the EPP consists to be perfect. Clearly, this is an
unrealistic assumption, and to complete the discussion it needs to be studied,
whether purification and the repeater still work with imperfect operations. It
turns out that EPPs are significantly more robust against errors than the known
universal QECCs.

In [52] analytical and numerical work on the whole quantum repeater pro-
tocol (including EPP and teleportation) for a simple generic error model (the
“depolarizing channel”) showed that errors up to a few percent could be toler-
ated — much more than the threshold for universal QECCs (about 1074, [73]).
Later it was shown [54] that despite transmission noise and imperfect operation
the entangled states obtained in this way do actually represent a perfectly pri-
vate quantum channel, with a potential eavesdropper’s knowledge guaranteed
to be smaller than any desired bound.

But one might claim that this was an unfair comparison, as the threshold for
QECC is derived under much more general assumptions about the errors [73].
This motivated the work of the article [53], reprinted below, it which entangle-
ment purification in the presence of arbitrary errors is investigated, and it is
shown that even in this case purification works for errors as large as 0.5 - 1072,
Therefore, entanglement purification and the quantum repeater, being both
simpler and more robust than universal QECC, represent promising tools for
long-distance quantum communication with realistic (imperfect) means.

4.3 Lower bounds for attainable fidelities in entanglement
purification

Géza Giedke, Hans J. Briegel, J. Ignacio Cirac, and Peter Zoller,

We derive lower bounds for the attainable fidelity of standard entanglement
purification protocols when local operations and measurements are subjected
to errors. We introduce an error parameter which measures the distance
between the ideal completely positive map describing a purification step and
the one in the presence of errors. We derive non—linear maps for a lower bound
of the fidelity at each purification step in terms of this parameter.

Phys. Rev. A 59, 2641 (1999); E-print: quant-ph/9809043.
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We derive lower bounds for the attainable fidelity of standard entanglement purification protocols when
local operations and measurements are subjected to errors. We introduce an error parameter which measures
the distance between the ideal completely positive map describing a purification step and the one in the
presence of errors. We derive nonlinear maps for a lower bound of the fidelity at each purification step in terms
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PACS numbegs): 03.67.Hk, 03.65.Bz

I. INTRODUCTION tanglement purification together with a generic error model
is used to estimate the possibilities of quantum communica-
Entanglement purificatiofl—3] is one of the most impor- tion over long distances using quantum repeaters. The em-
tant tools in the theory of quantum information and, in par-ployed entanglement purification protocols explicitly utilize
ticular, in quantum communication. It allows, in principle, two-way classical communicatipwhich makes them much
creation of maximally entangled states of particles at differmore efficient for quantum communication. In the present
ent locations, even if the channel that connects those locdaper we use purification protocols which utilingo-way
tions is noisy[4]. These entangled particles can then be useglassical communicatiorand therefore our error thresholds

for faithful teleportatior{5] or secure quantum cryptography are much less demanding than those derived from the theory
[6,7]. of Knill and Laflamme[12]. On the other hand, we are in-

The basic idea in entanglement purification is to “distill” terested in a rigorous lower bound for the achievable fidelity
a few N’ pairs of particlefquantum bits(qubits, for ex-  for arbitrary errors, and not in an estimatidr6]. The results
ample, the case which we will consider exclusively in theand methods developed here can be generalized to derive
following] in highly entangled states out bE=N’ pairs in a lower bounds for other interesting problems in which local
mixed state with lower fidelity of the entanglemeiorr, in ~ Operations and measurements are imperfect, such as quantum
short, fidelity using local operations and measurementsteleportation or quantum cryptography.
This fidelity is defined as the maximum overlap of the den-  This paper is organized as follows. Section Il contains a

sity operator of a pair of qubits with a maximal entangledSummary of the main results of this paper, and is directed to
state. If the initial pairs are in a nonseparable sta@], then  the reader who is interested neither in the technical details of

one can obtain asymptoticallfin the limit N—o) maxi- the definitic_)ns of our error parameter, nor in the dleriv_ations
ma”y entang'ed Statdio] provided all local Operations and Of the non“near mapS for the |0Wer bound Of the f|del|ty. In
measurements are perf{ayll] In practice, there will be Sec. lll we introduce the error paramet@and derive some
errors in both the local operations and measurements. Theroperties related to the fact that it is a distance between
purpose of this paper is to analyze this problem for the pucompletely positive linear maps. Finally, in Sec. IV we de-
rification protocols introduced in Ref§l,7]. We are inter- five the nonlinear map for the fidelity of entanglement in
ested in analyzing the conditions under which one can purifyerms of this distance and sketch its dynamics.

in the presence of errors, as well as in the limitations of the

purification protocols. In particular, we find a nonlinear mapll. SUMMARY OF THE MAIN RESULTS AND DISCUSSION

which relates a lower bound for the fidelity at two consecu-

tive steps of the purification protocol, which allows us to i | : h irs of qubi
derive lower bounds for the reachable fidelity. In order totWO Partners at different locations shakepairs of qubits,

analyze this problem, we introduce a paramefewhich each _p_air _being in a state described by a.deF‘S‘W opepator
characterizes the errors. It measures the distance between tﬁfu”f'cat'on procedure producéé’<N pairs in a state

ideal operations and measurements and the ones in the pr?g_oser to a maximally entangled statge by only using
ence of errors ocal operations, local measurements, and classical commu-

Quantum communication in the presence of errors hagicat_ion _between the partners. More specifically, if we define
been considered previously by Knill and Laflamfde] ina  the fidelity of the entanglement
general context, and by Van Emt al. [13] for a particular _
experimental setupl4]. The work of Knill and Laflamme F(p)=maXyindpdme). @)
introduced ideas of fault-tolerant quantum computafitb|
to show that there exists an accuracy threshold for storage o¥here the maximization is taken with respect to maximally
guantum information, which also applies to the case of quanentangled stateg,., thenF(p’)>F(p). In the following
tum communication. As shown by Bennettal.[2] one can  we will call F(p) simply fidelity.
rephrase this result in terms of entanglement purification It has been show[il0] that if p is nonseparablét cannot
with one-way classical communicatiotn Ref. [16], en-  be written as a convex combination of factorized density

In the standard scenario of entanglement purificatin

'v/’me
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operatorg8,9]) then there are purification procedures whichthe second pair We denote byP, (x=0,...,3) the map
obtainF(p’)=1 in the asymptotic limitN—. In particu- defined as follows:
lar, if F(p)>1/2 one can reach this goal by using the puri-
fication procedure devised by Bennettal. [1] and im- Pulp12= 2{X|U(p12)[X)>. 2
proved by Deutsclet al.[7]. It consists of a concatenation of
purification stepsnvolving two pairs of qubits, which give
rise to a single pair with higher fidelity. In all these proce-
dures, one assumes that the local operations and measu
ments are error free. In a real situation, however, there wil
be errors due to the coupling to the environment, imprecise
apparatus, etc. Although small, they will limit the maximum . Polp12) +Pap1d)
attainable fidelity and will dictate whether purification is p1= :
possible or not. Po(p12) + P1(p12)

In this section we first briefly review the purification pro- Thus, each(successful step of the purification protocol is
tocol introduced in REfS[1,7], and define the notation that Comp|ete|y characterized by the maps ;. (Note that’PX
we will use later on. Then we consider the same procedure igtand for different maps depending On'Whether we are dis-
the presence of general errors, and characterize these er@jgssing scheme | or scheme)Il.
in terms of a single parametéy; which basically expresses  On the other hand, if one is only interested in the fidelity
the departure of the purification step in the presence of errorgt each step, one can use a simpler characterization of each
from the ideal one. Next, we express the lowest possiblguyrification step in terms of four real numbers. In the purifi-
fidelity (worst casgin each purification step as a function of cation protocols | and II, the local operations characterized
the lowest possible fidelity in the previous step, which leadsyy 7/ consist of a bilateral controlled-NOT gate and specific
to a non-linear map. We analyze this map and discuss thsingle qubit rotations. In that case, the diagonal elements of
conditions required for purification with imperfect means. the density operatgs’ in the Bell basis only depend on the
The properties of our definitions and the technical details argiagonal elements of the density operagorand therefore
presented in the following sections. each purification step can be characterized by a nonlinear
map between these four diagonal matrix elements. We de-
note byA,=(¢'|p,|¢'), wherep, is the density operator of
each pair after thenth purification step and¢') are the

In this subsection we review the two purification proce-elements of the Bell basis €0,1,2,3),
dures introduced in Reffl,7]. Subsequently we will refer to

This map is linear and completely positive. The probability

of obtaining the outcome is p,(p12) =t Py(p12)]. If the

gutcome isx= 2,3, then the first pair is discarded and other-
ise it is kept. In the latter case, the state of the first pair will

)

A. Error-free purification protocols

them as scheme | and Il, respectively. We characterize them 0 1

in two different ways: first, in terms of a completely positive |4%9)= E(IOOﬁIll)),
linear map between the initial density operator and the one

after the measurement; secondly, in terms of a nonlinear map 1

relating the diagonal matrix elements of the density operator |p1d=—(]01)=|10)).
(in the Bell basiy at each step with the ones in the previous \/f

step. In the next subsection we will generalize the first char- . 0 o
acterization to the case of imperfect operations in order to In particular,A;=F,, the entanglement fidelity at each
introduce the parameter describing the errors, and then weep. For scheme I there is, according to R&{, a simple
will generalize the second characterization to find a lowemonlinear map that relates, , ; to A,, namely

bound for the fidelity.

Both purification protocols | and Il consist of a sequence i :<¢i|PO(pn®pn)+Pl(Pn®Pn)|¢i> . f'(An)
of steps in which local operations are applied to two pairs of n+1 t[ Po(pn® pn) +Pi(pn®pn) ] "g(Ay)’
qubits, followed by a measurement of one of the pairs which 4

is then discarded. Depending on the outcome of the measure-
ment, the other pair is discarded or not. In the latter case thwhere
fidelity F; of the remaining pair ion averagglarger than 0 L ADN2 1,2

that of the original ones. This step is applied to Meairs (AR = (An) ™ (An)7, (53
obtainingN;<N/2 pairs of fidelityF,. Then it is applied to

the resultingN, pairs obtainingN, pairs of fidelity F, fl(A”):ZAﬁAﬁ' (50)

>F,. Continuing in this vein, one can reach asymptoticall

21 whennoe. ympTesly (A= (A + (A2, (50
Let us consider a single purification step. It starts out with

two pairs 1 and 2 in the state,,=p®p, applies the local f3(An) =2A0A;, (50)

operations described by the superoperéatpand then mea-

sures each of the qubits of the second pair in the basis g(AL)=(A2+AH2+(AZ+A3)2, (50

{]0),|1)}. We denote by the outcome of the measurement:

x=0 if the qubits are found in the sta@),=|00),; x=1if  The map(4) has a fixed point aA=(1,0,0,0), which is
they are in|1),=|11),; x=2 if they are in|2),=|01),; reached if the initial state ha&J=F>1/2 [17]. This fact

and x=3 if they are in|3)=|10), (the subscript 2 denotes expresses that in the absence of errors, one can use this pu-
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rification protocol to purify states witlF>1/2 and reach a the process, we have to work with mapg that do not pre-
fidelity as close to one as we please. serve the trace. In Sec. Il we discuss why it is advantageous
Scheme I[1] is governed by a similar map. The main to use those maps instead of trace-preserving maps.
difference is that at the end of each step the resulting state is Some remarks concerning the adopted description of er-
brought into Werner form, that is, the three diagonal elerors are in order: We envisioR as the reduced dynamics of
mentsA!, A% A% are made equal to (1A%)/3. Therefore one the two entangled pairs coupled to some environni2.
can concentrate on the first diagonal element, the fidafity |n taking the imperfect system dynamics to be completely
only. The fidelity after thenth purification step is then given positive we do(as discussed if20]) essentially assume that

by there isno initial entanglemenbetween the system and any
0/ n0 0 environment to which it might be coupled during gate opera-
o FAL(I-A)R) ®) tions. There may be, however, initial entanglement of the
n+1—

system with another environment that is not affected by the
gate operations. As in the error-free purification schemes

Like Eq. (4), this map has an attractive fixed pointat  [1,7] we also assume the two pairs that participate in a puri-
=1, and allA}>1/2 are attracted to it. fication step to be disentangled from each other.

g(A.(1-AY3)

B. Characterization of errors C. Purification with imperfect means

In practice, while performing the purification protocols, ©Once we have defined a parameter that characterizes the
errors will occur, both in the local operation and in the mea-10rs at each purification step, we can analyze the whole
surements. The imperfections in the local operations can bRurification procedur¢l, 7] in the nonideal case. In order to
accounted for by substituting the action of the superoperatatio that, we defined,=(¢'|p,|¢') wherep, is the density
U in Eq. (2) by the action of some other completely positive, operator after theath purification step. We are particularly
trace-preserving linear map. The errors in the measurementsterested in the fidelity at each stE{ﬂ:ﬁn. In Sec. IV we
will be related to the following fact: in practice, the out- show that for suitable initial condition&, and error param-
comesx=0,1 will be ultimately attributed to the presence/ eter s,
absence of clicks in some kind of detectors. Due to imper- _ _
fections, the projection operatoréor, more generally, Aﬂ? a,, Aﬁi b, (n=1.2,...), (9
POVMs) corresponding to those clicks are not exactly the
same as the ideal onfsee Eq(2)]. Consequently, the prob- Where
abilities of the outcomes=0,1 as well as the state remain-

2, m2_
ing after the measurement will differ from the ideal ones. In A= ant+b,—26 (108
general, we can describe both these erroneous operations and N (an+bp)?+(1—a,—by)2+26
measurements in terms of a single completely positive linear
map ﬁx which does not necessarily preserve the trege (1-a,)%/2+268
will use tildes in the case in which there are erjoihat is, n+1= (10b

T a2 2 ’
if the two pairs are initially in the statg;,=p®p, a purifi- apt(l-ay)"-296

cation step yields the outcomewith a probabilityﬁx(plz) andaoszxo bo=ﬂé For scheme | only the fidelit&\o and
il . n

=tr[P,(p1»)]. The state of the pair after the measurement iSherefore the boundlL0a with by, replaced by (+a,)/3 is

~ ~ relevant.
~,:7~)0(P12)+131(912) . @ Equationg10) define a nonlinear map that can be iterated
Po(p12) + P1(p12) to yield a lower bound for the attainable fideliy,,=a.,

_ which depends on the value &f In the following we will
Thus, as before, the maf#%, ; completely characterize each analyze the mag10).

purification step. Let us first concentrate on the fixed points (b¢) of this
We characterize the errors by a single parameter as folmap, and consider in particular scheme |II. In Fig(sblid
lows: line) we have plotted; as a function of the error parameter
_ 6. For small values 06=0.01 there are three fixed points.
S:=maxd(Py,Py), (8)  The ones with largest and the smallest valuaoére attrac-
x=0,1 tive, whereas the intermediate one is a saddle point attractive

_ _ in one direction and repulsive in the others. For larger values
where d(P,P) denotes a distance betweghand P. The  of §, only the smallest one survives. This means that for the
explicit form of this distance is given in E¢L3) below. We  appropriate initial values o, and b, if 5<0.01 one in-
emphasize that for a given set-up, one garmprinciple) per-  creases the fidelity using the purification protocol Il to a
form local measurements to completely charactefizeand ~ value larger than the one given by the right wing of the
therefore obtain the value of experimentally{18,19. The  appropriate curve of Fig. 1. For example, f8+=0.005 one
error paramete$ has a clear physical meaning since it mea-can obtain a fidelity- =0.95.
sures the distance between the ideal process and the errone-Now, let us analyze for which initial conditiong{,bg)
ous one. We would like to remark here that due to the facthe map converges to the fixed point with the larggsti.e.,
that there are measurements and postselection involved for which the protocol achieves purification. In Fig. 2 we
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1Pl I=Ilpll. (12)

For positive operators, the trace norm simply coincides with
the trace, and therefore E(l1) is equivalent to

t{P(p)]<tr(p)<1. (12)

Given two completely positive mapa Pe P(H,H’), we
define their distance

d(P,P)= max ||P(p)—P(p)ll.
p €C(H)

13

FIG. 1. The fixed points of the nonlinear map: the intersections

of a horizontal line ats with the plotted curve give tha coordi-

nates of the fixed points for scheme(lbroken and scheme I
(solid).

have plotted in thed,b) parameter space the curigepara-
trix) between the stable regions for several value$ dfé,
=0.00%, k=0,1,...,5). For anynitial value (ay,bg) ly-

It is straightforward to show thal is indeed a distance by
using the fact that the trace norm is a norm.

With this definition, we can characterize the errors by
using the parametef as defined in Eq(8). The motivation
for this definition with respect to other possible definitions is
that it easily gives lower bounds even for physical processes
where there are measurements and postsele@®iit is in

ing to the right of each curve, the map will converge to thethe case of entanglement purification, cf. next segtiae.,

corresponding fixed poinfasterisks in the plot For &

when the map describing the physical process is not trace

=0.006 k=3 in the plo}, for example, one can purify from preserving. On the other hanalthough we will not use this

values of a;=0.69 up to values ofF=a;~0.94; for &
=0.002, one can readh=0.98 starting fronay<0.61. The

property herg it allows one to easily bound the distance
between processes which are composed of several individual

results show that the error threshold for purification is muchprocesses in terms of the distances between the individual

less restrictive than the one for quantum computafiti.

[ll. DISTANCE BETWEEN TWO POSITIVE MAPS

processes themselvésee next subsectipn

One can define other distances between trace preserving
maps: for example, one can consider the rthat trans-
forms p1,—p1, Wherep; is given in Eq.(7) in terms of the

We denote byH a finite dimensional complex Hilbert linear mapSTDO‘l. This new map, although trace preserving,
space and by (H) the complex Banach space of linear op-is nonlinear. If one defines distances betwé@nand the

erators A:H—H with the trace norm||A||=tr(|ATA|Y?)
=tr(|A]) (as usual, |A|=|ATA|Y?. We denote by
C(H)CL(H) the convex set of positive linear operatgrs
acting onH with ||p||<1, and byP(H,H’) the set of com-
pletely positive linear map®:C(H)—C(H") fulfilling

0.4}
3=0.0
0.3
0.2}
0.1}
ol — ‘ ‘ a
0.5 0.6 0.7 0.8 0.9 1

correspondindtrace-preservingideal mapP’, problems re-
lated to the nonlinearity arise: for example, it can happen that
while the distanced between the linear mapB,P is very
small, the similarly defined distance between the nonlinear
mapsP’, P’ is of the order of 1, which makes the definition
useless to derive bounds. The reason is that low probability
processes get “magnified” by the normalization and then
dominate the maximization used to define the distance.

One can still define other error parameters to find sharper
bounds to the fidelity in entanglement purification. However,
by increasing the number of parameters one does not gain
too much and the bounds become more complicated to ana-
lyze. On the other handd(P®1Pe1)#d(P,P) [19],
which would allow us to usel in processes for which the
system in which we perform operations and measurements is
entangled with another system, without having to include the
other system in the error analysis. This may be useful, for
example, in quantum computation where operations are per-
formed on single qubits that are entangled with many other
qubits. In that case, one can define other distances, as it is
done in Ref[19]. In any case, in quantum communication if

FIG. 2. The solid lines show the border between the two stablgve can bound the fidelity when the system is not entangled,

sets(the separatrix for six values of5. The asterisks show the we can automatically derive a bound for the entanglement
corresponding § increasing from right to leftupper fixed points.  fidelity [12,4].
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A. Properties of d

In this subsection we derive some properties of the dis-
tanced introduced above. Givef®,P< P(H,H’) we have

the following.

(1) We can restrict the maximization in E¢L3) to one

dimensional projectors, i.e.,

1P o)D) =P ) w)Il. (14

max
veH |l [9)ll=1

d(P,P)=
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d(P-Q,P°Q)= max ||PLQ(p)]1-PLO(p)]l|
peC(H)
= max ||P[Q(p)— O(p)]|l. (21)
peC(H)

Now, sinceQ(p) — Q(p) is self-adjoint, we can substitute in
this last equation its spectral decomposition

Qp)— “Q‘(p):; | ) Bl( b Q(p)— D(p)|¢p) (22)

Proof. We just have to prove that the distance as given in
Eqg.(14) is always larger than or equal to the one given in Eq.obtaining

(13), since the converse is clearly true. For any C(H) we

write p=3P;|¢;){¢;| with =;P;<1 and ¢; normalized
states ofH. Using the linearity of ? and P and that

||=iPAll|<max||All, we find that ||P(p)—P(p)|l

<max||P(| i) i) = P(|¢i)(#i])]]. Taking the maximum

with respect tg in this inequality completes the proof.
(2) For all peC(H) and ¢ eH (normalized statewe
have

(oI P(p)| ) —d(P,P)<(|P(p)| py<( | P(p)| $)
+d(P,P), (153

tr[P(p)]—d(P,P)<tr[P(p) <t P(p)]+d(P,P).
(15b)

Proof. For Eq.(158 we use

[(6P(p)—P(p)| $)|<IP(p)—P(p)||<d(P,P), (16)

whereas for Eq(15b) we use

[t P(p) — P(p) <t |P(p) — P(p)|1=d(P,P). (17

d(PeQ,P20)= max 2, [(¢|Q(p)—O(p)| )l
peC(H) ¢
X||P(| ) S
< max 2, (¢|Q(p)—Q(p)| )| (239
peC(H) ¢

= max ||Q(p)— Q(p)||=d(Q,0),
peC(H)
(24)

which completes the proof.

(4) Finally, we show that the distana# stems from a
norm, which may be useful to derive some other properties.
First, let us enlarge the s€{(H) so that it becomes a Banach
space. The simplest way is to defi®H)=Iing{C(H)},
that is, the set of operators that can be written dfingte)
linear combination of positive operators with real coeffi-
cients. The real Banach spa&H)CL(H) is simply the
space of self-adjoint operators actingldnin the same way,
we can enlarge the sé®(H,H’). First, given a mappP
e P(H,H’) we defineP: S(H)— S(H) by using the linearity
of P[thatis, ifS(H) s A=X,\;p; with p; e C(H), we define
P(A)=Zi\iP(p))]. Then, we define Q(H,H’)

Next, we give a property that allows one to bound the=ling{P(H,H’)}, which is a real vector space. Using the
distance when one applies sequential maps. This may be usgperator norm

ful when one has a concatenation of processes.

(3) Given Pe P(H',H") and Qe P(H,H"), we define

PQe P(H,H") according to P-Q)(p)=7[Q(p)]. Then,
we have

d(P-Q,P-Q)<d(P,P)+d(Q,9). (18
Proof. Using the properties of a distance, we have
d(PeQ, P Q)<d(P-Q,PQ)+d(P-0,P°Q). (19

On the one hand, we have
d(P-Q,P>0)= max ||P{Q(p)]-PLO(p)]ll
peC(H)

< max [|[P(p")]—P(p")||=d(P,P),
p' eC(H")

(20

where we have used E@L1) for Q. On the other hand,

max
AeS(H)||All=<1

[ Pllop= IYZGVIP (25

it becomes a real Banach space. With this definition we have
d(P,P)=|P—Pllop- (26)

Proof: We show that the distance given in E@6) is
smaller than or equal to the one defined in B@), since the
converse is obviously true sindg(H)C S(H). For anyA
e S(H) with [|A||<1 we can writeA=3;\;| $){ $|, where
=i|\j|=<1. Now, arguing as in the proof of the prope(t),
we obtain that ||P(A)—P(A)||=maxIP(|$)(4])

—P(|$){(¢|)||. Taking the maximum over all possible
e S(H) we complete the proof.

The distancel is not unrelated to other quantities used in
the literature to characterize erroneous operations. Typically,
given one of the other quantities, one can bodridnd vice
versa within the respective domains of applicabjlitgpe-
cifically this is true for the minimum fidelity, the error am-
plitude[12], and the generic error modgl6]. The diamond
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norm introduced iM19] is a generalization of the distance
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The upper and lower fixpoints are attractive, while the

used here and particularly useful to discuss operations omtermediate is repulsive. Consequently even an imperfectly

systems that are strongly entangled with other systems.

IV. NONLINEAR MAP FOR ENTANGLEMENT
PURIFICATION

In this section we derive the nonlinear méko) for the

implemented scheme | allows us to purify ensembles with
initial fidelity F;,>a;(6) up to a fidelityF,,=a,(J), pro-
vided that6<0.008.

B. Scheme I

bounds of the diagonal matrix elements in the Bell basis of Scheme Il converges faster than scheme | and can tolerate
the density operator after each step of the purification proSomewhat larger errors, but the analysis becomes signifi-

cess. As above, lehl =('[p,¢'), i=0...3. Analogous
to Eq. (4), we have

% (& Po(pn®pn) + Pi(pa®pn) | ¢')

= (27)
it [ Po(pn® pn) + P1(pn® pn) ]
Using Eq.(10) we have that
fiA)—26 . fi(A)+26
(~n) A= (~n) | 29
9(An)+20 9(Ay)—20

wheref' andg are defined in Eq(5). In the following sub-

sections we will discuss the two purification schemes sep

rately in detail.

A. Scheme |

As stated above for scheme | we can use @y instead
of 0
gives

0
An+l

(A%2+[(1-A%/31?-26

2 4 x ~ ~ .
[A2+(1—A2/3]2+[1—A2+(1—A2)/3]2+25(29)

Now we observe that the right hand side of E2f) is mono-
tonically increasing withA for all A%=1/8. Therefore re-
placingA? by $<a,<A? in Eq. (29 yields a lower bound
for A%, , . Since the interval1/8,1] is mapped into itself by
the left hand side of Eq(29) we arrive at the dynamical
system defined by,=AJ and

a+[(1—ay)/3]?>—26

[a,+(1—a,)/3]?+[1—a,— (1—a,)/3]>+25
(30

Any1=

For everyn the value ofa, is a lower bound of the fidelity
after n purification steps.

In the case6=0 the original map of Bennettt al. is
recovered. The three fixed points of that map agfd)
~0.25,a;(6)~0.5, anda,(d)~1 survive even for nonzero
S and are given by the roots of the cubic polynomial

7,9,
8 4

1 95
g8 2°)

They are plotted as a function &fin Fig. 1 (broken ling.
For 6=0.008 only the lower fixpoint survives.

X—

3 2
— —X%4
X X

a_

and forget about the other three diagonal elements. Thiio

cantly more complicated, since all four diagonal elements of
the density matrix come into play. Using E@8) we have

(AD)2+(A})?—-268
(A0+AN2+ (A2+A3)2+26

A0
n+1=

(313

2A2A3+26
(A0+AN2+ (A2+A3)2-26

A1
Ani1S

(31b

To proceed the same way as in the preceding subsection
we need again a monotonicity property of the right hand

sides of Egs.(31) so that we can replace the valu&ﬁ
(which are typically not known, since their exact value de-

pends on the unkown errors ) by lower or upper bounds,
respectively.

Using EfAL=1 we can express the right hand side of Eq.
(313 in terms of A% Al only. It is straightforward to check
that the resulting expression is monotonically increasing in
% and monotonically decreasing A for all (A2, AY) ful-
filling

F0—

0> %Jr =55 and Al<o0.5. (32
Thus, provided thab®=a,,, Al<b,, and @,,b,) fulfill the
condition (32), thena,,; as given in Eq.(109 is a lower
bound forA2, ;.

It remains to justify Eq(10b). Starting from Eq(31b) we
can this time express the right hand side only in terms of
an=A2+A2 and 8,=A2—A2 using the normalization con-
dition

3 (ap—ph)+26
a?+(1—ay)?—26

7l
<
n+1—

Now it is easy to check that the right hand side of this in-
equality is monotonically increasing ua, (for fixed 8,,) and
takes(for fixed ) its maximum aiB,,= 0, where we use the
fact that a,<1—A° and A’>0.5. Sincea,=A2+A3<1
—A%<1-a, we arrive at Eq(10b) by replacing8,—0 and
an—1—a,.

The discrete dynamical system defined by the Q)
has for 0= §=<0.01 three fixpoints witla coordinate around
a,~0.5,a;~0.6,a,~1. Figure 1(solid line) shows them as
a function of §. For 6>0.01 only the lower fixpoint sur-
vives. The exach values are given by the real roots of a
polynomial of seventh degree or equivalently by the intersec-
tions of the curved,, ((a) and
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br(a)=—a+ \/a_ 2 1) % B3 os|
the latter of which is defined by, (a,,bs(an))=a,.
The corresponding coordinates areb,,,q(ay), where x 04}

=1,i,u.

As in the previous case the upper and lower fixpoints are
attractive, while the intermediate one is now a saddle point, |
attractive in one direction and repulsive in the others. Now
essentially the same argument as in the preceding subsectiog 2 |
applies: points between intermediate and upper fixed points
are purified to a final fidelity~,,=a,. There are, however,
two complications: first, the eventual fate of a poiat,tf) 011 b, (a)
depends on both andb. Second, we need to make sure that
the conditiong32) are fulfilled in every step of the iteration, , , , , )
otherwise it is no longer valid to interprea(,b,) as bounds 0.5 0.6 0.7 0.8 0.9 1

of the actual valuesA®,Al). For both of these complica- 3
tions we have been unable to find complete analytical an- FIG. 3. For6=0.006 the curveb, (10b) andbyy (33) are plot-

. . . ted. Their intersections are fixed points of the dynamical system.
swers. Therefore we first give the numerical results before P y y

mentioning partial analytical solutions. o L .
Numerical calculations show that the physically meaning—(a ,b") then this will also be true for the images of these

. P : oints after one iteration of the dynamical system.
ful set{(a,b):0=<a<1,0sb=<1-a} is divided in two parts P Now compareX with X' = (a’ :ayb’) betwe)(/en the cUrves
by a curve passing through the intermediate fixed point, th%ut with thepsamea as X. and Wiﬂ"l X'—(a"=a, b"=b)
separatrix(see Fig. 2 Points to the right of that curve con- Clearly X is better than(’7but worse tha_r)(” gin?:é b;[hx,'
verge to the upper fixed point, points to the left towards the q ,}" ds th i N d
lower one. Moreover, all points to the right satisfy the con—an(i\)/() Xc’;\rﬁgf ;crmijar;esn;[ ae ”ﬁg:r if'xv‘\)/g":;[(’);o aroeez oint
ditions (32) and so do the orbits of all these points. For all , ' g 't applies, 1w P P
ensembles described by density matrices with diagonal eIeY_(a'b>bfi;§(a))H with ,,Y =(a'<a,b’=b) between the
mentsAQ,A} in that region,a,,b, as defined in Eq(10)  CUrves and”=(a"=a,b"<b) below the curves: the primed
provide lower and upper bounds for the respective fidelitie o![?ts tchcm\ﬁrge (th the upflherr:(l/)’(po(;nt, and tftlasb()_r—hbelng
after n purification steps. For initial values to the left of the Ieter than a? worse thary™—does so, too. This com-
separatrix our approach allows no statement. The case pietes the proot.
=0 in Fig. 2 indicates how many “good” points our worst-
case consideration misses: as showfilif] the exact border V. SUMMARY

of the set of purifiable points in thea(b) plane is given b
b P (b) p g y The entanglement purification protoc¢ls7] in the pres-

the straight linea=0.5. ¢ . . d h
For a subset of the points to the right of the separatrix it i€"'C€ Of €rrors in gate operations and measurements have

easy toprove convergence: All the pointsa(b) fulfiling a ~ °€€"n invgsti.ga':je(?. Theherrors are quar\l/ti/fieﬁ by ahsingle r‘])a'
—a, b=b;, anda-+b=1 converge to the upper fixed point 'aMeter derived from the trace norm. We have shown that

P, (except forP,, of course. these protocols allow us to increase the fidelity of the en-

Proof: The proof proceeds in four steps. The main tool istanglement even if implemented with imperfect quantum
the monotonic dependence af, ;, b, ., ona andb. [t is gates and measurements, as long as the errors are below a

easily checked by calculation that the coordinates of the in'EhreShOIOI of the order 1%. We d.e“"?d a nonlm_e_ar map to

termediate fixed point satisfy the conditiof82) for all § so calculate a '°W‘?f bound _for the fidelity aftgrpupﬂcatmn

that monotonicity holds. steps. Polynomials are given, a root of \{vh|c_h gives a lower

(i) Consider ,b) in the set enclosed by the two curves bound for the asymptotha!ly atta}lnable f|del'|ty. :

by, 1(a) andbg,(a) [Eq. (33), cf. Fig. 3. For these points, The _methods an_d deflnl_tlons mtroduc_ed in this vv_ork can

wrg%ave for alln be applied to other interesting problems in quantum informa-
tion, like teleportation or quantum cryptography. Further-

ap+1=a, and b, =<b,. more, they can be used to analyze other purification proto-

cols which, under certain circumstances, are more efficient

Sincea, andb, are bounded by the coordinates of the upperthan the ones studied hefgee, for example, Reffl,2]).

and intermediate fixpoints, they form monotonical, bounded

sequences and therefore converge. Smcmcreases an,,
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4.4 EPP for Gaussian States

In the CV setting there are two questions: the first — how can distillable Gaussian
states be distilled in principle? — has already been answered in the distillability
proof. The more interesting question concerns implementation: we would like to
find an EPP employing only transformations that can be realized experimentally
with current technology, e.g. in a quantum optical setting.

4.4.1 Linear Means: Linear Transformations, Homodyne Detection

Most interesting from the standpoint of feasibility would be a protocol that
relies only on linear transformations (see Subsec. A.2).

In the most general form of such a linear EPP (LEPP) Alice and Bob would
start with n pairs of modes in an entangled Gaussian state standard form (cf.
67) and m ancillas in the vacuum state each. Then they both perform suit-
ably chosen linear transformations, corresponding to symplectic maps Sy, Sp,
respectively, and finally they both measure the z-quadrature on all but the first
of their respective modes, resulting .

Note that this is indeed the most general form of a LEPP since (a) the
standard form can be reached by local linear transformations (LLT); (b) all
pure Gaussian ancilla states can be obtained from the vacuum by LLT, and
mixed ancillas, being a mixture of pure Gaussian states, can be no better than
pure ancillas; (¢) all homodyne measurements can be realized by a x quadrature
measurement preceded by some LLT; (d) that all measurements can be delayed
until after the LLTs is seen as follows: prepare an ancilla in the state |0), the
highly squeezed vacuum (31); coupling the mode to be measured to the ancilla by
a continuous CNOT-gate [18] allows to effectively perform a QND-measurement
of the quadrature of the mode by measuring the quadrature of the ancilla; but
since the ancilla is not involved in the other LLTs of the EPP this measurement
commutes with all other operations and can thus be delayed until the end.

From this we immediately see that such a linear EPP would be determin-
istic: Since the correlation matrix of the resulting state is independent of the
measurement outcome, all the states produced by such a scheme have the same
amount of entanglement. While this fact is in contrast with the protocols known
for qubits and may make the existence of an LEPP seem unlikely, it does not
rule out such a protocol (except the case n = 1). Many entangled beams would
be used up in such a scheme, thus expected entanglement of the output may
decrease even if one more strongly entangled beam is produced with certainty.
Until now neither a LEPP has been found, nor a proof that there is none.
We briefly mention some unsuccessful attempts to construct a LEPP in the
appendix D.2.

4.4.2 Higher-order Nonlinearities

Thus we turn to higher-order nonlinearities to find an EPP for Gaussian states.
One interesting approach based on the nonlinearities introduced by photon
counting was proposed by Opatrny et al.[66]: Alice and Bob share a pure en-
tangled Gaussian state (as the one used in [16]), both couple their respective
mode to the vacuum via a low-reflectivity beam splitter and detect the photons
that are “subtracted” by measuring the photon number in the reflected beams.
If both measure the same small number the resulting (pure) state was shown to
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be more entangled than the original one and to lead to a higher fidelity when
used for teleportation. But it is not clear whether this scheme also works for
mixed states or how it could be extended to this case.

Before turning to the proposal of [23], reprinted in Subsec. 4.5, which forms
the main part of this section, let us discuss briefly which kind of nonlinearities
would be needed to realize in a quantum optical setting the universal EPP for
all Gaussian states [56, ch. I1.8] which is based on the d-level protocol of [39].

As usual for EPPs Alice and Bob initially share a large number of identically
prepared entangled systems in the known state p.

Oa.) Concentration: If p describes more than two modes, both A and B
perform a local linear transformation as described in [61] to concentrate the
entanglement in the first of their modes such that all the others can be discarded.
As shown in Subsec. A.2 this requires only linear optics and hence is within reach
of today’s technology. Therefore we have to consider only the case of p being a
1 x 1 Gaussian state in the following.

Ob.) Symmetrization: If the state does not have zero mean, i.e. if d # 0 then
perform a suitable displacement to achieve d = 0. If the state is not symmetric
(see p. 90) symmetrize it as described in Subsec. 3.2, and then bring the sym-
metric state into standard form (see 67). All these steps can be performed by
the local use of beam splitters, one-mode squeezers, ancilla systems in coherent
states, and a homodyne measurement.

These two steps have to be performed only once, while the following steps
are iterated, representing the proper recurrence procedure.

For a state in symmetric standard form the filtering operation (91) required
in the EPP is unnecessary, since then p already satisfies Ineq. (13) with the state
[¥) o limy_1 >, A* |k) |k) (in the photon number basis). This gives an, =
limy 1 AT 8,,, hence A = (apm) = 1.

1.) Depolarization: Transform the state into a mixture of \@f“) and the
maximally mixed state o< 1 by applying U ® U* with U randomly chosen.
However, the class of currently realizable unitaries is in fact very limited and
we do not know how to depolarize an arbitrary state quantum optically.

2.) Joint measurement: This is the central step of the distillation protocol.

A bilocal XOR is used to mutually entangle two entangled pairs. A subsequent
measurement selects a distilled subensemble.
This operation may be implemented by a measurement of the total photon num-
ber N!°* = N,1 + Na2,a = A, B on both sides. Consider the state conditional
on both A and B obtaining the same result N. It differs only by a local unitary
transformation® (namely |n, N —n),_ — |n, N)_) from the one that is obtained
by directly following the d-level protocol of [39] sketched in Subsec. D.1, i.e.,
first projecting bi-locally to the N + 1 dimensional subspace Hy 1 (p — pn+1),
then performing the bi-local XOR 1, and finally measuring the target system
with result N. As shown before, for a sufficiently large value of IV, the truncated
state pyy1 is distillable and then step 2.) produces a state with larger overlap
with the N + 1-level maximally entangled state |®X ™).

Each iteration of these two steps brings the state closer to a maximally
entangled state in the Hilbert space of dimension (Ny + 1)?, where Ny is the

2To be precise: local unitary equivalence holds on the infinite dimensional space, when
XOR:|n,m) — |n,m + n). For states in a N dimensional subspace (as obtained after the first
step) this equivalence is only true for measurement outcomes No < N
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last successful result of the total photon number measurement. Hence with finite
probability one can get arbitrarily close to a maximally entangled state in some
finite dimensional space provided the initial supply of states p is sufficiently
large.

In the following two subsections the practical EPP that allows to distill cer-
tain mixed Gaussian states into pure maximally entangled states in one step is
presented and its physical implementation using high finesse cavities and cross-
Kerr nonlinearities is discussed.

4.5 Entanglement purification of Gaussian continuous
variable quantum states

Lu-Ming Duan, Géza Giedke, J. Ignacio Cirac, and Peter Zoller,

We describe an entanglement purification protocol to generate maximally
entangled states with high efficiencies from two-mode squeezed states or from
mixed Gaussian continuous entangled states. The protocol relies on a local
quantum non-demolition measurement of the total excitation number of
several continuous variable entangled pairs. We propose an optical scheme to
do this kind of measurement using cavity enhanced cross—Kerr interactions.

Phys. Rev. Lett. 84, 4002 (2000), E-print: quant-ph/9912017.
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We describe an entanglement purification protocol to generate maximally entangled states with high
efficiencies from two-mode squeezed states or from mixed Gaussian continuous entangled states. The
protocol relies on alocal quantum nondemolition measurement of the total excitation number of several
continuous variable entangled pairs. We propose an optical scheme to do this kind of measurement using

cavity enhanced cross-Kerr interactions.

PACS numbers: 03.67.Hk, 03.65.Bz, 42.50.—p

Quantum communication, such as quantum key distri-
bution and quantum teleportation, is hampered by the dif-
ficulty to generate maximally entangled states between
distant nodes|[1]. Because of loss and decoherence, in real-
ity we can generate only partially entangled states between
distant sides[2]. Entanglement purification techniques are
needed to concentrate maximally entangled states from
partially entangled states [3,4]. For qubit systems, effi-
cient entanglement purification protocols have been found
[3-5]. But none of these purification schemes have been
realized experimentally due to the great difficulty of per-
forming repeated collective operations in realistic quantum
communication systems. Thus, it is of interest to consider
purification of continuous variable entanglement. Thenon-
local Gaussian continuous variable entangled states (i.e.,
states whose Wigner functions are Gaussians) can be eas-
ily generated by transmitting two-mode squeezed light, and
thiskind of entanglement has been demonstrated in the re-
cent experiment of continuous variable teleportation [6].
Asthefirst choice for performing continuous entanglement
purification, one would consider direct extensions of the
purification schemes for qubit systems. But until now, in
these extensions, no entanglement increase has been found
for Gaussian continuous entangled states [7]. Thus, the
discussion should be extended to a larger class of opera-
tions to purify continuous entangled states. Braunstein
et al. [8] have proposed a simple error correction scheme
for continuous variables. However, it is not clear whether
it can be used for purification. 1n[9] aprotocol to increase
the entanglement for the special case of pure two-mode
squeezed states has been proposed, which is based on con-
ditional photon number subtraction; the efficiency, how-
ever, seems to be an obstacle for its practical realization.

In this paper, we present an entanglement purification
scheme with the following properties: (i) For pure states
it reaches the maximal allowed efficiency in the asymp-
totic limit (when the number of pairs of modes goes to
infinity). (ii) It can be readily extended to distill maxi-
mally entangled states from a relevant class of mixed

4002 0031-9007,/ 00/ 84(17) / 4002(4) $15.00

Gaussian states which result from losses in the light trans-
mission. Furthermore, we propose and analyze a scheme
to implement this protocol experimentally using high fi-
nesse cavities and cross-Kerr nonlinearities. Our purifi-
cation protocol generates maximally entangled states in
finite dimensional Hilbert spaces. The entanglement in the
continuous partially entangled state is transformed to the
maximally entangled state with a high efficiency. We be-
gin the paper by describing the entanglement purification
protocol for pure two-mode squeezed states, then extend
the protocol to include mixed Gaussian continuous states,
and last describe the physical implementation of the pu-
rification protocol.

First, assume that we have generated m entangled pairs
A, B; (i = 1,2,...,m) betweentwo distant sides A and B.
Each pair of modes A;, B; are prepared in the two mode
squeezed state |W) 4. p,, which in the number basis has the
form

[W)ap, = V1 — A2 Z N'n)aIn)s, (1)
n=0

where A = tanh(r), and r is the squeezing parameter
[10]. For and only for a pure state, the entanglement is
uniquely quantified by the von Neumann entropy of the
reduced density operator of its one-component. The en-
tanglement of the state (1) is thus given by E(|W)a,5,) =
cosh?(r) log[cosh?(r)] — sinh?(r) log[sinh?(r)]. The joint
state |W)u,p,; Of the m entangled pairs is simply the
product of al the |¥), 5., which can be rewritten as

[W)asy = (1= 2" VA Dy @
j=0
where (A;B;} is an abbreviation of the symbol A, By,

Az, B,,...,and A, B,,, and the normalized state | j),5,)
is defined as
| ittt
| asy = T liv, iy ooy imday
fjm i13i2smmesim
® |il’i2,---,im>(3i}- (3)

© 2000 The American Physical Society
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The function f(’”) in Egs. (2) and (3) is given by f(’”)

”,Uf 11)) . To concentrate entanglement of these m en-
tangled pairs, we perform a quantum nondemolition
(QND) measurement of the total excitation number
na, + na, + -+ + ng, onthe A side (we will describe
later how to implement this measurement experimentaly).
The QND measurement projects the state |W') 4,5, onto a
two-party maximally entangled state | j),5,} with proba-
bility p; = (1 — Az)m)\zf'fj(.’"). The entanglement of the
outcome state | j)a,z,; isgiven by E(| j)a,z) = Iog(f;’")).
The quantity I'; = E(| j)a,81)/E(IW)a,5,) defines the
entanglement increase ratio, and, if I'; > 1, we get a
more entangled state. Even with a small number m, the
probability of getting a more entangled state is quite high.
It can be easily proven that, if m goesto infinity, with unit
probability we would get a maximally entangled state with
entanglement mE(|\W)4,5,). This ensures that this method
is optimal in this limit, analogous to the purification
protocol presented in [3] for the qubit case. For any
finite number of entangled pairs, the present purification
protocol is more efficient than that in [3], since it takes
advantage of the special relations between the coefficients
in the two-mode squeezed state.

An interesting feature of this entanglement purification
protocol is that for any measurement outcome j # 0 we
aways get a useful maximally entangled state in some fi-
nite Hilbert space, though the entanglement of the outcome
state | j)(4,5,) does not necessarily exceed that of the origi-
na state |W), p, if j is smal. It is aso interesting to
note that a small alternation of this scheme provides a use-
ful method for preparing GHZ-like (Greenberger-Horne-
Zeilinger) states in high dimensional Hilbert spaces [11].
The key point is that the modes B; need not be at the same
side in the protocol. Assume we have two entangled pairs
B,A; and A,, C distributed at three sides B, A, C, with
each pair being prepared in the state (1). Then a local
QND measurement of the modes A, A, at the A side with
the outcome j # 0 generates a three-party GHZ state in
the (j + 1)-dimensiona Hilbert space. Obvioudly, if we
have m entangled pairs, we can generate a (m + 1)-party
GHZ state using this method.

In redlity, the light transmission will be unavoidably
subjected to loss, and then we will not start from an ideal
two-mode squeezed state, but instead from a mixed state
described by the following master equation:

) , t
p = —i(Hettp — pHegr)

+ > (naaspal, + npaspap). (4
i=1
where p is the density operator of the m entangled pairs
with p(0) = |W)4,5,(¥|, the ideal two-mode squeezed
state, and the effective Hamiltonian,

Hepr = —ZZ<—HA as, + %ﬁ@) %)

In Egs. (4) and (5), a,., denotes the annihilation operator
of the mode «; (¢ = A or B), and we have assumed that
the damping rates n4 and 7 are the same for al the m
entangled pairs based on symmetry considerations, but 74
and np may be different to each other.

In many practical cases, it is reasonable to assume that
the light transmission noise is small. Let 7 denote the
transmission time, then n47 and np7 are small factors. In
the language of quantum trajectories [10], to the first order
of na7 and npT, the final state of the m entangled pairs
is either [ ), gy o« e Her™ [ W), 51, with no quantum
jumpsoccurred, or [ W)y gy o /NaT o, |W)a,5,, With
a jump occurred in the a; channel (¢ = A,B and i =
1,2,...,m). The final density operator is a mixture of
all these possible states. To purify entanglement from the
mixed state, we perform QND measurements of the total
excitation number on both sides A and B, and the measure-
ment results are denoted by j4 and jg, respectively. We
then compare j4 and jp through classica communication,
and keep the outcome state if and only if j4 = jg. Let

(’ ) and P denote the projections onto the eigenspaces
of the corresponding total number operators >/, ali aa,
and >, a;agi with eigenvalue j, respectively. It is easy
to show that

() () .
r, Py |\I,(O)>A»B<} = | s

(6)
(J) (])lq,(a)> —-0.

So, if j4 = jp = j, the outcome state is the maximally
entangled state | j),s, with entanglement log( fj(””). The

probability to get the state | j)(4,5, IS now given by p} =
(1 — A2)m A% fi™ =it |t should be noted that the

projection operators Py’ P’ cannot iminate the states
obtained from theinitia state |W) 4,5, by aquantum jump
on each side A and B. The total probability for occur-
rence of these kinds of quantum jumps is proportional to
m*n*nanp7?. S0 the condition for small transmission
noise requires m*m>nanpr> < 1, where m = sinh?(r) is
the mean photon for a single mode.

In the purification for mixed entanglement, we need
classical communication (CC) to confirm that the measure-
ment outcomes of the two sides are the same, and during
this CC we implicitly assume that the storage noise for
the modes is negligible. In fact, that the storage noise
is much smaller than the transmission noise is a com-
mon assumption taken in all the entanglement purification
schemes which need the help of repeated CCs [4,5].
we also make this assumption for continuous variable sys-
tems, there exists another simple configuration for the pu-
rification protocol to work. We put the generation setup
for two-mode squeezed states on the A side. After state
generation, we keep the modes A; on side A with a very
small storage loss rate 74, and at the same time the modes
B; are transmitted to the distant side B with a loss rate

4003



VOLUME 84, NUMBER 17

PHYSICAL REVIEW LETTERS

24 AprriL 2000

ng > na. We cal this a configuration with an asymmet-
ric transmission noise. In this configuration, the purifica:
tion protocol is exactly the same as that described in the
above paragraph. We note that the component in the fina
mixed density operator which is kept by the projection
PP} should be subjected to the same times of quan-
tum jumps on each side A and B. We want this compo-
nent to be a maximally entangled state. This requires that
thetotal probability for sides A and B to subject to the same
nonzero times of quantum jumps should be very small.
This total probability is always smaler than nn,7, de-
spite how large the damping rate np is. So the working
condition of the purification protocol in the asymmetric
transmission noise configuration is given by nna7m < 1.
The loss rate np can be large. The probability to get
the maximally entangled state | j),5,) is still given by
pj’. = (1 — A2)m A% fm) g=(natns)7j,

For continuous variable systems, the assumption of
storage with a very small loss rate is typically unrealistic.
If this is the case, then we can use the following simple
method to circumvent the storage problem. Note that the
purpose to distill maximally entangled states is to directly
apply them in some quantum communication protocols,
such as in quantum cryptography or in quantum teleporta-
tion. So we can modify the above purification protocol by
the following procedure: right after the state generation,
we take a QND measurement of the total excitation num-
ber on side A and get a measurement result j4. Then we
do not store the outcome state on side A, but immediately
useit (e.g., perform the corresponding measurement as re-
quired by a quantum cryptography protocol [12]). During
this process, the modes B; are being sent to the distant
side B and, when they arrive, we take another QND mea-
surement of the total excitation number of the modes B;
and get an outcome jp. The resulting state on side B can
be directly used (for quantum cryptography, for instance)
if j4 = jp, and discarded otherwise. By this method, we
formally get maximally entangled states through posterior
confirmation, and at the same time we need not store the
modes on both sides.

To experimentally implement the above purification
scheme, we need first generate Gaussian continuous en-
tangled states between two distant sides, and then perform
alocal QND measurement of the total excitation number
of severa entangled pairs. Here we propose a promising
experimental scheme, which uses a high finesse optical
cavity to carry continuous entangled states and cavity
enhanced cross-Kerr interactions to realize the local QND
measurement. It is possible to generate Gaussian continu-
ous entangled states between two distant cavities [13].
We can transmit and then couple the two output lights of
the nondegenerate optical parametric amplifier to distant
high finesse cavities. The steady state of the cavities is
just a Gaussian continuous entangled state described by
the solution of Eq. (4) after taking into account the propa-
gation loss [14]. The difficult part is to perform a QND
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measurement of the total photon number contained in sev-
eral local cavities. We use the setup depicted in Fig. 1 to
attain this goal. (For convenience, we use the two-cavity
measurement as an example to illustrate the method. Ex-
tension of the measurement method to multicavity cases
is straightforward.)

The measurement model depicted in Fig. 1 is an ex-
ample of the cascaded quantum system [10]. The incident
light b;; can be expressed as b;1 = b, + g,/7, where
g+/7 (g isalarge dimensionless factor) is a constant driv-
ing field, and b}, isthe standard vacuum white noise, satis-
fying (b1 ()b}1(t")) = 0 and (by ()b} (1)) = 8(t — 1),
The Hamiltonian for the Kerr medium is assumed to be
H; = ﬁ,\/nib;rb,- (i = 1 or 2), where b; isthe annihilation
operator for the ring cavity mode, and y isthe cross-phase
modulation coefficient. The self-phase modulation can be
made much smaller than the cross-phase modulation with
some resonance conditions for the Kerr medium, and thus
is negligible [15,16]. In the frame rotating at the optical
frequencies, the Langevin equations describing the dynam-
ics in the two ring cavities have the form

bi = —ixmby - %bl —Vybi — gy,
(7)
by = —ixynaby — %bz - JYbiz,

with the boundary conditions (see Fig. 1) b, = b, =
bz(l + gﬁ + ﬁbl and b,y = bjp + ﬁbz In the re-
aligtic case v > y(n;) (i = 1,2), we can adiabaticaly
eliminate the cavity modes b;, and express the fina out-
put b,, of the second ring cavity as an operator function
of the observable n; + n,. The experimentally measured
guantity is the integration of the homodyne photon cur-
rent over the measurement time 7. Choosing the phase of

K fe—==]1
b

K f—==-]11

b2

FIG. 1. Schematic experimental setup to measure the total pho-
ton number n; + n, contained in the cavities | and Il. The
cavities | and 11, each with a small damping rate « and with a
cross-Kerr medium inside, are put, respectively, in a bigger ring
cavity. Thering cavities with the damping rate y are used to en-
hance the cross-Kerr interactions. A strong cotinuous coherent
driving light b;,(¢) isincident on the first ring cavity, whose out-
put b, is directed to the second ring cavity. The output b,,(z)
of the second ring cavity is continuously observed through a ho-
modyne detection.
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the driving field sothat ¢ = i|g|, the measured observable
corresponds to the operator

T
Xr = | bt + b

=B s L

VY VT
(b) _

where X;' = %(br + b}), and b7, satisfying
[br,bi1 =1, is defined by by = 1/VT [L b}(t)dt.
Equation (8) assumes y > y{n;) and e ?T < 1. There
are two different contributions in Eq. (8). The first
term represents the signal, which is proportiona to
n; + ny, and the second term is the vacuum noise. The
distinguishability of this measurement is given by én =
JY/BlglxyT). If 8n <1, i.e, if the measuring time
T > W we effectively perform a measurement of

ny + ny; and, if 7 is adso smaler than ﬁ the photon
loss in the cavities | and Il during the measurement is
negligible. So the setup gives an effective QND measure-
ment of the total photon humber operator n; + n, under

the condition

0% 1
— L T <— 9
64lg1% x? k{n;) ©)

This condition seems to be feasible with the present
technology. For example, if we assume the cross-Kerr
interaction is provided by the resonantly enhanced Kerr
nonlinearity as considered and demonstrated in [15,16],
the Kerr coefficient y /27w ~ 0.1 MHz would be obtain-
able[17]. We can choose the decay rates k /27 ~ 4 MHz
and y/27 ~ 100 MHz, and let the dimensionless fac-
tor g ~ 100 (for a cavity with cross area S ~ 0.5 X
10~* cm?, g ~ 100 corresponds to a coherent driving
light with intensity about 40 mW cm~2). The mean pho-
ton number (n;) = (n,) = sinh?(r) ~ 1.4 for a practical
sgueezing parameter » ~ 1.0. With the above parameters,
Eq. (9) can be easily satisfied if we choose the measuring
time T ~ 8 ns. More favorable values for the parameters
are certainly possible.

To bring the above proposal into areal experiment, there
are several imperfect effects which should be considered.
These imperfections include phase instability of the driv-
ing field, imbalance between the two ring cavities, light
absorption of the Kerr media and the mirrors, self-phase

modulation effects, light transmission loss between the
ring cavities, and inefficiency of the detectors. To redlize
a QND measurement, the imperfections should be small
enough. We have deduced quantitative requirements for
al the imperfections listed above [18]. With the parame-
ters given in the above paragraph, al these requirements
can be met experimentally.
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We give a detailed description of the entanglement purification protocol which generates maximally en-
tangled states with high efficiencies from realistic Gaussian continuous variable entangled states. The physical
implementation of this protocol is extensively analyzed using high finesse cavities and cavity enhanced cross
Kerr nonlinearities. In particular, we take into account many imperfections in the experimental scheme and
calculate their influences. Quantitative requirements are given for the relevant experimental parameters.

PACS numbegps): 03.67.Hk, 42.50-p, 03.65.Bz

[. INTRODUCTION distant high finesse cavities, which is the first step for the
physical implementation of the purification protocol.

Quantum entanglement plays an essential role in many It should be noted that with direct extensions of the puri-
interesting quantum information protocols, such as in quanfication protocols for qubit systems, it is possible to increase
tum key distribution and quantum teleportatidd. To faith- ~ entanglement for a special class of less realistic continuous
fully realize these protocols, first we need to generate £ntangled states5]. Unfortunately, with these direct exten-
maximally entangled state. In reality, however, due to loss$iONs no entanglement increase has been found until now for
and decoherence, normally we can only generate partiall{)ea“S“C Ga_USS|an continuous entangled states. In[ERé]‘.a
entangled states between distant si@sEntanglement pu- protocol to increase the entanglement for the special case of
rification is further needed which distills a maximally en- Pureé two-mode squeezed states has been proposed, which is

tangled state from several pairs of partially entangled statelgased on conditional photon subtraction. For its practical re-

: . : .__alization, the efficiency, however, seems to be an issue. In
using local quantum operations and classical communica- y

tions[3,4]. For qubit systems, efficient entanglement purifi- contrast, the purification scheme discussed in this paper has
onsis, .t 0 Iquh sy;e Sf’ 45 R ?I F the following favorable propertiesi) For pure states it
_catlon protocols have been oupd,5]. Recently, quan UM veaches the maximal allowed efficiency in the asymptotic
information protocols have been extended from qubit sys

: . : Timit (when the number of pairs of modes goes to infinity
tems to continuous variable systems, such as continuoygy i can pe readily extended to distill maximally entangled
variable teleportatio6,7], continuous variable computation giates from a relevant class of mixed Gaussian states which

[8], and error correctiof9], continuous variable cryptogra- resylt from losses in the light transmissidiii) An experi-
phy[10], and also the notions of continuous variable insepamental scheme is possible for physical implementation of the
rability [11] and bound entanglemefit2] have been inves- puyrification protocol using high finesse cavities and cross
tigated. For physical implementation, Gaussian continuou&err nonlinearities.
variable entangled statéise., states whose Wigner functions  The paper is arranged as follows. In Sec. Il we show how
are Gaussiansan be generated experimentally by transmit-to generate a Gaussian continuous entangled state between
ting two-mode squeezed light, and this kind of entanglementwo distant cavities from the broadband squeezed light pro-
has been demonstrated in the recent experiment of continided by a nondegenerate optical parametric amplifier
ous variable teleportatidri3]. Obviously, it is useful to con- (NOPA). Light transmission loss is taken into account. In
sider purification of continuous variable entanglement, thaSecs. Il and IV we give a detailed description of the purifi-
is, to generate a desired more entangled state from sonwmation protocol. Section Ill shows how to generate a maxi-
realistic continuous entangled states. We have recently pranally entangled state from pure two-mode squeezed states
posed an efficient continuous variable entanglement purificabased on a local quantum nondemoliti@@ND) measure-
tion protocol[14]. In this paper, we present the mathematicalment of the total photon number, and Sec. IV extends the
details of this purification protocol together with results onpurification protocol to include the mixed Gaussian continu-
its physical implementation. In particular, we take into ac-ous states which are evolved from the pure two-mode
count many important imperfections in a realistic experimensqueezed states due to the unavoidable light transmission
tal setup, and calculate their influence on the purificationioss. In Sec. V, we describe a cavity scheme to realize the
scheme. Quantitative requirements are given for the relevambcal QND measurement of the total photon number, and
experimental parameters. These calculations make necessalgduce conditions for the QND measurement. Then, in Sec.
preparations for a real experiment. We also show how to/I, we extensively discuss many imperfections for a real
generate Gaussian continuous entangled states between texperiment on QND measurements, and deduce quantitative
requirements for the relevant experimental parameters. Last,
we summarize the results, and give some typical parameter
*Email address: luming.duan@uibk.ac.at estimations.

1050-2947/2000/63)/03230412)/$15.00 62 032304-1 ©2000 The American Physical Society
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t !
e a,(t)=a,(0)e” 'k f e (A" Da (t)dt'.
s VAN NOP \UaWal UV 0
©)

) ) ) ) When«kt is considerably larger than 1, from E¢8) and(3),
FIG. 1. Schematic setup for generating Gaussian continuous e follows that

tangled states between two distant cavities.

(anap)= VN(N+1),

(ala,y)=N (a=AB), 4)

Il. GENERATION OF CONTINUOUS ENTANGLED
STATES BETWEEN TWO DISTANT CAVITIES

Our source of entangled light field is taken to be a NOPA
operating below threshold.7]. The light fields may be non- (aal)=(N+1) (a=A,B).
degenerate in polarization or in frequency. The two NOPA
cavity modes, andcg are assumed to have the same outpuOn the other hand, we know that two modes driven by a
coupling ratex.. The dynamic in the NOPA cavity is de- White noise are in Gaussian states at any time. A Gaussian

scribed by the Langevin equatiom'm the rotating fram}g state with the correlatior(sl) is necessarily a pure two-mode

[18] squeezed state. So the steady state of the cavity magdes
andag is
. K
Ca= 6C;§— ?CCA_ \/K—cCiA ; |W)1,=Sap(r)|vad g, 5
(D where the squeezing operatBig(r) = exdr(aLaE—aAaB)]
. K . . .
CEZE*CA_écg_\/K—CCiTB1 indNtri squeezing parameteris determined by cothj

. ) ) Next we include some important sources of noise in the
where e is the pumping rate withe|< /2 (below thresh-  giate generation process. The noise includes the losses in the
old), andc;, andcig are vacuum inputs. The NOPA outputs NopA cavity and the light transmission loss from the NOPA
Coa and cog are given, respectively, bgo,=Cia+ VkcCa  cavity to the cavities and B. With a small loss ratep,

(«=A,B). The two outputs, perhaps after a long distance<, “for the modesc, and cg in the NOPA cavity, the
propagation, are incident on distant high finesse cavities Langevin equatiorfl) is replaced by

andB. The cavitiesA and B are assumed to have the same
damping ratex with k<k.. The schematic setup is shown ) ¢ Ket o
by Fig. 1. CA=€Cg™ —5Ca™ VieCia—Vnovia,
Under the conditiork<<k., the dynamics in the NOPA
cavity is much faster than those in the cavities A and B, so _ Ko+ 7
we can assume a steady state for the NOPA outputs. The Cp=€*Ca— c OCE—\/K—CCFB— 770UiTBl (6)
steady NOPA outputs are described by squeezed white noise 2
operators with the following correlatiori48]:

wherev;, andv;g are standard vacuum white noise, and the

(Con(t)Cop(t))=MS(t—1"), NOPA outputs are still given byc,,=cCi,t k., (@
=A,B). On the other hand, the transmission loss of light can
(Cha(DCag(t))=No(t~1"), (a=A,B), (2 Pedescribed by

. = “NaT —e 7a” =
(Coal)CEa(t))=(N+1)8(t—t"), (a=A,B), 80 =Con\€ "7 +v,1-€ 7" (a=AB),  (7)
where 7 is the transmission timey, and ng are, respec-
tively, the transmission loss rates for the outpats and
Cop, andv andvg are standard vacuum white noise. From

whereN and M, satisfyingM ={N(N+1), are determined
by the NOPA coupling and pumping rates through

_ 2.2 210 2\2 _ 2 2 2
=|el®kcl (1cl4—€l®)” and M= |e|kc(rcla+|el?)/ (xcl4 Egs.(6) and(7), it follows that the inputs for the cavities

_ 2\2 . .
|€l%)®. . andB have the following correlations:
To get the steady state of the cavities A and B, we note

that their inputsa;, and a;z are, respectively, the NOPA _ N —  NTTNT T N e mat nhf2r sty
outputsc,, andc,g With neglect of the losses during light (@ia(Daig(t)) = VN"(N"+1)e a7 5(t—t"),
propagation. The Langevin equations for the cavity modes N ) R ,

a, andag have the form (aj(Da,(t))=N"e"7a"5(t—t") (a=A,B),

. K , T (1)Y= (N"e  7a” —t! =
aa=—§aa—ﬁam (a=AB), (ai.(hal (t'))=(N'e 7™+1)5(t—t') (a=A,B),
where the total loss rateg,= n,+ (1/7)In(1+ 19/ x) =7,
with the following solution: +n/(ke?) (@=A,B), and the parameteMN’=|e|?(«,

032304-2
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+ 70)%[(ke+ 10)%14— | €]?)2~N. The steady state of the two The joint state of the two entangled pakg,B; andA,,B,

cavity modesa, and ag is thus a Gaussian state with the is simply the product
nonzero correlations given by

(apag)= VN(N+1)e [(7a* 7e)/2l7

(ala,)=Ne 7" (a=A,B), (8)

W) a,B,a,8,= S8, (1 [VaOa B, ®Sap, (1) Va0 a8,

=(1—x2>;0xiJ1+J|j>A1AZBlBZ, (12)

, Where|j>AlAZBle is defined as

(azal)=(Ne 7"+1) (a=A,B). .
1 j

The Gaussian state is completely determined by these corre- |j>A1AZBlBZZ = > |n,j —n>A1A2|n,j —N)g,B,-

lations. The Gaussian stat® can be equivalently described V1+]) n=0

as the solution at time= 7 of the following master equation:

(13

We now perform a local QND measurement of the total
photon number of the two cavities; ,A,. There have been
several proposals for doing QND measurements of the pho-
ton number, and in Sec. V, we will describe a cavity scheme

(9)  forrealizing the QND measurement of the total photon num-
ber of two local cavities. Here we simply assume this type of

. o . measurement can be done. After the QND measurement of

with the initial statep(0)=|W)ae(W|, Where| W) is de- e total numben, +n, , the statd W), g  g. is collapsed

fined by Eq.(5). This equivalence simplifies the physical . . 1 2 ! 2

picture in Sec. IV, where we will use the master equat@n into [j)aa,8,8, With probability

T 1 T 1 T
ApPAAT 5 8p8A1P T 5 PAAA

P=17n

T T T
+ 75| @gpag— 58p3sP ~ 5 PApAp

1A2

to describe the state generation noise. pj:(l_)\g)g)\zj(j +1). (14)
Ill. ENTANGLEMENT CONCENTRATION The statdj)AlAzBle is a maximally entangled state between
OF PURE TWO-MODE SQUEEZED STATES the two paries A;,A, and B;,B, in a

In the above, we have shown how to generate continuou§ *1) (i +1)-dimensional Hilbert space, and its entangle-

partially entangled states between two distant cavities. In th8'€nt i
case of no noise in the state generation process, the cavities E(li = In(i
i > . =In(j+1). 15
are in a pure two-mode squeezed state. In this section, we (|J>A1AZBlBZ) (+1) (19
will show how to concentrate continuous variable entangle - .
) ) ) . If E >E(|P , e,
ment, that is, starting from several pairs of continuous en- (11,8,8,8) > E(¥)ap)

tangled states, we want to get a state with more entanglement [coshr)]cosh)
through only local operations. The section is divided into j > —1,
two parts. The first part describes the purification protocol [sinh(r)]shO
for two entangled pairs, and the second part extends the pro- i
tocol to include multiple pairs. we get a two-party state with more entanglement. The quan-
tity
A. Concentration of two entangled pairs E(|j >A1A23132)

Assume now we have two cavitids, ,A, andB;,B, on Fj:E(|‘I’—>AB)
each side. Each pair of cavitiés ,B; (i=1,2) are prepared i
in the state_(5), which is now denoted bW)ne [W)as:  defines the entanglement increase ratio. Figure 2 shows the
expressed in the number basis, has the form probability of success versus entanglement increase ratio for

" some typical values of the squeezing parameter.
7 An interesting feature of this entanglement purification
— — n
[¥)ap,=V1=2 z‘o Amalme, (10 protocol is that with any measurement outcofre0, we

always get a useful maximally entangled state in some finite
where\ =tanh¢). Equation(10) is just the Schmidt decom- Hilbert space, though the entanglement of the outcome state
position of the statéqf)AiBi. For a pure state, the entangle- |j>A1AzBle does not necessarily exceed that of the original
ment is uniquely quantified by the von Neumann entropy oI’Stat(-Z'|‘I’)AiBi if j is small. The Stat¢j>AlAZBlBZ involves two
the reduced density operator of its one-component. The efpairs of cavities. If one wants to transfer the entanglement to

tanglement of the statel0) is thus expressed as a single pair of cavity modes, one can make a phase mea-
_ _ surement of the cavity mod&,. There have been some pro-
E(|W)ag,)= costfrIn(costfr)— sintr In(sint? r). posals for doing a phase measurenjd8t2(. A phase mea-

(11 surement of the modA, with the measurement outconge

032304-3
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FIG. 2. The purification success probability versus entanglement FIG. 3. The purification success probability versus entanglement
increase ratio for two pairs. Dotted line for the squeezing parameteincrease ratio for the number of paims=4. The dotted line is for
r=0.5, dashed line for=1.0, and solid line for =1.5. the squeezing parametet 0.5, dashed line for=1.0, and solid

line forr=1.5.
will convert the statéj)AlAzBle to the following maximally
entangled state of a single pair of cavity modes: To concentrate the entanglement, we perform a QND mea-

surement of the total photon numbﬂgl+ Na,+ - +Np
o This measurement projects the st@fe) g onto a two-
Daa,= == 2 €07"¢n), [n)g . (16) - : (51 i
SN =) 1By party maximally entangled state>(AiBi} with probability

(M) (1 —\ 2ymy 2j§(m)
B. Concentration of multiple entangled pairs Pj (1=A97A fl ) (20

The above protocol can be extended straightforwardly torhe entanglement of the outcome Sthtﬁ aB) IS given by
simultaneously concentrate entanglement of multiple cavity H
pairs. Simultaneous concentration of multiple entangled pairs
is much more effective that the entanglement concentration
two by two. Assume that we hava cavity pairsA;,Bq, _ ) !
AZ,B:,/ ..., andA,,,B,,. Each pair of c);\ﬁtiesﬁ\i ,lBi lis Similarly, I'; = E(|j) a8, )/E(|'¥)ae) defines the entangle-
prepared in the statgl0). The joint state of then entangled ~ment increase ratio, and If;>1, we get a more entangled
pairs can be expressed as state. For four pairs, the probability of success versus en-

tanglement increase ratio is shown in Fig. 3. There appears a
V) agy=1¥)a8,®V)ap,® @ V)a 5 peak in the probability curve for some entanglement increase
ratio between 2 and 3.

E(li)apy) = In(f™). (22)

S To measure how efficient the scheme is, we define the
— _ 2 /2 m)|; ]
=(1-A9)" JZO NT] |J>(AiBi}’ 17) entanglement transfer efficiendy with the expression
where AB;} is abbreviation of Ay,Bq, = (M)
A,,B,, ... ,An,Bm, and the normalized statja>(AiBi} is de- JZO P; E(|J>(AiBi})
fined as Y= (22

mE(|q,>AiBi)
1

|j>(AiBi}:W iliZE i lisz, o imay
] 25 im

It is the ratio of the average entanglement after concentration
measurement to the initial total entanglement contained in
the m pairs. ObviouslyY <1 should always hold. With the
squeezing parameter=0.5, 1.0, or 1.5, the entanglement
transfer efficiency versus the number of pairss shown in

Fig. 4.

From the figure, we see that the entanglement transfer
efficiency is near to 1 for a large number of pairs. In fact, it
(19) can be proven that ih goes to infinity, with unit probability

we would get a maximally entangled state with entanglement

iy igh .. Fip=]
®liviz - imde, - (19)
The functionf(™ in Egs.(17) and(18) is given by

m_ (tm=1!
i m=1)1

j+m—1
m—1

032304-4
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master equatiof©), with the ideal two-mode squeezed state
(10) at the beginning. If we want to establish entangled
cavity pairsA;,B;,A,,B,, ... andA,,,B,, Eqg.(9) can be
extended directly to the following form

m
p= _i(Heﬁp_PHlﬁ)+i21 (7a2apaA T+ 753 PR ),
(25

where p is the density operator of the whola entangled
pairs with p(O):|\If)(AiBi}(\If|, and the effective Hamil-
tonian

m ! !

. A t B

He=—1 —aan + —
eff 21 2 A A 2

aJEQiaBi . (26)

In Egs.(25) and(26), we assumed that the total loss raigs

FIG. 4. The entanglement transfer efficiency versus the numbeand 7,(3 are the same for then entangled pairs, but;'A and

of pairsm in simultaneous concentration. The dotted line is rfor
=0.5, dashed line for=1.0, and solid line for =1.5.

mE(|\If)AiBi). To show this, we calculate the mean value and

the variance of the distributiop{™ , and find

m\?

T (1Y)

(23
mA\ 2

(1-13)2

(Aj)?=

The results show that i tends to infinity, \/(Aj)zlj_—>0
and the distributiorp{"™ tends to as-like function. Further-

more, around the mean vaIthethe entanglement of the re-
sulting statelj)(AiBi} is

m—o

E([i)apy) —— ME(¥)ag), (24)

so the entanglement transfer efficiency tends to unity. This

ng may be different from each other. In this section, we will
show how to distill entanglement from the kind of realistic
continuous entangled states described by the solution of the
master equatioi25). There are two practical circumstances
in which our entanglement purification protocol can be ex-
tended straightforwardly to generate maximally entangled
states from the mixed Gaussian entangled states. We de-
scribe these two circumstances one by one.

A. Case of small state preparation noise

Though the state preparation noise is unavoidable, in
many cases it is reasonable to assume that it is quite small.
We taken, 7 and g7 as small factors, and solve the master
equation(25) perturbatively to the first order of these small
factors. It is convenient to use the quantum trajectory lan-
guage to explain the perturbative solution. In this language,
to the first order ofp,r and g, the final normalized state
of the m entangled pairs is eithéno jumps

0 L
|\I} >(AiBi}: \/6(65

eiiHEﬁT|\I’>(AiBi}

proves that the purification method described above is opti- "

mal in the asymptotic limit fh— o), analogous to the puri-
fication protocol presented in Re#] for the qubit case. For

any finite number of entangled pairs, this purification proto-

_ 1 (1_)\2)m/22 )\je—[(y,;\mé)/z]rj
i=0

p®

col is more efficient than that in Ref4], since it takes ad- X \/f}mjlj)(AiBi}, (27)
vantage of the special relations between the coefficients in
the two-mode squeezed state. with probability
IV. ENTANGLEMENT PURIFICATION OF MIXED 0)_ (1-\)" 28)
GAUSSIAN CONTINUOUS ENTANGLED STATES P (1_)\29—(7,;\+ 7]’B)T)m
The assumption of noise-free preparation of partially con- )
tinuous entangled states is not realistic. If we include the®r (@ jump occurreyd
unavoidable light transmission loss and the NOPA cavity
loss in the state generation process, in Section Il we have p(a 11— ¥
shown that we would get a mixed Gaussian continuous en- | >(AiBi}_ \/W ”wTaai| >(AiBi}'
tangled state between two distant cavities. The state is de-
scribed by the solution at the transmission timeof the (a=A,Bandi=1,2,...m) (29
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with probability states. We put the NOPA setup on teide. After creation
o of ideal squeezed vacuum lights, we directly couple one out-
plei)= n;T(AiBi}<‘I’|aliaai|‘1’>(AiBi}=nﬂ;ﬂ (300 put light of the NOPA to the cavity on sid& without noisy
propagation; and the other output of the NOPA is sent to the
where n= (AiBi}(\If|aziaai|\1f)(AiBi}=sinhz(r) is the mean remote siQeB, t'hrough a long dis.stance. noisy transm.ission.
photon number for a single mode. This configuration of the setup is equivalent to setting the
Similar to the pure state case, we also use QND measurdansmission loss ratgja~0 so thatna~ 7o/(x.7). Note
ments of the total photon number to distill entanglementthat the NOPA cavity loss ratg, is normally much smaller
from the mixed continuous state described by E@J)—  than the output coupling rate., so the total loss rate, can
(30). The difference is that now we perform QND measure-pe much smaller thamg in this case. The purification pro-
ments on both sided and B. The measurement results are tocol now is exactly the same as that described in the previ-
denoted by, andjg, respectively. We then compafgand  ous case. We note that the component of the mixed density
jg through classical communication, and keep the OUtcom%perator which is kept the projectid?ﬂ)Pg) should subject

state if and only ifja,=jg. It is easy to show that the final ﬁo the same times of quantum jumps on each ided B.

state is a maximally entangled state in a finite dimensionaly,, \vant this component is a maximally entangled state
Hilbert space. LePg’) and Pg) denote the projections onto This requires that the total probability fak and B to be

the eigenspaceTof the corresponding total number Operat%rubjected to the same nonzero number of quantum jumps

m m . . :
221 and2i=la8ia_8i with eigenvalugj, respectively. From 14 e very small. From ER0), this total probability is
Egs.(27) and(29), it follows always smaller thamnz, 7, no matter how large the trans-
pg)pg)w(O))(AiBi}: |j>(AiB-} mission lossygT Is. So the_wo_rkmg (_:ondltlon _of the protocol
in the asymmetric transmission noise case is
POPP W), 5,=0, (a=ABandi=12,...m).

mnzng/ k. <1. 34
(31) Mo/ K¢ ( )

So ifjo=jg, the outcome state is maximally entangled with o -
entanglement M(m)). The componentg29) in the mixed The transmission Ioss_BTcan be abov_e one. The probability
density operator, which are not maximally entangled, are disf success for obtaining the maximally entangled state
carded through confirmation of the two-side measurementi )(ag,) iS also given by Eq(32).

outcomes. Compared with the pure state case, the probability Before concluding this section, we remark that for con-

to get the entangled stahé}(AiBi} is now decreased to tinuous variable systems, the information carrier is normally
light, and the assumption of storage with a very small loss
pj':(1_)\Z)m)\Zjfl(m)ef(n,&+ UALE (32) rate is typically unrealistic. It is interesting to note that re-

cently there have been proposals to store light in internal
We also note that the projection operatét PY) cannot states of an atomic ensemi&l,22. If this turns out to be
eliminate the state obtained from the initial stb&e)miBi} by  possible, the storage time for light can be greatly increased.
a quantum jump on both sidésandB. The total probability ~Anyway, as was pointed out in Reff14], this purification
for this kind of quantum jumps to occur is proportional to Mmethod is in fact not essentially hampered by the difficulty to
mZFZWAnIBTZI So the condition for small state preparation store light, since there is a simple posterior confirmation
noise in fact requires method to circumvent the storage problem. Note that the
purpose to distill maximally entangled states is to directly
22 . apply them in some quantum communication protocol, such
M N AT+ 10/ k) (MRT+ 10/ Ke)<1. (33 as in quantum cryptography or in quantum teleportation. So
I the light transmission loss is the dominant noise, &g  We can mé)dify theh?b?tve tF;]UViﬁC%'ftgf{JntJ[F)mm?' bty tf:je f?{”(t)W-
) 2 ing procedure: right after the cavify attains its steady state,
reduces tan"n“naner <1, wg rl?1ake a QNngeasurement of the total excitatio)r/1 number
on sideA and get a measurement resplt Then we do not
store the outcome state on side but immediately use it
In the above purification protocol, we need classical com<{e.qg., perform the corresponding measurement as required by
munication(CC) to confirm that the measurement outcomesa quantum cryptography protogoDuring this process, the
of the two sides are the same, and during this CC, we immodesB; are being sent to the distant siBeand when they
plicitly assume that the storage noise for the cavity modes iarrive, we make another QND measurement of the total ex-
negligible. In fact, that the storage noise during CC is muctcitation number of the modes; and get a outcomgs . The
smaller than the transmission noise is a common assumptiaesulting state on sidB can be directly usedfor quantum
made in all the entanglement purification schemes whicleryptography for instangef jo=jg, and discarded other-
need the help of repeated CC35]. If we also make this wise. By this method, we formally get maximally entangled
assumption for continuous variable systems, there exists states through posterior confirmation, and at the same time
simple purification protocol to generate maximally entangledve need not store the modes on both sides.

B. Case of asymmetric state preparation noise
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The Hamiltonian for the Kerr medium is assumed to be

Hi=fixniblb; (i=12), (37)

whereb; andb, are the annihilation operators for the ring
cavity modes, angy is the cross-phase modulation coeffi-
cient. The self-phase modulation effects will be discussed in
the next section and shown to be negligible under some re-
alistic conditions. In the rotating frame, the Langevin equa-
tions describing the dynamics in the two ring cavities have
the form

e
b
~N
s
K%—lll
~ blz_i)(”1b1_%b1_\/;bi,1_9%

FIG. 5. Schematic experimental setup to measure the total pho- (39)
ton numbem;+n, contained in cavities | and II. .
by=—ixnaby— \/_bIZ

V. QND MEASUREMENTS OF THE TOTAL PHOTON

NUMBER OF SEVERAL CAVITIES The boundary conditions for the two ring cavities are de-

The QND measurement of the total photon number play$cribed by
a critical role in our entanglement purification protocol. e
There have been some proposals for making a QND mea- biZ_bOl_bil-"g‘/;-" Vby,
surement of the photon number in a single cayRg—25, bt (5b (39
such as letting some atoms pass through the cavity, and mea- 027 i2 2
suring the internal or external degrees of freedom of the atAssumey>X<n,) (i=1,2), and we take adiabatic elimina-
oms[23]. In this section, we propose a purely optical scheme. leth. —b.—0 in Eq.(38). obtaini
for making a QND measurement of the total photon r1umbe];On i.e., letb;=b,=0 in Eq.(38), obtaining

contained in several cavities. The different optical modes —2(gy+ b)) 2ivn

interact with each other through cross phase modulation in- by~ i (1_ X 1),

duced by a Kerr medium, and we use cavities to enhance this Y Y

kind of interaction. As an illustrative example, in the follow- (40)
ing we will show how to measure the total photon number of _2(gyt Vybiy) 4ixny 2ixn,

two cavities. Extension of this scheme to include several 2 Y 1- Y B y )

cavities is straightforward.
The schematic setup is depicted in Fig. 5. We want toSubstituting the above result into E@9), the final output
make a QND measurement of the total photon nunmrer field by, is expressed as
+n, contained in the good cavities | and I, whose damping
ratek is assumed to be very small. The cavities | and Il, each

with a Kerr type medium inside, are put respectively in a 02~ ~ Jy (ny+nz)+bi1+gVy. (42)
bigger ring cavity. The two ring cavities are assumed to
damp at the same ratg andy> «. A strong coherent light Now we measure thé& component of the quadrature

bi; is incident on the first ring cavity, whose outp; is  phase amplitudes of the output fiddg, through a homodyne

directed to the second ring cavity. The outgyh of the  detection. The phase of the driving figdds set according to

second ring cavity is continuously observed through homog:i|g|_ SupposeT is the measuring time. What we really
dyne detection, and we will show that under some realistiyet is the integrated photon current over tifiewhich, di-

conditions, this detection gives a QND measurement of thgided byT, corresponds to the following measuring operator:
total photon number operator +n,= ala1+ a2a2

The measurement model depicted in Fig. 5 is an example
of a cascaded quantum systgh8]. The incident lighb;; can Xy= Tf \/—[bOZ(t)+ bg(t)]dt

be expressed as
42 1
LAY gy ), 42

Vr T
whereg\/y is a constant driving field, arla{, is the standard .
vacuum white noise, satisfying ' where X = (1/y2)(br+br), and br, satisfying [br ,br]
=1, is defined by

bllzbi/1+9\/;, (39

(b (Hb{y(t"))=0,
1 (T ,
(bl (Db (1)) = a(t—1"). (39 bT:ﬁJo bia(tdt 43
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From Eq.(36), it follows that the defined modb; is in @  The last term of Eq(47) represents the noise due to the
vacuum state. So the first term of the right hand side of Egphase instability of the driving field. It should be negligible
(42) represents the signal which is proportionalrtpt+n,, ~ compared with the signal, which requires

and the second term represents the contribution of the
vacuum noise. The distinguishability of this measurement is

) 4y
given by 5<7. 48
=7 (49 |
8|9|X\ﬁ On the other hand, we know that the squared phase variance

52 increases linearly with time, i.e52= 8,t, whereé, is the

If Sn<1, i.e., if the measuring time increasing rate. The measuring tirfieis bounded from be-
low by Eq.(45), so the increasing rate of the phase instability
of the driving field is required to satisfy

Y
T>—F, (45)
64g|°x? -
1024g]x 4o
we perform an effective measurement of the total number t ¥ : (49

operatom; + n,. During the measuring timg, the loss of the

two cavities | and Il should be negligible, which requires ) o ) )
Equation(49) suggests it is easier to meet the requirement

k({NHT<1 (i=1,2). (46) imposed by the phase instability with a strong driving field
and a large cross phase modulation coefficient.
Under this conditionn;+n, is approximately a conserved
observable, and we realize a QND measurement of the total

photon number operator. The measurement projects the field B. Imbalance between the ring cavities

in the cavities | and Il to one of the eigenstatesngftn,. In the previous section, we assumed that the damping
Equations(45) and (46), combined together, determine the rates and the cross phase modulation coefficients are exactly
suitable choice for the measuring time. the same for the two ring cavities. This may be impossible in
a real experiment. Here we calculate the largest allowed im-
VI. INFLUENCE OF IMPERFECTIONS balance between the two ring cavities. The damping rates
IN THE QND MEASUREMENT and the cross phase modulation coefficients for the ring cavi-

ties are denoted by, v,, and x1, x», respectively. The
We have shown how to perform a QND measurement of angevin equation$38) and the boundary condition&@9)

the tot:_:ll photon n_u_mber. The scheme defscribed above workge replaced respectively by the following equations
under ideal conditions. For a real experiment, there are al-

ways many imperfections which should be considered. For . . Y1 ,

example, the phase of the driving field may be unstable, and by=—ixiniby— 50y~ Vrbli— g,

has a small variance; the damping rates and the cross phase (50)
modulation coefficients for different ring cavities may not be

exactly the same; the Kerr media and the mirrors may absorb o= —ivonob,— Eb — 7,b

some light; self-phase modulation effects caused by the Kerr 2= T IX211202™ B2 VY2tizs

media may have some influence on the resulting state; there
may be some loss of light from the first ring cavity to the

second ring cavity; the efficiency of the detector is not unity. biz=bo1=b{1+gVy1+ Vyiby,
Of course, to realize a QND measurement of the total photon (51)
number, all the imperfections must be small. But the impor- bop=bjp+ \/Ebz-

tant question is how small these imperfections should be. In

this section, we will deduce quantitative requirements for all ) .

the imperfections listed above. These calculations may bdhe final measured observable is expressed as
helpful for a future real experiment. We will consider these

imperfections one by one. 4.2 1
XT% —\/_|g|X1 (n1+ n2) + _Xgrb)
Vn VT

A. Phase instability of the driving field

Assume that the phase of the driving fiql;d/} has a (&_ﬂ)
small variances, i.e.,g is expressed ag=i|g|e'’. Then, Eq. +4V2lglVn va 71 % (52)
(42) is replaced by

4\/§| | 1 The last term of Eq(52) represents the noise due to the
Xy~ ﬂ(nﬁ ny)+ —=xP—2|g|8Vy. (47 unbalance between the ring cavities, which should be negli-
Jy JT gible compared with the signal, yielding
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X271 1 171
-1<—. 53 (€O T
X172 <n2> ( ) XT Tfo \/E[Coa(t)—i_COa(t)]dt
C. Absorption and leakage of the light ~ 8‘/§|9|X\/E(a_ 1) (N;+ny)
Light absorption by mirrors and Kerr media and light 4
leakage through other mirrors of the ring cavities can be 1 4\/§|9|X\/E
described by the same Langevin equation, which has the +—X(T°“)——na (a=1,2, (58
form VT Y
- . Y , B (€a)  aimni (b) defi )
by=—iyn.b,— Ebl_ \/;bil_gy_ 7bl_ \/B_:I.Cili wherex; ™, S|m|I§1r toXy” defined below Eq42), are stan
dard vacuum noise terms. The last term of EsB) bears
(54)  some information abouh,, which should be completely
. ) vy B> masked by the vacuum noise term to make the decoherence
by=—ixnaby— 5by— Vybir— - b2~ VB:Ciz, effect negligible. This condition requires
whereB; andg, are the light leakagéor absorptiohrates of 4\/§|9|X<”a> 1
. ; - : VB.< . (59)
the first and second ring cavities, respectively, apndand Y J2T

C;, are the standard vacuum inputs. The boundary conditions
for the ring cavities are still described by E@9). The

leaked(or absorbeglight fieldsc,; andc,, are expressed as On the other hand, the measuring tiMiés bounded from

below by Eq.(45), which, combined with Eq59), yields the

following requirement for the leakage rates
Con=Ciat VoD, (a=12). (55 9 e ’

The leakagdor absorptioh of light may have two types of Ba<
effects: First, it may destroy the balance between the two (n,)
ring cavities; and second, the leaked light) may carry

some information about; (or ny). Any information about  Qopviously, this is a much stronger requirement than that
n,; (or n,) will destroy the superposition of the different given by Eq.(57).

eigenstates afi; (orn,), and thus lead to decoherence of the = e should mention that there is another kind of absorp-
eigenstate oh; +n; [note that a eigenstate of +n, is nor-  tion by the Kerr medium, the absorption rate of which is
mally a superposition of the different eigenstatesnef(or  proportional to the cavity photon numbey,. This kind of
ny)]. So we require that the information abomt (or ny)  absorption, usually termed two-photon absorption, cannot be
carried by the leaked |Ight should be completely masked bﬂescribed by Eq(54) To incorporate the two_photon ab-
the vacuum noise. This is equivalent to require that the desorption, we add an imaginary part to the cross phase modu-
coherence of the eigenstate 0f+n, caused by the light |ation coefficienty, i.e., x is replaced byy+ix;, wherey;
leakage is negligible. To consider the first effect of the |ightdescribes the tWO_photon absorption rate. The tWO_photon
leakage, we calculate the measured observébleand find  absorption should be negligible compared with the cross

5 (a=12). (60)

it has the form Kerr interaction, which requireg; < x/(n,) (a=1,2).
N 442|gx 1 o D. Self-phase-modulation effects
7~ —=(Ngtny)+ —=X5
\/; VT Normally, a Kerr medium also induces self-phase-
s 5 modulation effects. However, by a suitable choice of the
i 4\/§|9|X &_ ﬂ (56) resonance condition for the Kerr medium, the self-phase-
\/; Y 2 modulation effects can be made much smaller than the cross-

phase modulatiof26], then the self-phase-modulation inter-

action is basically negligible. Here, for completeness, we still
calculate the influence of self-phase modulations. In fact,
self-phase modulation of the ring cavity modes have no in-

The last term of Eq(56) should be negligible compared with
the signal, which requires

2 fluence on the QND measurement. This modulation adds a
|’3§_B§|<7__ (57)  term similar to—ixsblbib; (i=1,2) in the Langevin equa-
(nz) tion (38), where s denotes the self-phase modulation coef-

ficient for the ring cavity modes. We know that the ring
To consider the decoherence effect of the light leakage, weavity modesh; andb, are in steady states under adiabatic
define a similar measuring operam@ for the leaked light elimination, and to a good approximatiduibi can be re-
(55) placed by(b'b;)=4|g|?. So the term—ixsb/b;b; simply
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induces a constant phase shift for the output figjgl and it TABLE I. List of requirements for the QND measurement.
can be easily compensated by choosing the initial phase &f
the driving fieldg. y 1

Measuring time

Self-phase modulation of the cavity modas and a,

T<
. . . . 649|%x? K(N;)
plays a more subtle role. First, it obviously has no influence

on the QND measurement of; +n,, but it influences the Phase instability 5<4_X or 5<10249|2X4
resulting state after the QND measurement. In the purifica- Y ! %
tion scheme for two entangled paidescribed in Sec. Il Cavity imbal XY 1

if there is no self-phase modulation, the state after the QND avity imbalance ‘ le; - ‘<@

measurement is given by Eq@l3); and if the self-phase

modulation of the modea, anda, is considered, the modu- Absorption(leakage rate Boa<—7, (@=12)
lation Hamiltoniani y.n? (i=1,2), in whichy. is the cor- (ne)
responding self-phase-modulation coefficient, will bring the Coubll ffici
resulting state into oupling efficiency p=>1- ()2
., 1 ) T SIP 0%
l1)A,n,8,8,= NS nzo exstin®+(-ny] Detector efficiency V>6449\2X2T
X[nj=nana,lni-mes, (61
wheret is the interaction time for the self phase modulation. bl,= b+ V1— e, (64)

It is important to note that the sta{61) is still a maximally ) . . .
entangled state with entanglement lpgt). In this sense, wheree; is the standard vacuum white noise. This imperfec-

self-phase modulation effects have no influence on the erfion is similar to the imperfect coupling considered in the
tanglement purification, though the resulting state isPrevious subsection. But now the leaked light depends only
changed. on the operator summ;+n,, and carries no information

about the single cavity photon numbey, so it does not

induce any decoherence. The only role played by the detec-

tor inefficiency is that it decreases the signal by a fagtor

so Eq.(45) on the restriction of the measuring time is now
If the coupling between the two ring cavities is not per-replaced by

fect, the relatiorb;,=b,; is not valid any more, and should

E. Imperfect coupling from the first ring cavity
to the second ring cavity

be replaced b
b2 = \bor + V1=l Yol
(62) Obviously, the detector inefficiency has no important influ-
do=udi+V1— by, ence on this QND measurement scheme.
whered; is the standard vacuum white noise, ahdrepre- VII. SUMMARY AND DISCUSSION

sents the leaked light in the imperfect coupling. The quantity ) ) o

w describes the coupling efficiency. This kind of imperfec- I summary, we have given a detailed description of the
tion is very similar to the light leakagéor absorption de-  Purification protocol which generates maximally entangled
scribed in Sec. VIC. The difference is that the imperfectstates in a finite dimensional Hilbert space from two-mode
coupling(62) does not cause any unbalance between the tw§dueezed states or from realistic Gaussian continuous en-
ring cavities. The only restriction is that the decoherencdangled states. The nonlocal Gaussian continuous entangled

effect induced by it should be negligible, which requires ~ States are generated by feeding two distant cavities with the
outputs of the NOPA. The purification operation is based on

a local QND measurement of the total photon number con-
) (63  tained in several cavities. We have extensively analyzed a
(ny)? cavity scheme to do this QND measurement, and have de-
duced its working condition. Furthermore, we have discussed
Equation(63) suggests that loss of light from the first to the many imperfections existing in a real experiment, and de-
second ring cavity should be very small. duced quantitative requirements for the relevant experimen-
tal parameters. In Table I, we summarize the working con-
ditions for the collective QND measurement, including the
requirements for many types of imperfections.
The detector efficiency of course cannot attain 1. For a To realize the QND measurement, basically we need high
detector with efficiency, the real measured fieltf, has the  finesse optical cavities and strong cross Kerr interaction me-
following relation with the output of the second ring cavity: dia. A good example for the strong cross Kerr interaction is

u>1—

F. Detector inefficiency
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notes the Rabi frequency of the coupling field, ang,, is
the total atom number contained in the cavity. The two-
photon absorption ratg; is connected withy by the relation
Xi!/x= va2l Ay, Where 2y,, is the spontaneous emission
rate from level4) to level|2). To justify the adiabatic elimi-

—[3)

g13 nation, one requires thdg;gnNaem/Q2<1 [29,30. As an
—1 estimation, if one take$g;g?Naoem/Q2~0.2, gos/2m~10
| > MHz, y4/27~30 MHz, andA 4o~ 10y,,, the coefficienty

is abouty/27~0.2 MHz, and the two-photon absorption rate
xi~0.1y. This value of the cross phase modulation coeffi-

) ) . cient y is not large enough to realize a single-photon turn-
provided by the resonantly enhanced Kerr nonlinearitygsijle device[26], but it is enough for performing QND mea-
which has been predicted theoreticalB6,27] and demon-  syrements of the photon number. For example, if the mean
strated in recent experimeritd8]. In those works, the Kerr photon numbexn,)=(n,)= sink¥(r)~1.4 with the squeez-
medium is a low density cold trapped atomic gas, whosgéng parameter ~1.0, we choose the decay ratef2m~ 4
relevant energy level structure is represented by the foumnviHz and y/27~ 100 MHz (these values for decay rates are
state diagram shown in Fig. 6 witll) being the ground obtainable in current experimehtsind letg~ 50 (for a cav-
state. The ring cavity mode with frequencyw, is assumed ity with cross areaS~0.5x10 % cn?, g~50 corresponds

to be resonant with thél)—|3) transition, and the cavity to a coherent driving light with intensity about
modea; with frequencyw, (w, is quite different fromwy) is 10 mW cm 2). With the above parameters, all the require-
coupled to thg2)—|4) transition, but with a large detuning ments listed in Table | can be satisfied if we choose the
A4, A nonperturbative classical coupling field with fre- measuring timeT~8 ns. Note that the light speed can be
quencyw, resonant with thé2)—|3) transition creates an much reduced in the EIT mediuf28] , so it is possible to
electromagnetically induced transpareri&yT) for the cav- get a reduced cavity decay ratewith the same finesse mir-

ity fields a; and b;. In this configuration, the one-photon rors, and then more favorable parameters can be given for
absorption of the medium is eliminated due to quantum inthe QND measurement. Note also that a large Kerr nonlin-
terference, and the cross Kerr nonlinearity is only limited byearity based on EIT can also be obtained in other systems,
the two-photon absorptiofthe self Kerr nonlinearity is neg- such as trapping a single atom in a high finesse cd@ity.
ligible provided that|w,— wp|>A,,). After adiabatically So the example discussed here is not the unique choice.
eliminating all the atomic levels, the cross phase modulation
coefficient is given by26]

FIG. 6. Level structure of the atoms.
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5 Multi-party Entanglement of Gaussian States

5.1 Multi-party Entanglement

So far we have only discussed the entanglement properties of bipartite systems.
If more parties are considered, an even richer and still largely unexplored variety
of nonlocal properties and phenomena is observed. In this setting, the problems
of separability and distillability are even more formidable than for bipartite
systems. This is already evident for pure states, where much more inequivalent
types of entanglement are found than in the bipartite case [49]. E.g., even for the
simplest multi-party case of three qubits and for the weakest form of equivalence
(two states are called equivalent if they can be transformed into each other by
local operations with finite probability — all pure bipartite entangled states
are equivalent in this sense) there exist two inequivalent kinds of pure state
entanglement [50].

Multi-party states exhibit many new features the investigation and under-
standing of which are still at their beginning. One of the earliest observations
was the “refutation of local realism without inequalities” by means of the now
famous GHZ-state [45]

1
7

More recently mixed states of tripartite systems have been discovered that
have the curious property to be separable (according to Def. 2.1) whenever two
of the three parties A, B, and C are joined together — i.e., neither between
AB-C nor between A-BC nor between B-AC exist quantum correlations — but
nevertheless the state cannot be written as a mixture of tripartite product states
[46].

The potential applications are found, of course, in the field of multi-party
communication. As an example we mention secret sharing, a protocol based,
e.g., on a three-party GHZ-state that achieves secret key distribution between
A, B and C in such a way that only if B and C cooperate they can obtain the
secret key [51].

For mixed multi-party entangled states few results have been obtained [46,
47, 48], most notably a scheme to completely classify the separability properties
of multi-party systems [47]. This scheme will be explained and used in the
following subsection on mixed three-mode Gaussian entanglement.

The field of continuous variable multi-party entanglement is still essentially
unexplored. It was shown recently, that the preparation of pure GHZ-like multi-
party entangled states can be achieved with encouragingly simple means, in a
minimalistic set-up one pure squeezed state, N —1 vacuum states and N —1 beam
splitters suffice to create N-party-entangled states that, e.g., allow teleportation
between two arbitrary parties, opening the way to CV “quantum communication
networks” [69, 70].

In [71], reprinted in the following subsection, we investigate and completely
classify the separability properties of three-partite three-mode Gaussian states.
In particular we give a directly computable criterion for the classification of the-
ses state according to the scheme of [47]. These results represent a first example
where it is possible to obtain stronger results on entanglement properties for
infinite dimensional Gaussian states than on the corresponding qubit-system.

IGHZ) := — (|000) + [111)). (15)
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5.2 Separability Properties of Three-mode Gaussian
States

Géza Giedke, Barbara Kraus, Maciej Lewenstein, and J. Ignacio Cirac,

We derive a necessary and sufficient condition for separability of tripartite
three mode Gaussian states, that is easy to check for any such state. We give a
classification of the separability properties of those systems and show how to
determine for any state to which class it belongs. We show that there exist
genuinely tripartite bound entangled states and point out how to construct
and prepare such states.

Phys. Rev. A 64, 052303 (2001); E-print: quant-ph/0103137.
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We derive a necessary and sufficient condition for the separability of tripartite three-mode Gaussian states
that is easy to check for any such state. We give a classification of the separability properties of those systems
and show how to determine for any state to which class it belongs. We show that there exist genuinely tripartite
bound entangled states and point out how to construct and prepare such states.
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[. INTRODUCTION (CV’s), in particular since the experimental realization of CV
quantum teleportatiori13,14]. Quantum information with

Entanglement of composite quantum systems is central t&€V's in general is mainly concerned with the family of
both the peculiarities and promises of quantum informationGaussian states, since these comprise essentially all the ex-
Consequently, the study of entanglement of bi- and multiparperimentally realizable CV states. A practical advantage of
tite systems has been the focus of research in quantum infofV systems is the relative ease with which entangled states
mation theory. While pure state entanglement is fairly wellcan be generated in the laboratddy,15. First results on
understood, there are still many open questions related to tHg&e separability and distillability of Gaussian states were re-
general case of mixed states. The furthest progress has be@rted in[16—223. One finds striking similarities between the
made in the study of systems of two qubits: it has beersituations of two qubits and two one-mode CV systems in a
shown that a state of two qubits is separable if and only if itsGaussian state: PPT is necessary and sufficient for separabil-
partial transpose is positiv@PT property[1] and a closed ity [17,18, and all inseparable states are distillabl9].
expression for the entanglement of formation was derived>eneralizing the methods reviewed[ir] it was shown that
[2]. Moreover, it was showf3] that all entangled states of for more than two modes at either side PPT entangled states
two qubits can be distilled into maximally entangled pure€Xist[20]. In [21] a computable measure of entanglement for
states by local operations. This property of distillability is of bipartite Gaussian states was derived.
great practical importance, since only the distillable states The study of CV multipartite entanglement was initiated
are useful for certain applications such as long-distancé [23,24], where a scheme was suggested to create pure CV
quantum communication, quantum teleportation, or cryptogN-party entanglement using squeezed light &hd1l beam
raphy[4]. splitters. In fact, this discussion indicates that tripartite en-

In higher dimensions much less is known: the PPT proptanglement has already been cregtédugh not investigated
erty is no longer sufficient for separability as proved by theor detecteglin a CV quantum teleportation experimea#].
existence of PPT entangled stat®$TES’S in (o= ou sys- In this paper we provide a complete classification of tri-
tems [5]. These states were later shown to be bound enmode entanglementaccording to the schemg9]) and
tangled[6]: even if two parties(Alice and Bob share an obtain—in contrast to the finite-dimensional case—a simple,
arbitrarily large supply of such states, they cannot transfornglirectly computable criterion that allows us to determine to
(“distill” ) it into even a single pure entangled state by localwhich class a given state belongs. We show that none of
quantum operations and classical communication. Mearthese classes are empty and in particular provide examples of
Whi|e, a number of additional necessary or sufficient Condi.genuine tripartite bound entangled states, i.e., states of three
tions for inseparability have been found for finite- modesA, B, andC that are separable whenever two parties
dimensional bipartite systems, which use properties of th@re grouped together but cannot be written as a mixture of
range and kernel of the density matgand its partial trans-  tripartite product states. Finally we show how to extend these
pose p'A to establish separability[7] and references results to states of one mode eacthandB andn modes at
therein. C.

When going from two to more parties, current knowledge Before we can derive our results we need to introduce
is even more limited. Pure multipartite entanglement wa$some notation and collect a number of useful facts about our
first considered in8]. A classification ofN-partite mixed —Main object of study: Gaussian states.
states according to their separability properties has been
given [9]. But even for thre_e qubits there is curre_ntly no Il GAUSSIAN STATES
general way to decide to which of these classes a given state
belongs[10]. Results on bound entanglemdifl] and en- In quantum optics and in other scenarios described by
tanglement distillatio12] for multiparty systems have been continuous quantum variables, not all states on the infinite-
obtained. dimensional Hilbert space are equally accessible in current

Recently increasing attention was paid to infinite dimen-experiments. In fact, the set of Gaussian states comprises
sional systems, the so-called continuous quantum variablesssentially all genuinely CV states that can currently be pre-

1050-2947/2001/6%)/05230310)/$20.00 64 052303-1 ©2001 The American Physical Society
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pared in the laboratory. This and the mathematical simplicity v is the CM of a physical state, (2.59
of these states are the reasons why CV quantum information
has so far considered almost exclusively Gaussian states, as y+Jy 1J=0, (2.5b
will the present paper. This section summarizes results on
Gaussian states that we need in the following and introduces vy—iJ=0, (2.50
some notation.

We consider systems composed bf distinguishable y=S'(D&D)S, (2.50

infinite-dimensional subsystems, each with Hilbert space ) i

—L2(R). These could be implemented quantum optically by®" Ssymplectic[27] andD=1 diagonal[28].

different modes of the electromagnetic field: hence each of FPr00f (2.53 < (2.5, se€[26]; (2.5a < (2.50, see{20];
these subsystems will be referred to as a “mode.” To each?-28 < (2.50, see[29] (proposition 4.22 _

mode belong the two canonical observablés, Py, k A.CM .corresponds to a pure state if and only(iff) D
=1,... n, with commutation relatiofX, ,P,]=i. Defining =L i-€. iff dety=1 (e.g,,[26). It is easy to see from Eq.
Re=Xy, Ry:x=Py, these relations are summarized as(2-50 that for pure states Ine@2.50 becomes an equality

[Ry,R/]=—1Jy,, using the antisymmetricr< 2n matrix and dinfker(y—iJ)]=n. It is clear from Eq.(2.5d that for
every CMy there exists a pure Chf, such thaty,<y. This

0 —1 will allow us to restrict many proofs to pure CM’s only. Note
J—( ) (2.1  that for a pure 2X2n CM vy it holds that Try=2n.
A very important transformation for the study of entangle-
_ ) _ ) ) ment is partial transpositiorl]. Transposition is an example
which plays an important role in the following calculations of a positive but not completely positive map and therefore,

I 0

[25]. o ) ) may reveal entanglement when applied to part of an en-
For such systems, it is convenient to describe the gtate tangled system. On phase space, transposition corresponds to
by its characteristic function the transformation that changes the sign of all pheoordi-
nates €,p)—A(qg,p)=(q,—p) [18] and leaves the's un-
x(X)=Tr[pD(x)]. (22 changed. For andd this means ¢,d)— (A yA,Ad). Using
this, the nonpositive partial transpo@éPT) criterion for in-
Herex=(q,p), q,peR"is a real vector, and separability[1] translates very nicely to Gaussian states.

Consider a hipartite system consistingnofmodes on Alice’s
side andn modes on Bob'srix n system in the followiny
Let ¥ be the CM of a GaussiamXxn state and denote by
Ap=A®] the partial transposition in Alice’s system only.

The characteristic function contains all the information aboutThen we have the following criterion for inseparability.

D(x)=exp(—i; (QXk+ PPy |- 2.3

the state of the system: that is, one can consfstatowing Theorem 1(NPT criterion). Let y be the CM of a n

x- Gaussian states are exactly those for whicha Gaussian ~System, thery corresponds to an inseparable state if and only

function of the phase space coordinatd6], if ApyA, is not a physical CM, i.e., if and only if
X(X):e—XTyXIA—ide (2.4) AA’)’AA?U. (26)

_ . _ - _ We say thaty “is NPT" if Eq. (2.6) holds.
where y is a real, symmetric, strictly positive matrix, the  Proof. See[18] for N=1 and[20] for the general case.
correlation matrix(CM), andde R2" is a real vector, the Occasionally it is convenient to apply the orthogonal op-
displacement. Note that bothandd are directly measurable eration A, to the right-hand side of Ined2.6) and write
guantities; their elementg,, andd, are related to the expec- Ta=AnJA L.
tation values and variances of the operaffs A Gaussian For states of at least two modes at both sides condition
state is completely determined by and d. Note that the (5 g js siill sufficient for inseparability, but no longer neces-
displacement of dknown) state can always be adjusted 0 g4y a5 shown by Wermner and Wolf, who have considered a
d=0 by a sequence of unitaries applied to individual modessamily of 2x 2 entangled states with positive partial trans-
This implies thatd is irrelevant for the study of nonlocal pose[20]. In the same paper, the following was shown.
properties. Therefore we will occasionally say, e.g., that “a  Theorem Aseparability of Gaussian stajed state with

CM is separable” when the Gaussian state with this CM isqp yis separable iff there exist CM'g,, v such that
separable. Also, from now on in this paper “state” will al- '

ways mean “Gaussian statélinless stated otherwise Y= Ya® Vg (2.7
Not all real, symmetric, positive matricescorrespond to

the CM of a physical state. There are a number of equivalent It is observed in20] that if Ineq. (2.7) can be fulfilled,

ways to characterize physical CM’s, which will all be useful then the state with CM can be obtained by local operations

in the following. We collect them in the following lemma. and classical communication from the product state with CM
Lemma 1(correlation matrices For a real, symmetric y,= ya® yg, namely, by mixing the statesy(,d) with the

2nX2n matrix y>0 the following statements are equiva- d's distributed according to the Gaussian distributroaxp

lent: [—d"(y—v,) *d].

052303-2
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Note that while Theorem 2 gives a necessary and suffi- Class 1 Fully inseparable states are those which are not
cient condition for separability, it is not a practical criterion, separable for any grouping of the parties.
since to use it, we have to prove the existence or nonexist- Class 2 One-mode biseparable states are those which are
ence of CM'sy,,vg. Instead, a criterion would allow us to separable if two of the parties are grouped together, but in-
directly calculate fromy whether the corresponding state is separable with respect to the other groupings.
separable or not. Theorem 2 and its extension to the three- Class 3 Two-mode biseparable states are separable with
party situation are the starting point for the derivation ofrespect to two of the three bipartite splits but inseparable
such a criterion for the case of three-mode three-party statesith respect to the third.
in the following main section of this paper. Class 4 Three-mode biseparable states separable with re-
spect to all three bipartite splits but cannot be written as a
mixture of tripartite product states.

Class 5 The fully separable states can be written as a

When systems that are composed\of 2 parties are con- Mixture of tripartite product states.
sidered, there are many “types” of entanglement due to the Examples for class (the GHZ-like states dff24]), class 2
many ways in which the different subsystems may be en{two-mode squeezed vacuum in the first two and the vacuum
tangled with each other. We will use the scheme introducedn the third modg and class Svacuum state in all three
in [9] to classify three-mode tripartite Gaussian states. Th&hodes are readily given; we will provide examples for
important point is that from the extension of theorem 2 weclasses 3 and 4 in Sec. IV below.
can derive a simple criterion that allows us to determine How can we determine to which class a given state with
which class a given state belongs to. This is in contrast to th&M y belongs? States belonging to classes 1, 2, or 3 can be
situation for three qubits, where up until now no such crite-readily identified using the NPT criteriofTheorem 1. De-
rion is known. In particular, we show that none of thesenoting the partially transposed CM b¥,=A,yA,, X
classes are empty and we provide an example of a genuirieA,B,C, we have the following equivalences.
tripartite bound entangled state, i.e., a state of three magdes ~ Lemma 2(classification:
B, andC that is separable whenever two parties are grouped

Ill. TRIMODE ENTANGLEMENT

together but cannot be written as a mixture of tripartite prod- Ya#id, ye#id, yc#FiJ=class 1, (3.2

uct states and therefore cannot be prepared by local opera- e e .

tions and classical communication of three separate parties. (*)7a#1d.78#1J, yc=iJ=class 2, 33
(") ya#id,yg=id,yc.=iJ<class 3, (3.9

A. Classification

The scheme of9] considers all possible ways to group Ya=1d,78=1J,7c=1Jclass 4 or 5, (3.9

the N parties intom=N subsets, which are then themselves
considered each as a single party. Now, it has to be dete

m!ned whether the resulting-party state can be written as a The proof follows directly from the definitions of the dif-
mixture of m-party product states. The complete record of
ferent classes and theorem 1.

the m-party separability of all these states then characterizes What is still missing is an easy way to distinguish be-

the entan_glem_ent of thii-party state. . tween class 4 and class 5. Thus to complete the classification
For tripartite systems, we need to consider four : oo .
) L . ! we now provide a criterion to determine whether a GM
cases: namely, the three bipartite cases in WABhAC, or o .
satisfying Inegs.(3.5 is fully separable or three-mode

.BC are grouped together, respectively, and the triparti_te Casgiseparable' that is, we have to decide whether there exist
in which all A, B, andC are separate. We formulate a simple one-mode CM'Sya,7s,7c such that Eq.(3.1) holds, in

extension to theorem 2 to characterize mixtures of tripartite hich is full bl h b ,

product states. w_”|c casey is fu y”separa e. Int efnext su secr:ltlon we
Theorem 2 (three-party separability A Gaussian three- Z;V'M'ge:f]gae a;::nha Siit ncgcnesslzgrrli? ?ounr?d r:;otrheetsfar:eni'ge

party state with CMy can be written as a mixture of tripar- separable 9 YA y

tite product states iff there exist one-mode correlation matri- P '

CeSya, Y Yc Such that

where the asterisk reminds us to consider all permutations of
fhe indicesA, B, andC.

B. Criterion for full separability

Y= Ya® 89 vc=0. (3.1 This subsection contains the main result of the paper: a

separability criterion for PPT X1X1 Gaussian states, i.e.,

Such a state will be calleflilly separable states whose CM fulfills Ineg$3.5). We start from Theorem
Proof. The proof is in complete analogy with that of 2’ and obtain in several steps a simple, directly computable
Theorem 2.7 i[20] and is therefore omitted here. necessary and sufficient condition. The reader mainly inter-

A state for which there are a one-mode Cj] and a ested in this result may go directly to Theorem 3, from where
two-mode CM ygc such thaty— y,® ygc=0 is called an she will be guided to the necessary definitions and lemmas.

A-BC biseparable stateand similarly for the two other bi- Since the separability condition in Theorerhig formu-
partite groupings In total, we have the following five dif- lated in terms of the positivity of certain matrices the follow-
ferent entanglement classes. ing lemma will be very useful throughout the paper. We con-
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sider a self-adjointr{+ m) X (n+m) matrix M that we write
in block form as

M= (3.6

ct B

A C>,

where A, B, and C are nXn, mxXm, and nXm matrices,
respectively.

Lemma 3(positivity of self-adjoint matrices A self-
adjoint matrixM as in Eq.(3.6) with A=0,B=0 is positive
if and only if for all e>0

PHYSICAL REVIEW 44 052303

Observation 1Let vy satisfy Ineqs(3.5); then,

oald 0 0
y=| 0 ogid 0
0 0

: (3.10

(Tc|J

whereo, e {0,£1}, Vx=A,B,C.

Proof. Inequalities(3.5) say thaty=iJ=0 and y*iJ,
=0 Vx. By adding these positive matrices all combinations
of o can be obtained.

From this it follows

Observation 2For a PPT CMy as in Eq.(3.9),

A_CB+51LCTZO (3.7 B
kenB+iJ),kerB+iJ)CkerC, (3.11
or, equivalently, if and only if _
where J=J®(—J) is the partially transposed for two
kerBCkerC (3.89 modes.
Proof. Condition (3.11) on the kernels is an immediate
and consequence of Lemma 3 applied to the matriges)a®iJ
1 @ (£iJ), which are positive by observation 1. |
A—C§CT>0, (3.8b Then the matrices
where B~! is understood in the sense of a pseudoinverse NEA—CLCT, (3.123
(inversion on the range B—iJ
Proof. The only difficulty in the proof arises if k& + 0.
Therefore we consider the matrickls., whereB in Eq. (3.6) 1
is replaced byB,=B+ €l (e>0), which avoids this problem NEA—CﬁCT (3.12b
and which is positiveV >0 iff M=0. In a second simpli-
fying step we note thatM,=0 V >0 iff M.=(1 are well-defined and
®B. 1/2)'\/_'(1@ B, 1/2)2_0- _ ~ Observation 3t holds that both
Now direct calculation shows the claim that we can write
a generalf@g as fo[(B,Y*C"h+h,], whereh, is or- TrNr >0, (3.13

thogonal to the range ofB(_ Y°C"). Then (f@g)"M.(f
ag)=f(A-CB_Chf+(f+h)'cB 'C(f+h)+hTh ,

Proof. Condition(3.13 is true since, again by Lemma 3

which is clearly positive, if Eq(3.7) holds. With the choice g observation 1, botN and N are positive andN+iJ,

h, =0 andh=—f it is seen that Eq(3.7) is also necessary.
That the second condition is equivalent is seen as follow:

If Ineq. (3.7) holds, V >0, there cannot be vecto¢
e kerB and ¢ ¢ kerC since for such & we have

A-C

gT

! Cc'l¢<0
B+ el 3

for sufficiently smalle>0, and if Eq.(3.89 holds, then Eq.

(3.7) converges to E(3.8b). Conversely, if Eq(3.83 holds,
then CB*C" is well-defined and Ineq(3.8b implies it,
Ye>0. [ |

~

N=iJ=0. This implies thatN,N cannot be zero, which is
the only positive matrix with vanishing trace. Therefore

TrN,TrN are strictly positive.
The remainder of this section leads in several steps to the
separability criterion. First, we simplify the conditigB.1)
by reducing it to a condition which involves only one one-
mode CMy,.
Lemma 4 A PPT three-mode CM is fully separable if
and only if there exists a one-mode C{) such that both

N=ya, (3.14a

As mentioned above, in this section we exclusively con-

sider three-mode CM’y that satisfy Ineqs.3.5). We write y
in the form of Eq.(3.6) as

A C
’y:

o Bl (3.9

whereA is a 2X 2 matrix, wherea® is a 4x4 matrix. We
observe that Ineqg3.5 impose some conditions op that
will be useful later on:

N=y,, (3.14h
hold, whereN,N were defined in Eq$3.12. Without loss of
generality we requirey, to be a pure state CM, i.e., dgt
=1.

Proof. By Theorem 2 full separability ofy is equivalent

to the existence of one-mode CM4 , yg,yc=i1J such that

Y '}’A@ '}/B@ 'yC; O Let Vx Stand fOI’yA’B'C .
By Lemma 3 this is equivalent td vy, such that

052303-4
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X.=B-CT C=y® vyc, Ve>0,

Ae_ YA

whereA _=A+ el. But iff there exist suchy,, then(Lemma
3) the inequality also holds foe=0 and the kernels fulfill
Eqg. (3.8a. This is true iff the matrixX=X{, is a CM belong-
ing to a separable state, i.¢Theorem 1, iff X'=iJ,iJ.
Using B=iJ,iJ [which holds sincey fulfills Inegs. (3.5 ] we
obtain thaty is separable iff there existg,=iJ such that

A=va
CT

C

1,2
Bli 169

)20, k= (3.15

where B;=B—iJ and B,=B—iJ. Since condition(3.89
holds, this islLemma 3 equivalent to Ineqq3.14). That we
can always choose degt=1 follows directly from Eq.(2.5d
and the remark after Lemma 1. |
While we can always find g, fulfiling Ineq. (3.14b,
sincey belongs to a PPT statand there exists a two-mode
CM ygc=iJ such thaty,® ygc is smaller tharny), it may
well happen that Ineq(3.14a cannot be satisfied at all, or
that it is impossible to have both Ineg&.14 fulfilled for
one y, simultaneously. Note that due to Ineq3.5), N and

N as above are always positive. From Inet&14 we ob-
serve the following.

Observation 4 For the CM vy of a separable state it is
necessary to have

TrN, TrN=2, (3.163

detN,detN>0, (3.16h

wherey as in Eq.(3.9) andN,N as in Egs(3.12.
Proof. A self-adjoint 2<2 matrix is positive iff its trace

and determinant are positive. Since the Trace of the right-

hand side(RHS) of both Ineqs.(3.14) is =2 (remark after

PHYSICAL REVIEW A 64 052303

L=(a—c,2Reb). (3.19

Proof. As noted in Lemma 4 we need only look fotn
with dety,=1. We parametrize

X+y z

, X_y), (3.20

Ya=

with real parameters,y,z and x>=1+y?+z2 for purity.
This is a CM iff y4—iJ=0 (Lemma 2, that is, iff Try,
=2x=0 [where we use that positivity of thex22 matrix is
equivalent to the positivity of its trace and determinant and
det(ya—iJ)=0 by constructioh By the same argumenR
— ya=0 leads to the two condition8.18). |

The Ineqs(3.18 have a simple geometrical interpretation
that will be useful for the proof of the promised criterion:
Inequality(3.183 restricts(y,2 to a circular diskC’ of radius
J(TrR)%/4—1 around the origin, while Ineq(3.180 de-
scribes a(potentially degenerateellipse £ (see Fig. 2,
whose elements are calculated below, and the existence of a
joint solution to Ineqgs.(3.18 is therefore equivalent to a
nonempty intersection af’ andé&.

Applying this now to the matrice€3.12 we find that in
order to simultaneously satisfy both conditions in Lemma 4,

the intersection between the two ellips&§ and the smaller

of the two concentric circle€’,C’ (which we denote in the
following by C) must be nonempty. This condition leads to

three inequalities in the coefficients of the matridésN
which can be satisfied simultaneously if and only if the PPT
trimode state is separable. Thus we can reformulate the con-
dition for separabilitylLemma 4 as follows.

Lemma 6(reformulated separability conditipnA three-
mode state with CMy satisfying Ineqs(3.5) is fully sepa-
rable if and only if there exists a poiny(z) € R? fulfilling
the following inequalities:

min{TrN, TrN}=2\1+y?+ 7%,

(3.213

Lemma 1, the same is necessary for the LHS. Also, since

dety,=1, which implies thaty, has full rank, any matrix

=y, must also have full rank30] and thus a strictly positive

determinant. [ ]
For a self-adjoint positive 2 matrix

a b
b* ¢/’
we show the following.
Lemma 5 There exists a CMy,<R if and only if there
exist (y,z) e R? such that

trR=21+y?+27°

R= (3.17)

(3.183

detR+1+ LT()Z/)ZtrR\/1+y2+22, (3.180

where

detN+1+ LT< 32') =TrNV1+y2+7%,  (3.21b

detN+ 1+ET( 32/) =TrNV1+y2+Z2  (3.210

Proof. According to Lemma 4y belongs to a separable

state iff we can findy, smaller thanN and smaller thai.
According to Lemma 5 we can find suchya iff we can find

(y,2 such that Ineqs3.18 are satisfied for both andN. W
In the following paragraphs we have a closer look at the

sets€, €, andC. The goal of this discussion is to identify a
few special points—directly computable from—among
which a solution to Ineqs3.22) will be found iff the state
under consideration is separable. This will then lead to the
final practical form of the separability criterion which is
stated at the end of this section.

By squaring Ineq(3.21bh we obtain
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e

where u= (detN+1)/k;, m=(k,/k;)[(detN+1)?>—k;], and
the matrixK is [31]

T
K

(3.22

K=k{P +ksP 1,
with the orthogonal projectorB, ,P,. onL,L* and
ky=4[detN+(Imb)?],
Ko=(TrN)2.

Due to Ineqs(3.16), k; andk, are strictly positive,u,m are

well defined, anK is a positive matrix of rank 2. Let us now

distinguish the casea<0 andm=0. Form<0, Ineq.(3.22

can never be fulfilled sincK is a positive matrix. In the case

m=0, Ineq.(3.22 describes an ellips€ which is centered at
me=uL with major axisL and minor axisL* of lengths
m/k,=m/k,, respectively. From Ineq3.219 we obtain

the same equations for the tilded quantities derived fdém

PHYSICAL REVIEW 44 052303

As pointed out before, the condition that Ine¢&21) can
simultaneously be satisfied has the geometrical interpretation
that the circleC and the two ellipses,& have a nonempty
intersection, i.e.| =ENENC#D.

Thus it remains to prove that ifis nonempty then one of
the nine points in3.23 lies in|. But if | #J there are only
the following two possibilities: since all the sets considered
are convex and closed, either the bordet abincides with
that of one of the set§,&,€ (which means that one of these
sets, call itS, is contained in both othersr at least two of
the bordersdC,d€,d€ contribute todl, in which case the
points at which these two intersect belongitaand thus td.

In the former case, the center 8fis a solution and given
by one of the Eqs(Al); in the latter, one can find a solution
among the intersections of the borders of the §efC. That
these are given by thig is shown in Appendix A. [ |

If a CM v belongs to a separable state according to the
above theorem then the poigt, provides us with a pure

one-mode CMy, such thatN,N=1y,. By constructiony’
=B—C(A—1vy,) CT is a separable 22 CM and by re-
peating a similar procedure as above wjthwe can calcu-

_The final argument for the derivation of the separability|ate a pure product-state decomposition of the original state
criterion is as follows. By Lemma 6 the state is separable ifyith CM v.

and only if the three sets described by Ind@s219—(3.219
have a common intersection, i.e., fEENENC#T. The

IV. EXAMPLES OF BOUND ENTANGLED STATES

border ofl is contained in the union of the borders of the

ellipses and circledl CaEUJEUIC. Now we can distin- In this section we construct states belonging to Classes 3
guish two cases, both of which allow one to calculate a defi@dnd 4. Our construction makes use of ideas that were first
nite solution to the Inegs(3.2)) if the state is separable: applied in finite dimensional quantum systems to find PPT

Eitherdl has nonempty intersections with the borders of twoeNtangled state§>PTES [5] and then generalized {i82] to
of the sets?. Z. C. or dl coincides with the border of one of construct so-called edge states, i.e. states on the border of the

the three. In the latter case this whole set is containédlim

the former case, at least one of the points at which the bo
ders intersect must be inand thus a solution. If no solution

is found this way, the state is inseparable. This argument is
made more precise in the final theorem. Formulas for the

nine candidate solutions—the centens, m,,mg and the in-
tersections pointSé,ife,ié—are given in the Appendix.

Theorem 3(criterion for full separability. A three-mode
state corresponding to the Chsatisfying Ineq(3.5) is fully

separable if and only if Ineq3.160 holds and there exists a

pOint gsola
(3.23

L
gsole{mc1me-rr}év|e"é'|ce'|c'é}’

fulfilling the Ineqgs.(3.21).
Proof. We already saw(observation # that detN,detN

r-

convex set of states with positive partial transpose. Similarly,
one can define “edge CMs” as those that lie on the border of
the convex set of PPT CMghey are called “minimal PPT

.CMs" in [20]).

This section is divided into three subsections. In the first
one we define “edge CMs” and characterize them. In the
second and third subsections we present two different fami-
lies of CMs which contain edge CMs. We also show that
within those families we have CMs belonging to all classes.

A. Edge CM’s

In the following we will consider CM’sy corresponding
to PPT states, i.e., fulfilling
7—ijx> 0,

for all x=0A,B,C, 4.1

>0 are necessary for separability. If this holds, the quantitiesvhereJ,=J.

used in Egs(3.21) and(3.23 and in their derivation are all
well-defined.

Definition 1 (edge correlation matricesA CM vy is an
edge CM if it corresponds to a nonseparable state, fulfills Eq.

According to Lemma 6y is fully separable iff there exists (4.1), and v'=y—P does not fulfill Eq.(4.2) for all real

a point (y,z) " such that the Ineq$3.21) are fulfilled. There-
fore, if one of the point$3.23 satisfies Ineqs.3.21), then it
determines ay, fulfilling Inegs. (3.14) thus proving that the

operatorsP with 0# P=0.
Note that a state with an edge CM automatically belongs
to class 4(i.e., edge CM'’s correspond to three-mode bisepa-

state is separable. To complete the proof, we show that if theable states In order to fully characterize them, we will need

state is separable, then we find a solution to In€§21)
among the point$3.23.

the following definition. Let us consider the complex vector
spaceV C (8 of dimensiond spanned by the vectors belong-
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ing to the kernels of aly—iJ, (x=0A,B,C). We will de- 1 : 18638888866882888488888888¢Q
fine K(y) as a real vector space which is spanned by the real L 3§§§ §§§ §§§§ §§° 1333333338
parts and imaginary parts of all the vectors belonginyto : §§ §§§§§§§§ :: g %%%%%
ifi —[fK 4 ifkd i H Z8LLBLLELIELILELILLBELELLELLE
More specn‘lcall?(/, let Ui denote @ {fRdl'_Ifl}kzl a basis 0.75 x 088888888888888860888888888¢
of V, such thatf; andf| are real. We define i 00888888 8888888LLLLILRLE
Oy} ittt
0.5 §i:
K(9)=1 2 Nt i o pues [ CRS, (4.2 CRans 3
0254253222
that is, the real span of the vectdi§ and f¥. Note that this é::*%%%%%fyﬁ
definition does not depend on the chosen b#&si$As is . sttt It L I
pointed out in Appendix BK(y) coincides with the real 0 * * o
; 0.25 05 Q, 075 1
vector space spanned by all the vectors in the kernelg of 1
< .
+J,y "Jy.] We then h_ave_ the following theorem. FIG. 1. The entanglement classesqgf ...
Theorem 4(characterization of X1xX1 edge CM's. A 172
CM v fulfilling Eq. (4.1) is an edge CM if and only if there B. Example 1
exist Nno CM'sya, ¥g,Yc such thaty= y,® yg® yc andK , .
—RS. LA YT YATYBEYC In the first example we start out with an entangled state

Proof We will use the fac{31] that, given two positive between the two parties Alice and Bob and the vacuum state
matricesA, B0, there exists some>0 such thatA— B in Charlie and add two projectors to the corresponding CM.

=0 iff ran(B) Cran(A). According to Definition 1 we cannot More specifically, we consider CM's of the form,, a,=y
subtract any real positive matrix frogwithout violating the ~ +ai1P1+a;P,, where
conditions(4.1). This is equivalent to imposing that there be

no real vector in the intersection of the ranges of the matrices r=7as®lc

y—iJd,. This is again equivalent to saying that there is NOand

real vector orthogonal to all the ker(-iJ,), which in turn is
equivalent tok =R®, since that vector should be orthogonal
to all the real and imaginary parts of the vectors spanned by
those kernels. Now, ify corresponds to an entangled state, it
is clear thaty# y,® yg® yc. Conversely, if y# ya® yg

® yc was separable, then there must exist some real positive
P such thaty— P=y,® yg® 7y is separable, and therefore
fulfills Eqg. (4.1), which is not possible. B with a=1+c? andc can take any value different from

Note that this theorem generalizes easily to the cases Gfero. Here, P;= plpl and P,= plpl, where P;
more than three parties and more than one mode at each site(0,1,0,1,1,2J andp,=(1,0~1,0,0,1Y.

In the construction of the following two examples of tri- |y order to explain why the CMa, .2, achieves our pur-
partite bognd e_ntangled states we are going fo use this theBoses let us first consider the two- mode case in which the
rem. The idea is to take a CM, pf a pure entangled state correlation matrix isy,s. We denote now byp=p,+ip,
[Wh!qh, of course, dqes not fulfl!I_EqA.l)] and add real [wherep, = (0,1,0,1] andp,= (1,0, 1,0)'] the eigenvector
positive matrices until the conditiongt.1l) as well asK ) . . o~
=R® are fulfilled. If the resulting CM is not of the form corresponding to trle negative eigenvalueyag—iJa [25]

Ya® v8® yc, then Theorem 4 implies that it is an edge CM. Since (- iJa)* =—iJg, we have that the eigenvector corre-
In fact, we can add more real positive matrices keeping theponding to the negative eigenvaluegfz—iJg is p* =p;
state entanglefhnd fulfilling Eq.(4.2)]. In order to see how —ip,. By adding a sufficiently large multiple of the projec-
much we can add, we can use the criterion derived in théors onto those vectors, we obtain a CM whose patrtial trans-
previous section. poses are positive. Note that in this cdfiest two modep

This method of constructing CM’s belonging to class 4this would already make the state separable.
also indicates how the corresponding states may be prepared In the case of three modes with a correlation majrihe
experimentally. Adding a positive matriR to the CM y,  same argumentation applies, namely, that by adding some
corresponds to the following preparation process: start witlprojectors we can make the partial transposes with respect to
an ensemble of states with CM,, and displace them ran- A and B positive. However, we have to involv€ and
domly by d according to the Gaussian probability distribu- thereby smear out the initial entanglement betwAeand B
tion with covariance matrix given by the inverseRfThisis  among all three parties. This is exactly what is achieved by
a local operatior(that potentially needs to be supplementedadding the projector$; and P,. If we choose now, for
by classical communicatigron each individual mode. The instancec=0.3,a;=1, anda,~0.553 1095, then one can
state produced by this randomization has GM P [20]. show that the SGK(?’al,az) defined as in Eq(4.2) spansR®.

4.3

, (4.4

0
a
YaB— 0

O 0o O W
o 9 O O

—C a
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As mentioned at the end of the previous subsection, since the
resulting CM is not of the formy,® yg® vc it corresponds
to an edge CM.
In Fig. 1 we illustrate to which clasg, ,, belongs as a &)

function of the parameters; ,. In order to determine this,
we have used the criterion derived in the previous section. It
is worth noting thatyal'az never becomes separable. This FIG. 2. (a) The circle and the two ellipses do not have a joint
follows from Theorem 3 and the fact that bath=mM=0 for  intersection: therefore the state corresponding,tis a PPTES(b)
all values ofa, ,, as can be easily verified. This implies that The circle and the two ellipses have a joint intersection: therefore
the two ellipseqcf. Ineq.(3.22] are just two point§which  the state corresponding tp, is separable.
coincide with the centers given in EGAL1)]. Thus, the only

ossibility that the circle and the two ellipses intersect is tha
Fhe cent()a/rs of the ellipses are the sar?\e and lie inside th‘lé we add _novyaol tq N _mb6 Qi

: ) (7...) which immediately implies tha (v, )=R®. Since
circle. It is easy to show that for all values af anda, the 0 . 0
centers of the two ellipses are never the same. Thus the stateo” ¥A® 8@ Yc, We have that itis an edge CM.
corresponding to the CMy, o, is never separable and is a _ Letus now use Theorem 3 in order to determine First
PPTES for all values of; ,a, for which the partial trans- of all, we show, independently of the discussion agove, that
poses are positive. Ve belongs to class 4. In particular, we find thatm=0
[cf. Eq.(3.22], which implies that there exists a solution to
Inegs.(3.21) only if the centers of the two ellipses are the
same and lie within the circle. Here one can also show that

Here we present a family of states which belong either tahe two centers are not the same and so the state correspond-
class 1, 4, or 5. The states of this family are obtained from gng to the CMy,, is a PPTES. Let us determine the values
) . g : . o

pure GHZ-like stat¢24] by adding a multiple of the identity, ¢, tor which it is still the case that there exists no inter-

then all those vectors belong to

C. Example 2

€., section of the two ellipses and the circle given by Inegs.
Yo=7y+al, (4.5 (3.21. It is easy to show that itk>ag, then TIN<TrN,
which implies that the circle that has to be considered has
where radius r,=\/(TrN)?/4—1. One can also easily verify that
the two ellipses never intersect the border of the circle,
a c 0 ¢ O which simplifies the problem. The ellipses must always lie
0O b 0 —-c 0 -c inside the circlgsince if they were outside it would never be
. a 0 ¢ 0 possible to obtain a separable state everforl). Thus, the
y= (4.6 problem reduces to check at which point the ellipses intersect
0 -c 0 b 0 - ' each other. This occurs whew= a;~0.31355. Thus the
c 0 ¢c 0 a CM vy,, where ap<a<a; corresponds to a PPTES,
whereas fora=«;, the corresponding state is fully sepa-
0 ¢ 0 —c 0 b rable. In Fig. 2 we have plotted the circle and the two el-
with a>1 and gaze(z) \;\l/rli?l 'are almost circles in this case, far a<a;
1
b=7(5a=y9a"~8), (4.7 V. CONCLUSIONS

1 We have discussed nonlocal properties of Gaussian states
c=-(a—9a2-8). (4.8  of three tripartite modes. We have distinguished five classes
4 with different separability properties and given a simple nec-
. ) . ) . essary and sufficient criterion that allows us to determine
For the following discussion, we pica=1.2. It is clear  \yhich of these classes a given Gaussian state belongs to. The
that for«=0 the state is fully inseparable: i.e., it belongs 10 st three classes contain only NPT states and positivity of a
class 1, whereas for=1 the state will be fully separable giate under the three partial transpositions suffices to deter-
(class 5. We will show now that forap<a<a;, where  mine 1o which of those it belongs. The separability criterion,
a~0.297 56 andr;~0.313 55, the state is biseparable andyhjch allows us to distinguish PPT entangled states from
belongs therefore to class 4. _ separable states, is the main result of this paper. For the case
The CM vy, is symmetric with respect to permutations of three qubits such a criterion is still missing. Last, we have
between the parties, and therefore the negative eigenvaluggnstructed examples for all the classes and in particular for
of the matricesy—iJ,, x=A,B,C, are the same. We denote tripartite entangled states with positive partial transpose.
its absolute value byrg~0.297 56. It is easy to determine It is interesting to note that the results presented above
the real and imaginary parts of the corresponding eigenve@an be extended to cover the casenahodes at locatiorC
tors. One finds that all those vectors are linearly independenby using the separability criterion for multimode bipartite
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Gaussian statg®2]. Nothing changes in the argumentation APPENDIX A: POINTS OF INTERSECTION
to distinguish three-party biseparable from fully separable

stateg/the additional modes are taken care of automaticallxneqs (3.21) are found among the points of intersection of

in Egs.(3.12]. However, thg separability criterion (22] i,s _the curves described by tlegualities(3.21) or the centers of

now necessary to determine the_ properties under bipartitgq three sets. Here we give the formulas to directly calculate

splitting, since forAB-C we deal with a 2n state and PPT  {fese points fromy.

is then no longer sufficient for biseparabilg0]. The centers of circle and the ellipses have already been
It is worth pointing out that the separability criterion can shown to be

be checked experimentally. The Cilcan be measured, and

As shown in Theona 3 a state is separable iff solutions to

thus the criterion is entirely formulated in terms of quantities m.=(0,0,
that are measurable with current technology. detN+ 1
Gaussian CV states promise to be a fruitful testing ground Me=——L,
for quantum nonlocality: Pure entanglement is comparatively Ky
easy to create in quantum optical experiments, as described -
in [24]. Likewise, tripartite bound entangled states are ex- m:detN+ 1T_ (A1)
perimentally accessible: the states discussed in the examples € & '
Secs. IVB and IV C can be obtained by mixing differently !
displaced pure Gaussian states. whereN,N were defined in Eq(3.12, L in Eq. (3.19, and

The study of the entanglement of multiparty Gaussian, . after Eq.(3.22. The intersections of the borders of

states is stil in a very early stage. For example, no work hase &€ are calculated as follows. Consider first the two el-

to our knowledge, been done on the interesting cases of MOi® ces whose borders are defined by the equalitealh
i .B for the simple three- ' -~
parties and modes. But even for the simple three-mode cas hd(3.219. Dividing by TrN, respectively, by TN and sub-

there are important open questions. In particular nothing i ) 7 . ; I
known about the distillability of tripartite states. As in Ref. r:actlng the two equalities we find that a point on barand

[9] for qubits, it is easy to see that Gaussian states in classd§ Must lie on the straight ling defined by

3 and 4 cannot be distilled at all and are therefore bound (detN+1+LT&)/TrN=(detN+1+TT&)/TrN, (A2)

entangled. For this, we considdrcopies of a class 3 statg

and apply an arbitrary local quantum operati@p.. consist- whereé=(y,z). G can be parametrized withe R as gez

ing of a classically correlated sequence of operations of the-sfg, where

form P=P,®Pg®Pc. Sincep is in class 3, we can write ~

p®N as a mixture ofAB-C product state& ypipiy @ pdh [ detN+1 detN+1

and as a mixture oAC-B product state€ pjp4e @ py . 97| Trn N

After applying an operation such &%the resulting stat®

=P(p®N) will still be separable along these cuts, and nowhereL’=L/TrN—L/TrN [33] andf s is a vector orthogo-

sequence of operatior8 can change this. Thysis bound naltoL’.

entangled. InsertingGgz in Eq. (3.21b for d€ we obtain a quadratic
Whether all states in class 2 may be distilled to maximallypolynomial ins, whose rootssgé (if they are regl give the

entangled states between the two nonseparable parties is @ersection points. For the intersection &f with the el-

open question. If this were shown, it would follow that all lipses we proceed similarly. In summary, we get for the in-

states in class 1 could be distilled into arbitrary tripartitetersection points

entangled states.

)L’/lll-’llz, (A3)

i =gt S e (A4)
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Pea(S)=(LT(gget Sfeo) +detN+1)2 y+3,y 1., This fact automatically follows from the fol-
lowing.
—(TrN)%(1+|lgee+ sfed ). (A9a) ° Le%ma 7[characterization ofK(y)]. Let f=fg+if,,
where fr and f, are real. Thenfeker(y—iJy) iff f
Ps)=r¢—lgctstd? x=cece (A9b) = =13 f, and bothfg and f, belong to the kernel ofy
—I—jxy*ljx.
Thus all nine candidates are given in termshNgN which Prgof. Taking the real and iNmaginary parts ofEhe equation
can be directly obtained frony. (y—id)f=0 we find yfr+J,f;=0 and yf,—J,fr=0.

Sincey must be invertible, we obtain from the second equa-
tion thatf,=y~%J,fx. Using now the first equation we find
that (y+J,y 1J,)fr=0. Analogously, ¢+J,y 13, )f,=0.

Here we show thaK(y) as defined in Eg4.2) coincides  The same argumentation holds for the other direction of the
with the (rea) span of the vectors belonging to the kernels ofproof.
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A States and Transformations

This appendix collects a number of definitions and lemmas on the Hilbert spaces,
algebras, and transformations that are the main object of study of the present
thesis.

We consider systems composed of n distinguishable infinite dimensional
subsystems, each with Hilbert space Hy = I?(IR). These subsystems are re-
ferred to as modes 3 and the Hilbert space of the whole n-mode system is
H = [*(R™). To each mode belong the two (dimensionless) canonical observ-
ables Xy, Pr,k = 1,...,n (also called quadrature operators in the quantum
optical literature) with commutation relation

[Xk, Py] = 1.

Defining Ry = Xg, R+ = Px these commutation relations can be conveniently
summarized as

[Ri, Ri] = =iy, k,1=1,....,2n (16)
using the antisymmetric 2n x 2n matrix
0, -1,
(o) -

which is sometimes called the complex structure. Here O,,1, are the n-
dimensional zero and identity matrix, respectively. We omit the index n when-
ever the dimension is clear from the context in order to make the expressions
more readable. From the quadratures we define creation and annihilation oper-
ators a,t, ay, for the kth mode in the usual way:

Xi + 1P, Xy — 1Py
ay = ——— —_—
e V2

implying [ak,ai] = 1. The unbounded operators Ri,k = 1,...2n generate
all the observables of the n-mode quantum system. But it is often useful to
consider a bounded (unitary) family of operators, the Weyl operators W(x)
instead, which are defined for all x € H := R?" in terms of the R;, by

, a,t = (18)

W(z) = exp[—izT R]. (19)

The Weyl operators satisfy the exponentiated form of the canonical commuta-
tion relation, see, e.g., [79]:

W@W(y) = e 7 EDW(z +y) = e T @DW ()W (), (20)

also called the Weyl relations. Here o(x,y) := T Jy. This is a symplectic form
(cf. [79]) and (H, o) forms a symplectic space, the classical phase space.

The Weyl operators generate the C*-algebra of canonical commutation
relations (CCR- or Weyl-algebra), the algebra of (bounded) observables on
H = I?(R"). This and the commutation relation Eq. (20) imply that a state p
on H is completely determined by the expectation values of all the W(x), i.e.
by its characteristic function

3This name is used since a possible implementation of I?(IR™) are n modes of the elec-
tromagnetic field or normal modes of a chain of ions in a harmonic trap. Another promising
implementation is the total spin of an ensemble of many polarized atoms[89]
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Definition A.1 (Characteristic Function) The characteristic function x of
the state p on F4(H) is given by the expectation values of the Weyl operators

x(x) = tr[pW(z)]. (21)
In fact, the density matriz of p can be written in terms of x and the Weyl
operators as

p=Cn [ MW (22)

The expectation values of all polynomials in Ry can be obtained from x by
differentiation*. E.g., we have for the mean values of the quadratures (Ry)

L0
tr(Brp) 1= (=1) 5 Xp (ten) o (23)
and in general for the mth order correlations (Ry, ... Ry, )
8m

tr (I Ry, p) = (—i)™ tr W(tieg,) ... W(tmer,,)p) lt,=.=t,,=0-

(24)
Using the Weyl relations Eq. (20) these can be expressed via the characteristic
function as

Oty ...0t,

m i

(_i)m(r“)tl.a.w CXP[_§ thtla(ekjvekz)]X(Ztlek’l) |t1="'=tm=0'
j<li l

Of particular importance in the following are the second order correlations
(m = 2), which form the 2n x 2n correlation matriz (or covariance matrix)
(CM) ~. In general, a (analytical) state p on H is determined by all the mth
order correlations. But for the important class of Gaussian states, the first and
second moments are sufficient to characterize the state completely. Moreover,
Gaussian states are by far the most easily prepared states of the physical systems
currently considered for CV quantum information and, in fact, comprise nearly
all the genuine CV states that can be generated in the lab with present tech-
nology. This is directly related to the fact that the set of quantum operations
on H that can be performed in practice is essentially limited to linear transfor-
mations, i.e. transformations generated by Hamiltonians that are quadratic in
the canonical operators X, Px. Because of this fortunate coincidence of mathe-
matical simplicity and experimental relevance these states and transformations
have been considered almost exclusively in CV quantum information and so does
this Thesis. This following subsection collects results and conventions related

to Gaussian states that are used in the main parts of the Thesis.

A.1 Gaussian States

Definition A.2 (Gaussian States) A state p is called Gaussian or quasifree,
if its characteristic function is Gaussian, i.e. it is of the form

1
x(z) = exp —ZxT'y:c +idx (25)

4More precisely, these expectation values exist and are given by Eq. (24) for all analytical
states on CCR(H), i.e., states for which R > ¢t — ¢(W(tz)) is analytical for all x € H; cf.
[79].
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for a real, strictly positive, symmetric 2n x 2n matriz v and d € R?".

The displacement d is given by Eq. (23) and the correlation matriz v by
Eq. (24). Because of its importance in the remainder of this section we give
the relation of the displacement and the correlation matrix to the moments of
the Ry’s explicitely. From Egs. (24) and (25) it follows for m = 1 that

di, = tr(pRy), (26a)
and for m = 2 that
Vit = 2tr [p(Rk — dk)(Rl — dl)} + iJy- (26b)

Not every matrix «y is the correlation matrix of a physical state. Rather, it
has to satisfy one of the following equivalent conditions.

Lemma A.1 (Correlation Matrix of a Physical State) The following
conditions are equivalent:

(i) v defines a state via Eq. (25)
(i) v satisfies

v +1iJ > 0. (27a)
(iii) v satisfies the inequality
JyJT >~ (27b)
(i) v is of the form
v=S8(D& D)ST, (27¢)

where D > 1 has diagonal form and S satisfies STST = J, cf. Subsec. A.2.

PROOF:  (i)&(ii) see [79, Lemma 3.2]; (ii)<(iii) follows from the Lemmas

A.11 and A.12, p. 93; (iv)=-(ii) is seen by direct calculation, using that

S=LJ(S™H)T = J and d > iJ; (ii)=(iv) follows from v = 47 > 0 and from

symplectic diagonalization (Lemma A.13, p. 93). n
Pure Gaussian states are easily characterized:

Lemma A.2 (Pure Gaussian States) A Gausian state with CM ~v > iJ is
pure iff one of the following (equivalent) conditions hold:

(i) dety = 1.

(ii) v = STS for some s € Sp(n).

(iii) yJyJT = 1.

PROOF: see, e.g., [78, 77].
Examples for the most important families of one-mode Gaussian states in-
clude (see, e.g., [81] for details):

e the thermal states pr of temperature T > 0
yr=(1—-e")"11, d=0, (28)

_ _hw
where k = TeT
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o the coherent states |a) with amplitude oo € C
=1, d=v2(Rea,Ima)?, (29)
|0) (0] = pr—o is called the vacuum state.

e and the squeezed states with squeezing r € R

e~ 0
v=ro7 () 2 ) RO, dew (30)
0 e°r

cosf) —sinf

sinf  cosf
For d = 0 these states are called squeezed vacuum states. In such a state
the variance of the operator Xy := cos X + sin 6P is reduced (for r > 0)
by a factor of e”, while the variance of canonically conjugate operator
Py := cos P —sin X is increased (stretched) by the same factor such that
the product of the two is consistent with the minimal value permitted by
the uncertainty relation ((AXg)?) ((APy)?) > 1.

where R(0) = ) is a rotation by 6 in the phase plane.

e The “computational basis states” |z),x € R used in [17, 18] for quan-
tum computation with continuous variables are defined as the (improper)
eigenstates of X

X |z) =x|z) (31)

They can be approximated by displaced, strongly squeezed vacua with
r — oo and d = (x,0)T.

Given two states p, p’ their overlap tr(pp’) is a useful quantity to quantify
the “closeness” of two states. If p is pure then tr(pp’) is also called the fidelity
of p/ with respect to p and denoted by F,(p’). The fidelity takes values in
[0,1] and gives the probability with which p’ “will behave as if it were p” in an
experiment. For Gaussian states the overlap can be directly calculated from the
CM and displacement of p, p'.

Lemma A.3 (Overlap of two Gaussian states) The overlap tr(pp’) be-
tween two n mode Gaussian states with correlation matrices v,~' and displace-
ments d,d’, resp., is given by

[det (W;”')] b [l = V(4 (A= ).

PROOF: [76] L]

Clearly, the Gaussian state p’ that maximizes the overlap with the Gaussian
state with p (with CM v and displacement d) has always the same displacement
d =d as p.

The above formula directly provides a simple expression for the purity of
Gaussian states. The purity of p is defined as P(p) = tr(p?) and P(p) = 1 iff p
is pure. For a Gaussian state with CM v we get

P(7) = (dety) /2 (32)
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Lemma A.4 (Decomposition of the Correlation Matrix) Fvery matriz
v is of the form

D 0

_ QT

y==5 <0 D>S’ (33)
where S is a symplectic matriz and D > 1 is a positive diagonal matriz.

PrOOF: Follows from v =47 > 0 and Lemma A.13. [

As becomes clear in the following subsection, the physical interpretation of this
is that every quasifree state can be obtained from a thermal state (described
by the diagonal correlation matrix 1o ® D) by performing a unitary quasifree
transformation Ug. More on the preparation of Gaussian states can be found
on p. 85.

Other “representations” of p

Besides the characteristic function there are additional phase space distribu-
tions that uniquely describe a state on H and will be used in the following.
Particularly useful is the Wigner function W. One way to define it is via the
characteristic function x: The Wigner function is the symplectic Fourier trans-
form of the characteristic function, namely

W(z) := <217T>2n /R N @)y (v)dv. (34)

Using Lemma A.10 it follows that the Wigner function of a quasifree state is a
Gaussian:

W(r) =+ — L exp[~(z - dw) My (z — dw)], (35)

M|

where the Wigner correlation matrix My, and the Wigner displacement dy are
related to v, d by

My = J’}/il‘]Ta
dw = Jdy,

(36)

thus with Ineq. (27b) we see that a symmetric matrix M is a proper Wigner
correlation matrix if and only if 1 > My > 0 and

(M)~ ' > JMyJT. (37)
For some calculations the normally ordered characteristic function
xn(z) =t [ W(x): p] = X(:E)e*%”"’””2 (38)

is useful. Here : W(x) : denotes the normally ordered Weyl operator

Lz tix Lxq —iw
_prmatize b2 24

W(z):=e vz “e T v@ Y
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and the last equality in Eq. (38) follows from the Baker-Campbell-Hausdorff
formula

eA—‘rB _ eAeBe [14,3]/27 (39)

which holds whenever [A, B] commutes with both A and B. For Gaussian states
we clearly have

1
x~(z) = exp —ZmTMNx +idLal, (40)
where
My = ~-1, (41)
dy = d.

It is also useful to relate the position representation p(x,y) = (x|ply) of a
Gaussian state p to its Wigner function. Writing = (¢, p) we have according
to the definition of the Wigner function (e.g. [80])

1 " —i2pu
W = (1) [ duntatug-we

q,p € R™ it follows that

1 n T+ P\ jz=v
pla,y) = g [ dpW (=2 D), (42)
Rn

and for a Gaussian state with Wigner correlation matrix
M, M,
= (i ) (43)

the position representation takes the form

e = o[ ) ()

where
M, + 5~ M, — 1\%
Mpos = M _ 1 M, i
z = L, M
— MfEPM MT MIPJ\/l[ MT +i M"’”PM%D"' M MT _Mfwjé
My M, Moyt MT, My — ML Mol

Conversely, a Gaussian state with

_( My M
Mpos = ( M My )

has the Wigner correlation matrix My, as in Eq. (43), with

M, = 2[Re(M; — My)]™"
M., = TIm(M; — M2) Re(M; — Mlz)]_l
M, = Re(My)—M;"+ My,M; "M}

+A}M

1"

M,

T

T
Mg,
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Another useful representation is that of the density matrix of a Gaussian
state as the exponential of a quadratic expression in the quadrature operators.

1
p X eXp [—QRTFR] (44)

(for zero-mean states). The matrix I" is simply related to the correlation matrix
7 of p. Using Lemma A.1 (iv), ¥ = ST DT and the fact [80] that the thermal
state of temperature T has the density matrix

pr = (1—e ")exp [—/@'aTa} = 2sinh(x/2) exp [—;/@(XQ + PQ)] , (45)

where Kk = &—‘“T and kp Boltzmann’s constant has CM 7 = 71, where 7 =

(1 — e ")~! we can relate
I =kl =y =(1—e ") 1. (46)

From this it follows that the Gaussian state with CM v = ST(7 @ T)S, where
7T is the diagonal matrix with entries 7, has a “quadrature operator represen-
tation” as in Eq. (44) with

r=s‘'kek) (s, (47)

where K is diagonal with entries k;. This can be proved by observing that
the state with CM ' = S7+S is obtained from that with CM ~ through a
unitary operation p — USpU; and, as seen below (cf. Eq. (51)), UsRyUL =
>, (87 Ry From Eq. (44) it is straightforward to rewrite p using creation
and annihilation operators (“a — af-representation”):

1
p X exp {—4(a1,a1,a2 ey Oy, aL)TMa(al, aJ{, as... ,an,a}:)] , (48)

. T .
1 1 1 31
w1 ) e(E ).
E.g., the thermal state pr has a simple form in this representation (k =
hw/kpT):

with

pr = (1 _ e—n>e—ma7a.

A.2 Linear Transformations

This Subsection collects some definitions and lemmas on an important subset
of transformations on B(H), closely related to Gaussian states.

A.2.1 Unitary Linear Transformations

Unitary operations on H that transform the canonical operators Ry (cf. p. 76)
into a linear combinations of all the R;’s

URU' = MR



A STATES AND TRANSFORMATIONS 83

are in quantum optics often called linear transformations (LTs). They are of
particular importance, since most unitary time-evolutions that can currently be
realized experimentally belong to this class. Not all matrices M are compatible
with the unitarity of U, rather, in order to preserve the commutation relations
Eq. (16) it is necessary and sufficient for M to be symplectic.

Definition A.3 (Symplectic Map) A map S : R?>" — R2" is called sym-
plectic if for J as in Eq. (17) it holds that

SJST = . (50)
We then write S € Sp(n).

Note that S € Sp(n) preserves the symplectic form o (cf. Eq. (20)), i.e.
o(Sz,Sy) = o(x,y) for all x,y € R?". Also observe that Eq. (50) implies
that if S is symplectic then det S = 1 and both S~! and S are symplectic as
well.

This prepares the definition of linear transformations, which we introduce
by their action on the Weyl operators.

Definition A.4 (Linear Transformations (LT)) Unitary operations Ug on
B(H) defined by
UiW(x)Us = W(Sx) (51)

where S € Sp(n) are called linear transformations. (Sometimes also linear
Bogoliubov transformations or quasifree transformations.)

Clearly, Eq. (51) implies that Ul, = Ug-1 and with Eq. (19) that
ULRUs = STR, (52)

for R = (X1,Xa,...,X,, P1,...,P,)T. For a state p we have that

Xugput (@) = tr [UspUlW(@)| = x(Sw). (53)

Note that for a Gaussian state with CM ~ and displacement d it follows that
p= UspU; is still a Gaussian state with CM 5 = S$vS7T and d = S7d.

These transformations are particularly interesting, because there exists a
selfadjoint operator Hg that is quadratic in the field operators such that

Us = exp [iHg]

and quadratic Hamiltonians are relatively easy to implement experimentally,
e.g., in a quantum optical setting.

Restricting to Gaussian states and quasifree transformations reduces the
problem of studying states and operations on an infinite dimensional Hilbert
space to a more tractable problem in finite dimensions.

Before giving the Hamiltonian Hg that implements Ug, we note two useful
ways to decompose an arbitrary symplectic map S.
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Lemma A.5 (Decomposition of Symplectic Maps) (1) Every symplectic
S can be decomposed into a positive diagonal matriz M and two orthogonal and
symplectic maps O, O’ such that:

S=0 ( Moo ) 0. (54)

(2) In addition, there exists a unique polar decomposition of S as
S =08, (55)

for O orthogonal and symplectic and Sy = SI > 0 symplectic. We can write

S, =0 < A04 MO—1 ) 0T =0 [cosh(L ® L) + Isinh(L ® L)} oT,

with O symplectic and orthogonal, an antilinear involution I = O[1 & (—1)]07,
M >0 and diagonal, and cosh L = (M + M~1)/2.

(8) Symplectic and orthogonal maps always have the form

0:(5 X’f) (56)

where X — 1Y s unitary on C".

PROOF: (1) see, e.g., [74, 75, 76] and references therein. For (2), see [83].
(3) is seen as follows: being orthogonal and symplectic, O preserves both the
symplectic form o(z,y) = 27 Jy and the scalar product (z,y), = 27y on R?".
Embedding C" in R?" via C" 3 2z < Re(z)®Im(z) € R*" the complex structure
J represents “multiplication with ¢” and thus o can be seen as the imaginary
part of the scalar product on C", while (z,y), represents the real part. If both
are preserved, the corresponding linear transformation is unitary. By the above
embedding U on C™ corresponds to

_( ReU —ImU on
O_(ImU Rel > on R-"™. n

One may extend the class of linear transformations by including the dis-
placement of a state, i.e. the maps
D(d)
e

X(@) B x(@)etit, (57)

In fact, this transformation is achieved by the Weyl op-
erators: trOV(d)pW(d)TW(z)) = tr(pW(x))e!?D" = However, we define the
displacement operator D(d) slightly differently (in accordance with the use in
the quantum optical literature [81]) as follows

D(d) :== W(V2JTd). (58)

For a single mode this leads to the usual definition D(«) := exp [aa! — a* al.
We will usually include displacements when talking of quasifree transformations.

Before turning to two classes of non-unitary transformations we give a brief
review on how these unitary operations may be implemented quantum optically.
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A.2.2 Physical realization of quasifree transformations and state
generation

Here we list the Hamiltonians which generate the most frequently used linear
transformations and give the corresponding symplectic maps S. The trans-
formed quadrature operators e’ Re™* are then given by ST R and the CM
and displacement of the transformed state e ~*# pe'f by (ST~S, STd). We con-
sider only ideal realizations, i.e. assume that there is no absorption.

e Beam splitter: H = +0(XyP) — X1 P»)

cosf sinf
—sinf cosf
Sps(0) = cosf sinf

—sinf cosf

T = cosf and R = sin@ are called the transmittivity and reflectivity of
the beam splitter, respectively.

e Displacement: H = r X +roP,r = (r1,7r2) € R?
(X,P) - (X+T1,P+7"2),

(v,d) = (v,d+ Jr).

This can be implemented by using a beam splitter of tiny transmittivity
T — 0 and a strong coherent beam of amplitude o — oo such that Txa —
T1 + ’L"I‘Q.

e Phase shift: H = ¢(X? + P?)

R((b):( cosg  sing )

—sing cos¢

Since H is essentially the free Hamiltonian of the electromagnetic field
a delay of the mode considered (relative to the other modes), e.g., via a
longer path in an interferometer or via a phase plate implements the phase
shift.

e Squeezer: H = +r(XP + PX)

etr 0
sa=( % & ).

The first three of these Hamiltonians are sometimes called passive LTs to
distinguish them from the active LTs, which also make use of the squeezing
Hamiltonian, which makes use of a higher-order process, e.g., parametric down-
conversion.

Given n modes and the ability to apply all of these Hamiltonians to each
mode for an arbitrary amount of time it is possible to realize any unitary time-
evolution generated by a Hamiltonian quadratic in the Ry’s but no other. To
be able to approximate an arbitrary evolution, it is sufficient to add one Hamil-
tonian of higher order, e.g., H = (X2 4+ P?)? [17]. Concatenating only passive
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LTs, all unitaries Up, where O is orthogonal and symplectic, can be constructed
[75, 17].

Now it is also clear how to generate Gaussian states. There are two major
sources of light used in the lab: The laser can be used to produce coherent
states ). (See [86] for a detailed discussion of the state produced by a laser.)
Before the advent of the laser, the typical sources of light (such as light bulbs
or discharge lamps) produced thermal states.

In view of Lemma A.1, (iv), Lemma A.5 and Eq. (57) it is clear that all
Gaussian states can be produced from these two classes of states by applying
LTs. O and O’ of Eq. (54) can be realized by beam splitters and phase shifters,
while the diagonal matrix M @® M~ represents the effect of n one-mode squeez-
ers. Thus this decomposition means that every symplectic transformation is a
concatenation of linear time-evolutions, a collection of one-mode squeezers, and
again linear evolution.

A.2.3 Quadrature Measurements

Consider an n-mode state p with Wigner function W. After measuring the z
quadrature in the last m modes (result z € R™), the state of the remaining
modes has the Wigner function

W' = @) [ amew((7), (2)) (59)

R™ z u

For a quasifree state with displacement d = (d’,d"”) and the 2n x 2n CM

= (5 (60)

where the 2(n —m) x 2(n —m) block

A, A

(%)

Ay Ap
refers to the first n» — m modes (that are not measured), while the 2m x 2m
block B refers to the m measured modes (C' € My, x2(n—m)) this implies
W) = o =T [A= () &5 (Bap By)| 2/ =) =2[(52,) = () &5 Cve ] (=) (o' =)
Thus the state remains quasifree.

Quadrature measurements can be approximated by homodyne detection
[81]. To measure the quadrature operator Xy = cos X + sin 0P one proceeds
as follows: a strong coherent light field of amplitude a(cosf + isinf),a >> 1
(the so-called local oscillator) is coupled at a 50:50 beam splitter to the signal
field that is to be measured. At both output ports of the beam splitter then
intensity is measured with photon counters. Subtracting the two results gives
(in the limit of infinite a) a result in IR that can be taken to represent the result
of an Xy measurement in the following sense: the statistics of the experiment

are (in the limit of strong local oscillator and perfect photo detection) exactly
those to be expected from an Xy measurement [87].
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A.2.4 The Effect of Noise

The effect of noise can be described by coupling the system in question to a
bath of harmonic oscillators at temperature T with a coupling constant 7. It is
shown in [88] that in the Markov approximation the reduced state of the system
after a time ¢ has the normally ordered characteristic function

xn(z,t) = XN(6_77t:1';)e_<1\/>\\35||27

where (N) = (e — 1) s the particle number expectation value in the thermal
bath and § = hw/(kT) gives the temperature.

Thus the normally ordered correlation matrix of a Gaussian state being
(for a time t) subject to Markovian thermal noise (each mode coupled to its
own reservoir with coupling constant 7 for photon number expectation value
T = (Ny)) is given by

MN :NMNN+(1—N2)T, (61)
where
e Mmt], 0 0
0 e 2ty 0
-/vt = . ’
0 0 . 0
0 e efnntll_2
7'1]].2 0 . 0
0 7'2]].2 O
T =
0 0 0
0 Tnls

Thus “application of Markovian noise” enlarges the family of physical operations
that leave the set of Gaussian states invariant. From Egs. (61) and (41) we see
immediately the (characteristic function) CM ~ of the state after the interaction
with the heat bath is

F=NAN + (1 =N?)(1+17T). (62)

Every “noisy” time evolution of a quantum system with Hilbert space H can
be described by a unitary (noiseless) evolution on a larger Hilbert space H ® £
and subsequent “tracing out” the environment Hg. “Tracing out” describes
the fact thet the environmental degrees of freedom are considered to be not
accessible by experiment, i.e., that all relevant observables are of the form A ®
1g. The state preq := tre(p) is called the reduced state of the system. If the
composite system is in a Gaussian state, then the state of the reduced system is
Gaussian, too, and its CM can be simply obtained from that of the composite
system by discarding all rows and columns refering to modes belonging to £.
This directly follows from using only Weyl operators of the form W(z ¢ 0) =
W(z) ® 1¢. Consequently, for an n-mode Gaussian state with CM ~ as in
Eq. (60), the reduced state of the first n — m modes has the CM ~,..4 = A.

Another source of “noise” that maps Gaussian states to Gaussian states
is the mixing of states with different v and d with an appropriate probability
distribution P. The simplest example was pointed out in [62], where it was
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shown that given two CMs 7; > - then the Gaussian state with CM ~; can be
written as a mixture of Gaussian states with CM 5 and displacement z, where
x is distributed according to the Gaussian probability distribution

P(x) = exp [—:cTAz] ,

where A = (71 — 72)~! (in the sense of the pseudo-inverse). In particular it is
then clear from Cond. (iv) in Lemma A.1, p. 78 that every Gaussian state is a
mixture of pure Gaussian states (ST DS > STS for D > 1).

It is not known (to me) whether the method described above is the only way
in which Gaussian states may be mixed to obtain a Gaussian result. (On the
other hand, it is clear that there other ways of mixing (any sort of) states to
obtain a Gaussian state, e.g., the eigenstates of p, which are not Gaussian, but
(symplectically transformed) number states (as evident from Eq. (27¢), p. 78).

A.3 Bipartite Systems

Most ofthis Thesis deals wioth the properties of bipartite systems in Gaussian
states. This subsection contains sme useful properties of such states.

The tensor product structure of the Hilbert space of composite quantum
systems translates into a direct sum on the phase space of those systems. Thus
the CM ~ of a system composed of n modes at Alice’s location and m modes
at Bob’s (“n x m system”) is a 2n + 2m square matrix which we write in the

following block matrix form
A C
Y= < cT B ) . (63)

Here A (B) are 2n (2m) CMs themselves and describe the reduced state of the
system at A (B). The 2n x 2m matrix C describes the (quantum and classical)
correlations between A and B. Clearly, the displacement d of the composite
system is given by d, @ dp, the direct sum of the individual displacements.

A very important concept when discussing the properties of states of bi- or
multipartite systems is local equivalence:

Definition A.5 (Local Equivalence) Two states p,p’ on Hao®Hp are called
locally equivalent® if there exists unitaries Us,Ug on Ha, Hpg, resp., such that
pr=Us® UBPUL ® U;.

States that are locally equivalent in this sense are identical as far as their en-
tanglement properties are concerned. E.g., Gaussian states with identical CM
but different displacements are locally equivalent, since local displacement op-
erations (see p. 84) can convert them into each other. Therefore displacements
play no role in our study of entanglement properties of Gaussian states. Next
we study local equivalence of states with different CMs.

Using the fact that every positive definite matrix can be diagonalized by a
symplectic transformation (see [74]) we can choose S = S4 ® Sp such that

STASy = Da®Da,
SEBSp = Dp® Dp,

5In other contexts different notions of local equivalence are used.
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Dy, Dp > 1. Thus every CM v brought by local unitary operations to the form

1, ® Dy K
( KT 12 ®DB ) ) (64)

where Dygy > 1, is a n x n (m x m) diagonal matrix. Now consider the
case m = n. The only transformations that are in general still possible with-
out changing the diagonal blocks are symplectic and orthogonal maps on the
individual modes, i.e., phase shifts of the individual modes:

_( coS@rk SNk B -
Om’k a < _Sin¢)x,k COS¢$,]€ ) ? x_Avak— 1,...771,
This allows to diagonalize the 2 x 2 blocks on the diagonal of K, bringing K to

the form
cu 0 c3 - Cin

0 co9 co3 -+ Can
c31 c32 c33 0 c35
ca1 ci2 0 cyqa g5 o0 |

Cnl e 0 Cnn

thus leaving in general 2n + (4n? — 2n) = 4n? independent parameters.
In the case n = 1 these O, are all the orthogonal transformations on R?:

Lemma A.6 (Orthogonal transformations on R?) All orthogonal trans-
formations O on R? are of the form

0:5(3 i()l) (65)

where S is symplectic.

ProoOF: Let O = (cl Z ), then orthogonality, i.e., OTO = 1 = 00T
implies that a® + b?> = 1,b> = ¢?,a®> = d?, and ac + bd = 0. From these
equations follows (a) in case that a = 0 that d = 0,bc = &1 or (b) if a # 0 that
¢=—bd/a,d = ta,c = Fb, i.e,

_(a FbY\ _ [a b 1 0
o=(5 )= 7)) &) ©
and a? 4+ b? = 1. It is easy to see that OTJO = £(a® +b*)J = £J, ie. O is
symplectic for the upper sign. [
With this result, we can prove the existence of a very simple standard form for
all 1 x 1 Gaussian states. Since states in standard represent all entanglement

classes of 1 x 1 systems (up to local unitaries) we spend some time to study
their properties.

Lemma A.7 (Standard Form of Bipartite two-mode Gaussian States)

Every 1 x 1 Gaussian state with CM ~ can be transformed into the state with
CM

ng¢ 0 k; O
. 0 ng 0 Kk
Ystd = km 0 N 0 (67)

0 k‘p 0 Ny
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ke > |kp| by local quasifree transformations. The four parameters characterizing
this state can be directly calculated for any given matriz . Four independent
invariants under local quasifree transformations are, e.g.,

r1 = detA,
9 = detB, (68)
rz3 = detC,
gy = detr,

and then we have

Ng \/xlu
ny = /T2,
Kk,
a=ky+k, = \/ VZT1Ts + 73)? —;v4’
1‘1372
ke, = 2 a+ 43:3)
1
kp = 5(04—\/042—4@,).

ProoF: From Eq. (64) it follows that both A and B can be made proportional
to 1 by symplectic transformations S4, Sg. Then we can always find orthogonal
transformations O4, Op that effect the singular value decomposition of C' =
STCSp [85] without changing the diagonal blocks. It remains to be shown,
that O 4, Op can be chosen symplectic. Let K = OECN’OB be the singular value
decomposition of C. Then it is clear from Eq. (65) that

~. (10 1 0\  Ar.p5
e (10 ) (3 ) = onco,

is diagonal, too, and Oa,0p are symplectic and orthogonal. [

The parameters n,, ny are directly related to the temperature of the reduced
state at A resp. B: in standard form, the reduced states are both thermal states
(cf. p. 78) with temperatures kT4 g/hw = 1/In(1 4+ 1/ngs), i.e. the larger n
the higer the temperature. We define symmetric states as those wher the “local
temperatures” T4, Tp are the same:

Definition A.6 (Symmetric Bipartite Gaussian States) A Gaussian
state is called symmetric, if x1 = zs.
1t is called fully symmetric, if it is symmetric and in addition k, = —k,.

For states in standard form it is very easy to check whether the CM ~ remains
a physical CM under partial transposition.

Lemma A.8 (Conditions on the invariants of a CM) A matriz v in
standard form (67) is a CM of a physical state if and only if the parameters
Na, Ny, ke, kp fulfill

nany — k2 >1, (69a)

=
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dpdy + 1> n2 +nf + 2k k. (69b)
The latter inequality can be expressed in terms of the four invariants xj:
s+ 1—21 — 29 — 223 > 0. (70)
PROOF: The eigenvalues of JTvJ —~~1 for v as in Eq. (67) are
1 1
e12 = 5( et C)E 5\/(% + )% — 4(age, — b2)
1 1
esa = 5lap+cp) £ 5y/(ap+¢,)* — 4lape, — b))
where
dypp = mngnpy — ki,p,
ny
Gy, = Ng — 3
! de.p
Nq
Cg, = Ny — P
? dep
k
bep = kpa P
P D, + dz,p

They are all positive iff az p, + ¢z p > 0 and ag pcep — bi,p > 0, which implies
Egs. (69). m

From this we can obtain a very compact form of the separability criterion
for two-mode Gaussian states. If a CM is “partially transposed” this flips the
sign of x3 but leaves the invariants ;2 4 unchanged. Therefore we have

Lemma A.9 (Separability Criterion for 1 x 1 Gaussian states)
A bipartite two-mode Gaussian state whose CM is characterized by the four
invariants xi,Te, T3, T4 as in Egs. (68) is separable if and only if

T4 +1— 21— 22+223 > 0. (71)

Proor: Follows directly from Ineq. (70) and the fact that partial transposition
does change the sign of z3 while it leaves the other invariants unchanged [59].m

From Eq. (36) follows a simple relation between the standard form of the
Wigner correlation matrix and the characteristic correlation matrix:

Xy 7 Wi, b ) /T (722)
Wi No KoKy XNy N e ) /T3 | (72b)
From this it is evident that if a state that is symmetric (according to Def. A.6

then the standard form of its Wigner CM satisfies the same symmetry condition.

Moreover, we can now easily express the physicality and inseparability con-
ditions Inegs. (70) and (71) in terms of the parameters X, X2, X3, X defined
in analogy to Eqgs. (68) for the Wigner CM. It follows that W(w, n, x, k,) de-
scribes a physical state iff

X4+1 > X1+X2+2X3, (73&)
D,,D, < 1, (73b)
NN, > K2 K., (73c)
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and it is inseparable iff it is physical and in addition
Xye+1< X+ Xy —2X5. (74)

The two-mode CM in standard form is a central object in continuous variable
quantuminformation, therefore we note here some of its elementary properties.
The matrix v of Eq. (67) has the eigenvalues

1 1

5 (o + 1) = 5/ (na + )2 = 4(nany — k2), (752)
1 1 5 5

5 (na 10 + 5\/(na +np)? — d(ngny — k2). (75b)

TIts symplectic eigenvalues (cf. Lemma A.13, p. 93) are

1/2
[ni +ni + 2k k, + \/(ng —n2)?2 +4(n2 + n?)kykp + dngny (k2 + kf,)} /\/5,

(76)
where the discriminant can be simplified to

(n2 +ni + 2k, ky)? — 4[(nanp — k2) (nany — kg)]

Finally, the partially transposed CM [cf. Sec. 7, Eq. (7), p. 8] of 44 = AayAa
is of interest. If one of its symplectic eigenvalues is smaller than one, then ~ is
the CM of an inseparable state [59, 62, 23]. The symplectic eigenvalues of 74
are, of course, obtained by just replacing k, by —k,, i.e., they are

1/2
(12 413 — 2hky & /(02 + 1 — 2haky)? — Al(namy — k) (namy — K] /V3.

(77)
It is straight forward to see that the smaller of the two symplectic eigenvalues
of 44 is smaller than one iff condition (71) is fulfilled, as it must be.

A.4 Some useful Lemmas

Lemma A.10 (Gaussian Integrals) Consider a real strictly positive sym-
metric n X n matriz A and a vector b € C". Then it holds that

T oy 1 o T _rl
/nexp[ o' Az +i2b" x| d"x = detAeXp[ b Ab} (78)

ProoFr: Egq. (78) follows directly from the well-known one-dimensional formula
fR exp [famz + i2bx] dxr = \/gexp [7%] and the orthogonal transformation

into the eigenbasis of A. m
Now we collect some useful Lemmas on positive matrices, that originally
were proved in [71, 60].
We consider a selfadjoint (n+m) X (n+m) matrix M that we write in block

form as "
C
M = < ot B ) (79)

where A, B,C are n X n,m X m, and n X m matrices, respectively.
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Lemma A.11 (Positivity of selfadjoint matrices) A selfadjoint matriz M
as in (79) with A > 0, B > 0 is positive if and only if for all e > 0

1

A—CB+6]10T20, (80)
or, equivalently, if and only if
ker B C ker C (81a)
and 1
A— CECT >0, (81b)

where B™! is understood in the sense of a pseudo-inverse (inversion on the
range).

The last conditions can equivalently be formulated with the roles of A and B
exchanged: ker(A) C ker(CT) and B— CTA=*C >0

ProOF: The only difficulty in the proof arises if ker B # 0. Therefore we
consider the matrices M., where B in (79) is replaced by B = B + €l (e > 0),
which avoid this problem and which are positive Ve > 0 iff M > 0. In a second
simplifying step we note that M, > 0 Ve > 0 iff M! = (1 @ Be_l/Q)M(]l @
B > 0.

Now direct calculation shows the claim: we can write a general f & g as
fe (Be_l/QCT)h—&- h,J_i|7 where h, is orthogonal to the range of (B;l/2CT).

Then (f@g) M/(f@g) = f{(A=CB'C) f+(f+h)CBLCH(f+h)+hl ho,
which is clearly positive, if (80) holds. With the choice hy =0 and h = —f it
is seen that (80) is also necessary.

That the second condition is equivalent is seen as follows: If Ineq. (80) holds
Ve > 0 there cannot be vector £ € ker B and £ ¢ ker C since for such a £ we have

¢r (A o CT)g < 0 for sufficiently small ¢ > 0, and if (81a) holds then

B+el
(80) converges to (81b). Conversely, if (81a) holds, then C B~*CT is well-defined
and Ineq. (81b) implies it Ve > 0. n

Lemma A.12 For two real matrices A = AT € M, , and C = —CT ¢ My,
and

A C
M = ( oT A ) =MT € My 2n. (82)

we have that
M >0 if and only if A+ iC > 0.

Proo¥F: This follows from the observation that M is real, and that for any pair
of real vectors a,b € R™ we have (a —ib)T(A+iC)(a —ib) = (a®b)TM(a®b)m

Lemma A.13 (Symplectic Diagonalization) Given M,(R) > A = AT >
0 there exists S € Sp(2n) and a diagonal D € M,(R) diagonal and strictly
positive such that

SAST =D D, (83)

where D is diagonal. S and D are unique up to permutations of the eigenvalues
of D.
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Proor:  We prove the Lemma by construction. Eq. (83) implies that
S = V/D®DOVA-1, where OOT = 1. Then SJST = J is equivalent to
-1
OA~2JA-120T = ( _Do,l DO ) Note that A=Y/2JA~1/2 is antisym-
metric and there always exist D~! > 0 diagonal and O orthogonal such that
the above equation holds. Thus S = vD @ DOV A~! is the symplectic trans-
formation that diagonalizes A. (]
The eigenvalues of D are called the symplectic eigenvalues of A and can be
calculated from the eigenvalues of iJA [84].

B Equivalence of the Inseparability Conditions
of [23] and [59]
In [23] we consider observables A, ,,, B, , that obey the canonical commutation

relations [A,, A,] = i. Then it is shown that for any separable state p the
variances of the nonlocal observables

U, = % (aAz T a_le) , (84a)
Vg = % (a4, £a'B,), (84b)

satisfy
<(Aua)2>p + <(Ava)2>p >a? a2 (85)

for all @ > 0, while for any inseparable state there exists an a such that this
inequality is violated.

Simon [59] showed that the Peres-Horodecki criterion (2.2) can be adapted to
the continuous case and is a necessary and sufficient condition for inseparability
of Gaussian states of two modes. The transpose of a state p can, e.g., easily be
calculated using the Wigner function. The Wigner function of the transposed
state corresponds to that of the original state with the sign of the momentum
variables flipped:

W,r(g:p) = Wy(q, —p)- (86)

Simon the showed that the state p is separable iff the partially transposed
state satisfies the generalized uncertainty relations for operators X (d) = d' R =
leA + ngA + dQXB + d4PB, that is iff

(AX@)*) +((AX@)°) <lolda,dp)] +lo(dp. ). (87)

where da = (d1,d3),dp = (da,dy), AX = X — (X), and o(z,y) = 2T Jy is the
symplectic form.

For non-Gaussian states (85) and (87) are still necessary conditions for sep-
arability. That they are equivalent to each other is seen as follows:

That (85) is implied by (87) is evident for d = (a,0,4+a"1,0) and d’' =
(0,a,0 F a=1). The converse is seen in three steps: (i) if X(d), X (d') violate
(87) then o(da,d'y)o(dp,ds) < 0, since otherwise the RHS of (87) is equal to
lo(da,dy) + o(dp,ds)|, and the inequality with this RHS (Ineq. (8) in [59])
is satisfied for all states. This implies that d4,d, and dp,d; may not be
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proportional to each other. (ii) Without loss of generality we can multiply
d,d by A € R such that RHS of (87) = 1 and o(da,d’y) > 0. Then choose
a=/o(da,d). (iii) For this choice of a there exist symplectic transformations
S4,Sp such that Sa(a,0) = da,S4(0,a) = d4 and the same for B with ¢ —
a~l. Thus with A, = X(da) = X(54[1,0]7), 4, = X(d4) = X(S4[0,1]T) and
B, = X(dg) = X(SB[1,017), B, = X(d3) = X(Sg[0,1]T) the operators ug, vy
of Egs. (84) violate of (85).

C Proof: Symmetrization of npt two-mode
Gaussian States

This section contains a more readable extended version of the proof in [61],
reprinted in Subsec. 3.2 that all npt Gaussian states can be symmetrized in a
way that preserves the npt property.

Consider p in Wigner standard form with parameters (Ng, Np, Ky, Kp). If
the state is not symmetric, i.e., N, # N, it means that one side is (looking
at the reduced density matrix) “hotter” than the other. The idea of the sym-
metrization procedure is to bring it in contact with a (pure) vacuum state to
cool it down. Assume that N, > Np, i.e side B is “hotter” in the above sense.
Bob then uses an an ancillary mode in the vacuum state and couples it with his
member of the entangled pair via a beam splitter with transmission coefficient
cos 6, to be given below. Then he measures the P quadrature of the ancilla
mode. We consider the case that the measurement result is 0. Otherwise a dis-
placement operation conditional on the result brings the state into the desired
form of vanishing mean. Before the measurement the three-mode state has the
correlation matrix M

N, 0 cK, sK, 0 0
0 N, 0 0 cK, sK,,
cK, 0 ANy + 52 sc(Ny—1) 0 0
sK, 0 sc(Ny—1) 2+ 52N, 0 0 ’
0 ¢k, 0 0 ANy + 5% se(N, — 1)
0 sK, 0 0 se(Ny —1) 2+ 52N,
where ¢ = cos 6, s = sinf. Define the block matrices
N, 0 cK, 0
~ 0 N, 0 cK),
Map = cK, 0 Ny+s2 0 ’
0 cK, 0 Ny, + s*
~ c?+ 82Ny 0
Manc - ( 0 C2 + S2Nb )

and
~ cK, sK, 0 0
Map,ane = < 0 0 cK, sK, > :

Then according to section A.2.3 the Wigner function after measuring pgp,. = 0
(and tracing out the ancilla) is given by setting pun. = 0 and integrating out
ZTane. Thus the final correlation matrix given is:

~ ~ ~ 1 ~
Mout = Map — MAB,G/HC|panc:OManC|panc:0MAB7anc|panc:07
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where the notation M|, ,.—o means that all matrix entries relating to pa,. are
set to zero. Hence M,,; consists of the 2 x 2 block matrices

= (6 8 )ity (5 8)

(M ) . CZNb + 52 0 B 1 8202(Nb — 1)2 0
out)B = 0 AN, + 52 v(6) 0 0)’
_ K, 0 1 s2cK,(Ny—1) 0
atmonn = 5 ) =5 (7Y D),
where we used v(f) = s2N, + ¢®. The four parameters zy,...,r4 after the
operation are:
N, + D u
X = Naiv
1 1 T Nbu (88&)
Ny +u
Xy = Ny—, 88b
2 bl + Npyu ( )
1
X3 = K, K,——,
3 PT+ Nyu (88c)
D, + N,u
Xy = D2 88d
4 14+ Nyu (83d)

where u = tan? §. For the resulting state to be symmetric, (i.e. to have X; = X5)
we have to choose

_ M-
B Nb - DLN(L ’

Since u > 0 this is (in the case N, > N, under consideration) only possible,
if N, — DN, > 0. That this is the case for all physical states (i.e. for all
sets of parameters satisfying (37)) is seen like this: N, — D, N, > 0 & (N, —
DyNy)(Ng — DpNy) > 0 (since N, > Ny, D, < 1). Expanding the product this
gives Ny Ny(Dy Dy + 1) — No Ny (N2 4+ NZ) + NZK? + NP K2. Using (37) we see
that this is > N,Ny(N2 + N2 + 2K, K,,) — NoNp(N2 + N2) + N2K? + NgKg =
(N K, + NpyKp)? > 0. n
Thus all physical states can be symmetrized this way, it remains to be shown
that inseparability is never lost in this process. The inseparability criterion for
the output state can be expressed using the parameters Xy [cf. Ineq. (74)]:

u (89)

!
Tt =X4— X1 — Xo+2X5+1<0 (90)

Inserting the expressions (88) we get: (D, D,+1—N2—NZ2+2K,K,+1)/(Npyu+

1) % 0. Since the denominator is > 0 and the numerator represents the lhs of
Ineq. (74) which is negative iff the original state was inseparable. So the “local
temperatures” can always be equalized by local means without changing the
inseparability property of the state. Since it is shown in [61] that all symmet-
ric states can be distilled, this proves that all inseparable Gaussian states are
distillable. [

Using the result of [62] that npt is necessary and sufficient for inseparability
of 1 x n Gaussian states, we can extend our proof to cover all those states:
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D Entanglement Purification

D.1 A protocol for d-level systems [39]

Let a density matrix p and the pure state [¢)) = anm [n) @ |m) fulfill the
condition (13), p. 21, where the vectors |n) form an orthonormal basis. The
coefficients a,,,,, define a matrix A = (a,,,) satisfying AA" = trg(|¢) (¢]). Dis-
tillation of p is divided into three steps.

(i) The first is a filtering operation: The operator AAT ® 1 can be viewed as an
element of a positive-operator-valued measure (POVM), which defines a general-
ized measurement [82]. Conditional on the measurement outcome corresponding
to AAT ® 1 we obtain the state

p=A"@1pA®1/tr(pAAt ® 1), (91)

which still satisfies (13) but now with |1) = [®Y) := ﬁ chvzl |k, k), the sym-
metric maximally entangled state of two N-level systems. In this case, (13)
implies tr(p |V ) (@Y|) > 1/N.

A state satisfying this inequality can be distilled by a generalization of the re-
currence protocol of Ref. [34], which consists of two steps: depolarization and
joint measurements.

(ii) Applying an operation of the form U ® U* (U a randomly chosen unitary)
depolarizes p, i.e. transforms it into a mixture of the maximally entangled state
|<I>_1~\_[ > (which is invariant under transformations of the form U ® U*) and the
completely mixed state ﬁ]l; the overlap of p with |<I>f > remains unchanged.
(iii) Taking two entangled pairs in this depolarized form, both A and B perform
the generalized XOR gate XORy : |k) |I) — |k) |(I + k)modN) on their respec-
tive systems. Then both measure the state of their second system in the basis
|k). The first pair is kept, if they get the same result otherwise it is discarded
(as the second pair always is). The resulting state has a density matrix p/,
which has a larger overlap with the maximally entangled state |<I>f > than the
original p. Iterating the last two steps sufficiently often, the overlap between the
resulting state and |<I>f > approaches 1, that is, the distilled stated converges to
the maximally entangled state |<I>f > To achieve finite yield one can proceed as
follows: after reaching a sufficiently high fidelity the states are locally projected
into a 2 x 2 subspace and then further purified e.g. by hashing protocol of [36].

D.2 Linear Entanglement Purification Protocols

As discussed in Sec. 4 an EPP based on linear transformations would be desir-
able. Here we present some unsuccessful attempts to construct such a protocol.

D.2.1 “Translating” Qubit-EPPs?

This attempt was motivated by surprising fact that some quantum error cor-
recting codes could be simply “translated” from the qubit to the CV setting
[18]. The “dictionary” provided there tells us to replace a qubit CNOT-gate by
addition in the computational basis (31) |z) |y) — |z) |y + z) and the Hadamard
transformation ... by the Fourier transformation |z) — [ €"P* |p) dp, both LTs.
An obvious question to ask is then: Can the protocols of Bennett et al.[34] or
Deutsch et al.[35] be “translated” to the CV case in a similar way?
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This is not the case. We considered the protocol [35], since for [34] the
realization of the depolarization operation presents a problem as using only LTs
for depolarization is not enough. Then in addition to the continuous CNOT-gate
the “translation” of the single qubit rotation |0) — |0) —4|1),|1) — |1) —4|0) to
the CV case is needed, for which there is no obvious candidate. Using passive
linear transformations for this step of the “translated” protocol does not lead
to entanglement purification. (Proof for pure states, fully symmetric mixed
states).

D.2.2 QEC-enhanced Entanglement Swapping

It has been shown [65] that teleporting one member of a locally prepared (and
therefore highly entangled) EPR-pair via a pure, finitely squeezed EPR channel
never leads to entanglement purification: the resulting pair is never more entan-
gled than the one used up. The measurements and local transformations needed
for CV teleportation [15] are all linear. Therefore if this protocol would work
it would, according to Subsec. 4.4.1, increase entanglement with probability 1,
contradicting the fact that entanglement cannot be increased on average. ([65]
argues like this for a pure “channel” state, but this clearly extends to mixed
Gaussian channels, too.)

One might think, however, that the combination of entanglement swapping
with quantum error correction might constitute an EPP: the codes introduced
by Braunstein [18] can be implemented with quasifree transformations and en-
tanglement swapping requires only homodyne detection. The argument of the
previous paragraph doesn’t apply here, since now many entangled pairs are used
up, to produce one purified pair. Nevertheless, calculations show that using a
Gaussian channel and a pure EPR-like state input, this procedure does not lead
to EP. This is not due to a failure of the QECCs, which work fine, but to the
following: reducing the amount of errors (i.e. increasing the entanglement in
the channel) makes it at some point necessary to increase the entanglement of
the input state as well — since it has to be more entangled than the channel
(otherwise even perfect teleportation would not effect EP). Stronger entangle-
ment means more stronger squeezing, but the stronger the squeezing, the less
reliable becomes teleportation; higher order errors are not negligible, can even
become dominant.

Consider for simplicity a symmetric Gaussian channel state in standard form
(ie., Ny = No = N, K; = —Ky = K). If a state with Wigner function W, is
teleported through that channel, the Wigner function of the teleported state is

Wier(€) = (Win ¥ exp (=F|| - |[*)) (€) (92)
(F = (N;y + Ny — K%)/(Ny + Ny — 2K)). From this we see that
Wit (€) / dPue” FIHIE 58w, (o),

i.e., the teleported state is a mixture of displaced input states with Gaussian
weight centered at displacement 0. Using

F o 1 1\" 1 m
R DY (2F) S0 (@);

n>0
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(56") (x) being the nth derivative of the delta function at x = 0).

This allows us now to start with a Gaussian six-mode state W;,, (a pure EPR-
pair one member of which has been encoded using the 5-mode code). Then the
teleported state will look as follows:

10
[F
P /dwu( W) PP (5

1\" 1
_ 10 2 : (2n) W
- /d u Hk: 12 =~ <2F> 271”60 (xk) p(Su zn)

5
= > [ e I (s w)

( 1 )nkerk

/dlo DOEEEED DERL m5(2m((Uk)1)5((>2m’“)((Uk)z)p(San)~

ni,mi>0 ns,ms>0

at least 2 indices w/

diff. subscript # 0
The first line in the last equation represents the first order errors (and the
error-free part) - this can be completely corrected by the QECC. The second
line contains all the higher order errors, which cannot be corrected by one layer
of QECC.

Note the derivatives of the delta-function of order Zk ng + myg > 2. Going

to the Wigner representation we see that the error terms are of order

( 1 ni+mg ) )
. d mkd/ Nk
2F> ’

where the d,d’ terms come from taking the derivative of the Gaussian and d, d’'
are of the order of the squeezing in the input state, which is supposed to be
larger than that of the channel state, which determines F. Thus for strong
squeezing of the input state, the errors of order R 1 are by no means negligible
and therefore QECC does not help.

This argument shows that the usual reasoning for the effectiveness of QECC
— demonstrating that the leading order of errors is removed — fails here. This
indicates (but does not prove) that no entanglement purification is possible this
way. And indded, calculating numerically the fidelity and the coherent telepor-
tation fidelity (see below) of a state “purified” this way shows no improvement.

D.2.3 Random Search for a LEPP

We have performed an extensive numerical search for a general LEPP as de-
scribed at the beginning of Subsec. 4.4.1, allowing for up to 5 pairs of entangled
modes and up to 5 ancillas. This has not produced any example in which the
LLTs “improved” the state. In order to evaluate the performance of the LEPP
we made use of two quantities, which quantify nonlocal properties of a state p:
the coherent teleportation fidelity F£9"(p), which measures how good the state
p is as a quantum channel, and the fidelity with respect to the maximally en-
tangled state Fgpr, which quantifies how close p is to the maximally entangled
state |[EPRgg).
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Both quantities represent only very crude ways to measure the success of
EPPs, since neither is an entanglement monotone. Nevertheless in both cases
it holds that as F'(p) approaches 1 the state approaches the desired maximally
entangled state |EPRgp).

Overlap with an ideal EPR-state

In the case of qubits, the fidelity of state with respect to a maximally entangled
state is very useful to quantify entanglement. While it provides an entanglement
monotone only when maximized over all maximally entangled states (or, in this
case equivalently: maximized over all local transformations of the state) it is
useful in particular to prove that an entanglement purification protocol produces
asymptotically maximally entangled states.

This motivates us to try out the overlap of a given state p with an ideal
EPR state (e.g. |EPRgo) = |24 +2p = 0,pa — pp = 0) the one with Wigner
function (x4 + x5)d(pa — pp)) as a means to quantify the entanglement of p.

Fgpr(p) = (EPRoo| p [EPRo)

For a Gaussian state with zero mean Fgpg is given by

| M|
[Ma + M, + 20|
M _ ( (Mp)11 _(MB)12)
B —(MB)i2  (MBp)2

and My g = < :E%ﬁg; g%ﬁig;z > If M is in standard form, this be-

(93)

where

comes

N1+ Ny —2K;)(Ny + Ny + 2K5)
Defining the quantities Fi, F5 as

\/ (NN — K?)(N1 N, — K3)
(

NNy — K2, o1
Ny + Ny — (+)2K, ()

Fepr = VF.Fs. (95)

Fio) =
we finally get

Teleportation Fidelity

One of the major applications of entangled CV states will probably be the
teleportation of CV states, e.g. using the VBK scheme [15] as did the pioneering
experiment [16]. Thus the quality with which a state can be teleported using this
scheme may serve as a measure of quality for the channel state used (assuming
perfect operationsG).

Using a two-mode Gaussian state in standard form Ny, Ny, K7, K5 as a chan-
nel, teleportation of a state with Wigner function W;,, proceeds as follows: Ini-
tially we have a three-mode state with Wigner function

Wln(&.n)Wch (gAa gB) (96)

61t has been observed [58] that for many typical imperfections teleportation with imperfect
operations may be described by teleportation with perfect operations using a (more) noisy
channel state.
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A couples her two modes at a 50:50 beam splitter to obtain

W, (%@A —fm»WCh(\%

Then Alice measures X4 = z1, P;, = 22, the state of Bob’s mode then has the

Wigner function
1 zZ1— T
2rWin(— ,
/]R2 m(\/i <7“2 - Z2>)

exp [_ ((21 + n>/ﬂ>TMq<<z1 + m)/ﬂ) B (@ + rgwi)TMp ((z2 + @/ﬂ)}

(§a +&in).€B) (97)

4B 4B PB PB
where w = v/2(21, —23). This equals

exp [~ (M,)220% — (My)22p3] /R Wi ()

x exp [—(Mg)11(wy — up)? — (Mp)11 (w2 — ug)? — 2(My)12g5 (w1 — ur) + 2(M,)12p5 (w2 — us)|

PB)

— oxp |- |Mg| 5 [My 2} (Wm*e*(Mq)11(')2*(Mp)11(')2)(w1+(Mq)12 o Mp)12

(Mo)ii B~ (M) P (My)11 "7 (M)
(98)

i.e. Bob’s state after teleportation is the input state convoluted with a Gaus-

sian, then displaced, stretched, and damped with a Gaussian. In the last step

Bob processes his state conditioned on Alice’s measurement result, namely he

displaces it by (w,ws). Defining diagonal 2x2 matrices O1, O2, O3

EYAI
(Mg)11 0

O = ( 0 (Mp)11 )

03 — ( (M8)12 _(j\gp)12 )(02)1

the teleported state can be written as
Wia(gp) = e~ (€270 01600 (W, 4 =002 ) [(1 = Og)w + Ol (99)

Averaging over the measurement results leads to a simple expression for W,,;.
(Note that by performing this average one may deteriorate the overall state, if
the teleported mode is entangled with other systems.)

|71-02 (Wm * ef<"o'>) ) (100)

and

) - (AJ\/I;)MquAl/[ . 0
0 ( [Mg|+((Mg)12—(Mg)11) (My)11| M,

0 I, T (M, )12 T (My 170
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In the case of W, in standard form the two entries of O are F1, F> as in Eq.
(94) So the output state is the input state convoluted with a Gaussian. Clearly,
as Fy — oo this state approximates the input state as well as desired.

How to define a fidelity? As discussed in [57] there are many ways to de-
fine a meaningful teleportation fidelity by choosing a set S of pure states and
considering the fidelity with which these states can be teleported.

The fidelity, i.e. the overlap of the teleported state with a pure input state
is given in the Wigner representation as

Frut(Win) = 2 /R W (Wi (©). (101)

Now one can define the S-teleportation fidelity of the channel FS,(p) either
as the minimum over all states, or, given some a priori distribution on S, as the
average over S.

1. S. = coherent states
for Wi, = 7L exp [—|[€ — &|?] the fidelity of the teleported state is

1 R

coh

1+ —)1+ — 102
6P = |1+ g+ 52| (102)
i.e. it is independent of the free parameters £. Thus in this case, average
and minimum teleportation fidelity are the same. In the symmetric case
Fy = Fy, hence F¢9" = 2F/(2F + 1). The condition for better-than-
classical teleportation [57] F9" > 1/2 translates in this case to F >
0.5 < n+ K > 1 < p inseparable.

2. Sgr = squeezed vacuum states with squeezing < r
Win(€) = 7L exp [—||SE|[?]; as mentioned in subsection A.2, S can be
written as S = 0S,0’, where O, are orthogonal and S, is diagonal
with eigenvalues A, A\=! > 0. For the fidelity we obtain

FiFy

[savac.t

tel \/ 52 O/FO/T| (103)
In the special case Fy = Fy this becomes \/(1 + 2);1 )(1+ ;‘—;,j) Minimum

for A = Tyaa, Tke- Averaging over r € R, vanishes.
3. S, = arbitrary squeezed states with squeezing < r
Wiy = exp [—(z — d)TSTS(x — d)] ,
S symplectic.

4. another possibility, which is not explored here, is to consider how well
entanglement is teleported? E.g., one could calculate entanglement fidelity
for the case that one member of a zero-mean EPR pair is teleported and
use this to measure the quality of the teleportation channel.



E NOTATION AND ABBREVIATIONS

To obtain an entanglement monotone, however, it would be necessary to
maximize the above expressions over all local transformations. More tractable
might be the concept of “linear” or “quasifree” entanglement monotone in which
the maximasation is performed over linear transformations and generalized ho-
modyne measurements only. Is it always optimal to take the entangled state

Per in standard form? In general not, as shown in [58].

E Notation and Abbreviations

Ma
1,,0,
X, Py
R
|EPR)

Y
x(x)
npt, ppt state

CM
LT
LLT
EPP

direct sum (of vector spaces, operators, vectors, ...).
tensor product (of Hilbert spaces, operators, vectors, ...).
definition: the defined object is indicated by the colon
same as ¢ € M

Hilbert spaces

bounded linear operators on the Hilbert space H.
symplectic maps on R2"

n by m matrix with entries in K =R, C; M,, = M,, ,,
Weyl operator

density matrix of a state

complex structure on R?": @), _, ( ? _01 )

partial transposition on phases space: (qa,pa,qB,PB) —
(g4, —Pa, 4B, PB)-

=AsMA,.

identity, null operator on C"

canonical operators of the kth mode

vector whose components are Xy, Py, k=1,...n
(improper) simultaneous eigenstate of X4 + Xp and P4 —
Pg with eigenvalues g, p, resp.

correlation matrix of a Gaussian state

characteristic function

state, whose density matrix has (non)positive partial trans-
pose

correlation matrix, see p. 77

linear transformation, see (p. 83)

local linear transformation

entanglement purification protocol, see p. 32
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