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1 Introduction

Quantum Information

Quantum information proves strikingly that information science is fundamentally a physical science:
what information processing tasks can be achieved and how efficiently this can be done, can depend
strongly on whether the systems used to encode and process information follow the laws of classical
or quantum physics. 1

The information theoretical perspective on quantum physics [182] has had profound impact: On
the one hand, it has given fresh impetus and clarity to foundational questions [e.g., attempts to
base quantum mechanics (QM) on information theoretic axioms [107, 170, 42]], led to a deeper
understanding of the potential and limitations of QM (e.g., quantum error correction [229, 135], the
intimate relation of quantum states and quantum operations [43, 124], the identification of small
families of quantum states comprising (or approximating) most of the physically relevant states and
giving rise to novel approaches to simulate quantum systems [255], the identification of generically
hard problems in quantum physics using idea from computational complexity [164, 224, 225, 53]). It
has also provided a unifying language that simplifies and encourages the exchange and interaction
between a broad range of disciplines from mathematical physics and quantum foundations to quantum
optics, condensed matter physics and computer science.

On the other hand, it has yielded results of short- and long-term practical interest, most prominently
the potential computational speed-up in concrete problems such as factorization [230] (and a large
number of others as listed in [127]) and especially in the efficient simulation of many-body quantum
dynamics [165, 48], but it has also added practical interest to many of the quirks and apparent
paradoxes of QM, turning them into tools and the basis of information processing protocols. In this
way, e.g., the no cloning theorem [271, 68] and Bell inequalities [77, 3] led to quantum key distribution
[98], entanglement [115] gave rise to quantum teleportation [14], “Schrödinger-cat-like” states spurred
advances in quantum-enhanced metrology [95, 97] 2.

This has inspired a worldwide sustained endeavor to realize quantum mechanical information pro-
cessing, i.e., to identify and build physical systems that allow for both the control and the isola-
tion from all unwanted couplings that are needed for a quantum computer (QC) [287, 249]. Re-
cent major advances regarding the threshold for quantum error correction [139, 203, 259] and the
possibility of QC in dissipative systems [256] provide further encouragement that this goal can be
achieved.

1While it is still an open question, whether quantum computers are more efficient than classical ones (P
?
= BQP in

terms of the two complexity classes – a serious challenge to the extended Church-Turing Thesis [1]) there are tasks
in cryptography and communication where a strict gap between classical and quantum systems has been proved
[204, 98, e.g.].

2See however [117, 82] for their limitation in the presence of noise.
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1 Introduction

Semiconductor quantum dots (QDs), which are considered in the main part of the Thesis, are one of
the major approaches [166] to this goal. We only mention in passing the many other implementations
that are currently being pursued. QIP based on trapped ions [47], neutral atoms in lattices [123], or
superconducting circuits [228] are particularly successful. Each approach has its merits and each has
yielded not only to impressive control of individual quantum systems but also led to new insight into
the physics of the respective platform.

QIP in Quantum Dots

This technology platform has several attractive features: It is a solid system which makes trapping
or the use of vacuum chambers unnecessary. It is an artificial, hence designable system for which
many parameters can be tuned at fabrication. And it can tap into the highly developed toolbox of
semiconductor electronics and nano-fabrication technologies for integration with (classical) computing
technology, photonics, and for eventual scaling up the quantum devices. Moreover, QDs can be
accessed both optically and electronically, thus combining the most advanced techniques of quantum
and classical information processing.

These advantages do not come without cost: artificial atoms embedded in bulk solid-state material
are exposed to many hard-to-control degrees of freedom which can cause decoherence of the quantum
registers used for QIP (phonons, fluctuating charges, impurity spins) and usually require cryogenic
temperatures to be operational. Moreover, they can never be fabricated fully identically leading to
errors due to fabrication imperfections and inhomogeneities.

Charge, polarization, and spin degrees of freedom were investigated as qubit candidates. The most
promising and fruitful idea in the QD setting was Loss and DiVincenzo’s proposal to use the spin
of single electrons trapped in QDs [166]. It exploits the spins’ good isolation from phonons, which
was estimated to allow coherence times T2 many orders of magnitude longer than those that can
be achieved for the charge-based qubits and sufficient to perform a large number of gate opera-
tions.

The Loss-DiVincenzo proposal was quickly followed by several others for using the spins associated
with localized “defects” in solids, in particular the spins of phosphorus donors in silicon [128], electron
spins in (optically active) self-assembled semiconductor QDs [119], and the spin associated with the
Nitrogen-Vacancy (NV) center in diamond [273].

While the spin was specifically selected to reduce decoherence due to charge noise and phonons, it
was soon noticed that this choice makes the qubit susceptible to another important “environment”,
namely the nuclear spins of the atoms of the semiconductor lattice. In the technologically best
controlled materials (GaAs, InGaAs) all nuclei carry a nuclear spin and possess a strong hyperfine
interaction (HFI), leading to fast dephasing of electron-spin qubits (within a few nanoseconds in the
first experiments).

This led to a intense and detailed theoretical and experimental investigation of the HFI in nanostruc-
tures with the aim of reducing or controlling the interaction of the spin qubit with its nuclear-spin
environment, e.g., by preparing the nuclear spins in states that are (partially) decoupled from the
qubit (“reservoir engineering”) or by dynamical decoupling [284]. In fact, there are many ways in
which the nuclear spin system can even be made useful for QIP, either as a means to perform gate
operations or as a quantum memory. In addition to the QIP interest, the HFI in QDs realizes a central
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spin system [90], one of the important standard models of quantum many-body physics. Experimen-
tal and theoretical evidence shows that the HF-coupled QD spin supports many intriguing dynamical
effects, from bistability to superradiance and phase transitions and merits investigation regardless of
QIP applications. The present Thesis contributes to the theoretical investigation of spin physics in
QDs both from the QIP and from the quantum many-body point of view.

This Thesis

This Thesis reports on three related topics addressed by the author from 2005 to today: In Ch. 2
treats the interaction of solid-state spin qubits with a surrounding spin bath and the question how
to facilitate quantum information processing (QIP) in this setting. This motivates, in particular, the
analysis of dissipative dynamics which prepare an advantageous (polarized or narrowed) state of the
nuclear-spin bath. These dynamics give rise to interesting physical phenomena and lead us in Ch. 3
to the more general topic of the steady-state properties of open quantum many-body systems, in
particular phase transition-like behavior. Finally, in Ch. 4, some more formal questions on quantum
information processing using Gaussian states and operations, i.e., with the toolbox of linear quantum
optics, are addressed.

The three parts of the Thesis are related by the focus on quantum information processing (QIP) in
concrete, experimentally accessible physical systems and by the use of methods and intuitions from
quantum optics (linear optics, atomic ensembles, cavity-QED, quantum optical master equation)
which turn out to be very useful in the solid-state system with which most of this Thesis is concerned,
namely single localized electron spins in semiconductor quantum dots coupled to their naturally
occurring nuclear spin environment. This system is the main motivation to study the the central
spin system and its steady-state phase diagram in the second part. The methods of Gaussian QIP
turn out to be useful in this context since in certain situations the nuclear spins are well described
by collective excitations (“spin waves”) that are in an (approximately) Gaussian state and undergo
an effectively linear evolution.

In the next chapter, we provide some common background and perspective to the publications that
form the core of this work and which are collected and reprinted in Chapter 7. Comprehensive and
current reviews of the different subjects are included among the references, in particular [49, 253, 40]
for Chapter 2, [178] for Chapter 3, and [261] for Chapter 4.

A note on the references. The articles which are part of this Thesis are cited as G:nn and listed in Sec-
tion 5. All other references are in the bibliography at the end of this Thesis.
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2 State Engineering and QIP with Nuclear Spins in Quantum Dots and
other Nanostructures

2.1 Introduction

This is the first of the three main chapters in which the background and context of the work comprising
this Thesis is briefly summarized. The actual work is contained in the publications reprinted in
Chapter 7.

We first give a very short introduction to quantum dots (QDs) and then briefly describe the history
and status of QIP with QD spins before focusing on the role of QD nuclear spins in this context. All
these topics have been the subject of excellent reviews to which we refer the interested reader in the
respective sections.

2.1.1 Quantum Dots

Quantum dots (QDs) are nanostructures which confine charge carriers (conduction-band electrons or
valence-band holes) in all three dimensions to lengths small compared to the particle’s wavelength so
that its motion becomes fully quantized.

This confinement can be achieved in several ways, e.g., by device geometry (e.g. etching/growth of 0d
or 1d structures), by externally applied electrostatic potentials, or by the composition of different ma-
terials, see, e.g., [102] for a detailed and current presentation of different QDs.

Prime example for the latter type of confinement are self-assembled quantum dots (SAQDs) which
can be formed in the process of epitaxial growth due to the strain between two lattice-mismatched
materials (e.g., InAs deposited on a GaAs substrate). Due to the mismatched lattice constants
the above a certain thickness the layer-by-layer deposition of InAs becomes unstable against the
formation of InGaAs droplets. Depositing further GaAs on top yields a layer of InGaAs droplets
enclosed in GaAs, cf. Fig. 2.1.1(B). Due to the differences in band gap between the two materials,
both conduction-band electrons and valence-band holes can be trapped within the InGaAs droplets.
Size, location and composition of the droplets can be partially controlled by growth conditions and
pre-patterning of the surface on which the InGaAs is grown, but are still to some extent random.
Typical dimensions of such SAQDs are 5− 10 nm in height and 10− 30 nm in diameter, comprising
104 − 105 atoms and providing for a rather strong confinement of a few 10 meV [236], which allows
to work at 4 K temperatures. 1

A major advantage of SAQDs is that they are optically active since both electrons and holes and
therefore also optical excitations (excitons) which are formed by promoting a valence band electron

1Closely related are so-called interface-fluctuation quantum dots (IFQDs) which are formed by monolayer fluctuations
of the thickness of, e.g., a few atomic layers of GaAs embedded between AlGaAs substrates. If these fluctuations
have suitable extent in plane, they can provide trapping potentials for electrons and holes, studied, e.g. in [23, 167].
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2 State Engineering and QIP with Nuclear Spins in QDs

to the conduction band are trapped by the QD. As a consequence, both neutral and charged SAQDs
feature strong dipole transitions to the corresponding excitonic states. In recent years, clean QDs
with lifetime-limited linewidths (and lifetimes on the order of 1 ns) are studied in many labs and
provide fast and versatile access and control to the QD states and properties. It should be noted that
SAQDs can additionally be contacted by gate electrodes, thus enabling both electronic and optical
access and control. Among the disadvantages of SAQDs is the essentially random growth process
which makes it difficult to control location, size, and composition of the QD although there is progress
in all these respects. The very strong confinement has also made it more difficult to let electrons in
different QDs interact with each other.

In electrostatically defined quantum dots (EDQDs; sometimes also called lateral QDs), carriers are
confined to the interface between two semiconductor materials (e.g., GaAs on AlGaAs) with very
nearly matched lattice constants (hence little strain) but different bad gap, cf. Fig. 2.1.1(A). Incor-
porating a doped layer close to the interface in the high-bandgap material (AlGaAs) (“modulation
doping”) leads to the accumulation of carriers at the interface in the low-bandgap material and the
formation of a two-dimensional electron gas (2DEG) in the trapping potential provided by the posi-
tive donors in AlGaAs and the electrons in GaAs, see, e.g., [106, 102] and references therein.
Now metal electrodes (“gates”) can be lithographically fabricated above the 2DEG. By applying volt-
ages to the gates, the 2DEG can be depleted below the electrodes and with a suitable arrangement of
electrodes (cf. Fig. 2.1.1A) a trapping potential for carriers can be realized. In contrast to SAQDs,
only one type of carrier is trapped in EDQDs and therefore, excitons are not bound and EDQDs
are not optically active. Also, the confinement is typically weaker than for SAQDs (a few meV) and
experiments have to be done at very low temperatures (100 mK). The advantages of this system in-
clude the cleaner structure (due to the absence of strain), the deterministic fabrication which allows
the construction of elaborate multi-dot geometries (“quantum dot molecules”, cf., e.g., [232] for a
four-QD chain allowing the realization of two logical qubits) and the built-in electronic access to the
QDs.

Charge state – The number of electrons in a QDs can nowadays be very well controlled by doping and
applied gate voltages, so that QDs are routinely operated at well-defined constant occupation number
[106]. To study transport through the QD one tunes the gate voltages to the boundary between two
charge configurations so that electrons can be exchanged with the surrounding 2DEG by tunneling
[147, 206].

Carrier wave function and other properties – The details of the QD potential and the properties
of the carrier wave function in the QD – and especially their prediction from phenomenological
or microscopic dot and growth parameters – are in general difficult and still a subject of active
research. However, it is usually possible to determine most quantities of interest (binding energies,
wave functions, coupling matrix elements, g factors, effective masses) from experiment. And for our
purposes, a very simple toy-model of QD confinement (e.g., by a harmonic confinement potential or
a box) usually suffices. We consider temperatures sufficiently low so that only the lowest orbital in
the QD confinement potential are occupied.

Optical Properties – The optical properties of QDs are largely determined by the dipole transitions
between conduction and valence band supported by the host semiconductor. For the III-V materials
we consider, the conduction band (CB) is formed mostly from s-type orbitals thus close to the atomic
nuclei the electron wave function has s character (spherical symmetry, no angular momentum, finite
overlap with the nucleus). In contrast, the valence band (VB) is constructed from p-type orbitals. Its
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2.1 Introduction

Fig. 2.1: Electrically defined (A) and self-assembled (B) quantum dots. The pictures are taken from the
review articles by Hanson et al. [106] and Urbaszek et al. [253], respectively. (A) shows schematically the 2D
heterostructure and the interface at which the 2DEG forms within which the QDs are defined by the metallic
gates. The electron microscope picture of two EDQD structures (B) Shows a picture taken of a layer of InAs
SAQDs and sketches the band structure of the QD and surrounding heterostructure (cut in growth direction
through a QD). Bound QD states in both the conduction and valence band are indicated.

six-fold degeneracy is lifted by spin-orbit coupling and further by growth-induced strain (cf. [102])
and the highest-lying valence sub-band is formed by the (J = 3/2, Jz = ±3/2) heavy hole states (Jz
defined along the growth direction).
From these consideration the properties of the QD spin qubits become clear: a CB electron trapped
in the ground state of a QD is a spin-1/2 particle, and hence a clean qubit. The optical properties of a
neutral or charged SAQD are determined by the dipole matrix elements which couple its ground state
to the optically excited state containing one exciton, i.e., a bound state of a CB electron and a VB hole.
The lowest-energy, most stable exciton consists of a VB heavy hole and a CB electron, each in the
lowest QD orbital state. In the neutral QD, the “exciton ground state subspace” is four-dimensional;
due to spin selection rules, there are two optically active and two inactive states (“bright” and “dark”
excitons). The former characterized are by electron and heavy hole with antiparallel oriented spins,
the latter by parallel spins of electron and hole. For the singly (negatively) charged QD, the charged
exciton (“trion”) is formed by a CB singlet and a VB hole, hence there are only two such states, both
dipole-coupled to the singly-charged QD ground state.

These considerations lead to a simple level scheme for the QD [cf. Figs. 2.2 and 2.3 for SAQDs];
these sketches illustrate the dipole-allowed transitions from the ground state(s). The obvious ways
to optically manipulate the electron spin in a SAQD are evident: the level scheme allows for spin-
pumping to any of the two ground states, for spin-flip Raman transitions between the two and for
spin-dependent AC Stark shifts, which can be used for phase gates or for QND spin measurement.
For comprehensive review, see [102].

Quantum Dot Molecules – QDs are frequently called “artificial atoms” due to the atom-like properties

7



2 State Engineering and QIP with Nuclear Spins in QDs
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Fig. 2.2: Neutral exciton in self-assembled QD: a
valence band electron is promoted to the conduc-
tion band (filled circle), leaving a valence band
hole.
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Fig. 2.3: Level structure of the singly charged QD
(single-electron ground states and excited (trion)
states); configuration for optical pumping is de-
picted. Dipole-allowed and (weakly) forbidden
transitions are indicated by solid (dashed) arrows.

described above. Also like atoms, multiple QDs can also form “molecules”, if they are close enough to
interact. The best studied QD molecule is the double quantum dot (DQD), depicted in Fig. 2.1.1A,
which has been the work horse for many of the pioneering QIP experiments with QDs [106]. It
is formed by two EDQDs, which are coupled to each other by coherent tunneling and operated
in the (1,1) charging region (i.e., with a single electron on each dot). The tunnel coupling gives
rise to an exchange interaction which lifts the degeneracy in the four-dimensional (1,1) subspace by
splitting the singlet from the three triplet states, cf. Fig. 2.4B. The exchange coupling can be used
to implement quantum gates in this system [36]. Of particular interest for QIP work (and parts of
this Thesis) is the Pauli blockade regime in which the DQD is tuned to the (1,1) charging region and
the two QDs are biased such that transport occurs via the cycle (1, 1) → (0, 2) → (0, 1) → (1, 1),
while states (2, 0) and (1, 0) are not accessible. Since the transition from (1, 1) to (0, 2) proceeds
via the tunneling Hamiltonian which leaves the electrons’ spin unchanged, only the (1, 1)-singlet
state S(1,1) can contribute to transport. Coupling to the (0, 2)-triplet states is suppressed since they
involve (due to the Pauli principle) the first orbital excited state of the right dot, with much higher
energy.

Other Nanostructures – There are a number of nanostructures not mentioned in the brief sketch
above that are of similar interest for QIP. One of the most promising such systems are nitrogen

µL

µR

µL

µR
(0,1)

S(0,2)

T(1,1)
S(1,1)

T(0,2)

Fig. 2.4: (Left) Single-electron quantum dot in a magnetic field in the spin-blockade setting: both Zeeman
levels can be filled from the right, electrons in the lower Zeeman state cannot escape to the right. (B) Ground
state level scheme of a biased two-electron double quantum dot (DQD) in the Pauli blockade regime (cf.
text). The eigenstates X(n,m) are labeled by the number of electrons in the two dots and their singlet/triplet
character.
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2.1 Introduction

vacancy centers in diamond [71]. These are point defects consisting of substitutional nitrogen atom
next to a vacancy (missing carbon atom). These defects occur naturally or can be produced by ion
implantation and annealing (allowing vacancies to wander until they find a N to for an NV center
with). NV centers are very stable, have strong optical zero-phonon line and a spin triplet ground
state with a characteristic zero-field splitting (2.88 GHz). The electrons are very tightly bound to the
center (it’s deep in diamond’s huge band gap) and the spin ground states have a long coherence time of
up to 1 ms [11] and can be manipulated with microwave fields. They can, moreover, be distinguished
optically by their different fluorescence properties and optical pumping allows to initialize the NV
center one of the spin states.

Other solid-state systems that are closely related to the QDs we mostly are concerned with and
are currently investigated for QIP are phosphorus donors in silicon (Si:P), first proposed in [128],
and quantum dots in carbon based systems such as graphene [205] and carbon nanotubes [35, 45,
88].

2.1.2 QIP with Electron Spins in QDs

Electron spins in quantum dots were among the first systems proposed to implement qubits in a poten-
tially scalable way to eventually build a quantum computer [166]. The original proposal was to use the
two spin states of a single QD electron as a qubit and to use the tunnel coupling between neighboring
QDs to implement two-qubit gates It was made even before single electrons in QDs had been prepared
much less single spin detection or manipulation had been demonstrated.

Within a few years these milestones were achieved in a series of ground-breaking experiments demon-
strating single-shot readout of a single spin [78, 215] and single- and two-qubit gates [193, 141] in
EDQDs and a little later also in SAQDs (high-fidelity state preparation [8, 274]; single-spin detection
[176, 9], and single-qubit gates [199, 15, 262], two-qubit gates [132]).

There has been considerable progress towards building a light-matter quantum interface, essential
for quantum communication between two quantum registers and a attractive route to long-range
coupling of qubits within one processor. Milestone results were the demonstration of strong coupling
of QDs to high-Q cavities [207, 280, 109, 158] and entanglement between QD spins and photons
[89, 59, 219].

The interaction with the nuclear spin environment severely limited the observed coherence time
and gate fidelities in the early experiments, see [142, 126]. Since then, advances in qubit design,
nuclear spin preparation, and the use of dynamical decoupling techniques have lead to significantly
improved (faster, cleaner) QD spin qubits with the coherence time of a DQD electron spin qubit
now approaching 200 µs [18, 19], four orders of magnitude longer than typical gate operations times
(∼10 ns). Thus the “problem” of nuclear spins is considered as “practically solved” [10] as other
sources of decoherence (in particular gate noise) become the limiting factor while the useful aspects
of the nuclear spins come into focus.

Greatly improved two-qubit gates in EDQDs were demonstrated recently [184, 34] and for the first
time, all standard building blocks for a QC (single- and two-qubit gates, state preparation and
measurement) have been achieved in a single system [232]. The fidelities achieved to date are still
moderate (F = 0.72 for Bell state generation in [232] or readout fidelity of ∼ 0.86 in [184]) and
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2 State Engineering and QIP with Nuclear Spins in QDs

significant technological improvements are needed to approach the regime required for fault-tolerant
operation.

Other Nanostructures While the above summary has focused on spin qubits in (In)GaAs QDs,
progress in some of the closely related solid-state systems already mentioned has also been great.
Since many of the ideas and concepts presented here can be equally well (or better) applied to other
atom-like nanostructures in solids such as NV centers [273, 71] or P donors in silicon (Si:P) [128, 197],
and since some of the works to be presented later explicitly refer to them, a few words about NV
center qubits and Si:P qubits may be in order.

These systems combine some of the advantages of QDs (the solid state material, potential for tight
integration with electronics and photonics, and availability of nanofabrication technology) with those
of atomic qubits (essentially identical, atomic-sized systems) and QIP in these systems has made
great strides in recent years. The diamond-based approach is most notable for the possibility of
operating a quantum device even at room temperature. In the NV center spin-triplet ground state
(cf. p. 8) two levels can be designated as qubit and fast and accurate preparation and readout
have been demonstrated. The electronic spin couples to proximal nuclear spins (13C or 15N). These
spins can be accessed by NMR techniques and together with the hyperfine coupling this has allowed
high-fidelity preparation of the nuclear spins and the creation of multi-particle entangled states [180].
The entanglement of two NV centers has been demonstrated very recently [72]. For a comprehensive
review, see [71].

Si, on the other hand, is the favorite material of semiconductor technology, sporting very mature and
advanced fabrication methods and the availability of very clean, isotopically pure samples (e.g., as
used in recent projects to redefine the mass standard [5]). In [242] coherence times of 3 min were
shown for the a nuclear spin qubit of a P donor. Coupling between different P qubits has not been
achieved until now.
The technological advantages of Si have also motivated the work on QIP using lateral Si/SiGe quan-
tum dots [233, 264, 172]. Detailed calculations of spin decoherence [61, 268, 267, 266] and already
the first experiments have confirmed the expectation of good coherence properties and demonstrated
T ∗2 ∼360 ns [172] (more than a factor of 10 better than in the comparable first GaAs-QD experi-
ments).

As described in the previous sections, nuclear spins are almost ubiquitous in solid-state structures
considered for QIP. We have a closer look at their interaction with QD spin-qubits in the next
section.

2.1.3 Nuclear Spins in QDs

Nuclear spins are among the most common and advanced qubits both in atomic and solid-state
systems. In solids, two different situations can occur: in some systems, single nuclear spins located
close to defects such as donor-bound electrons [128] or NV centers [273] are promising qubits –
combining the strong experimental control (via the electron of the nearby defect) with a nuclear
spin’s good coherence properties. A coherence time of 180 s has been demonstrated at cryogenic
temperatures (∼2 K) in ultrapure 28Si [242] and in excess of 1 s at room temperature in diamond
[173].
In contrast, in many cases the electron spins does not couple to just a few but to a large number of
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2.1 Introduction

nuclear spins. Then their most notable effect is that of a spin-bath that dephases and decoheres the
electron spin. This effect is particularly strong in GaAs QDs [142, 126] with their 100% concentration
of nuclei with spin and large magnetic moments, but in weaker form also present in Si:P and diamond
systems [105, 252].

In QDs, the investigation of nuclear spin effects has focused the second role. Here, the electron is
delocalized over thousands to millions of nuclei which are typically in an almost maximally mixed
state even at the low temperatures and large magnetic fields available in experiments. The inter-
action with this environment dominates dephasing and decoherence of the electron spin qubit. The
accurate theoretical description of decoherence due to interaction with this non-Markovian many-
spin environment is a challenging task and many approaches have been suggested (see, e.g., [49] and
also Section 2.1.3) differing in the regimes considered and in the extent to which correlations and
interactions among the nuclear spins are taken into account.

Since the hyperfine interaction is central to this Thesis we sketch here its microscopic derivation as
given, e.g. in [2, 237] or recently with a focus on quantum dots and QIP in [84].

Hyperfine interaction

Starting with the Dirac equation for an electron in the potential of the nucleus and taking into account
only the lowest-order relativistic corrections, yields, in addition to the Zeeman term four terms con-
taining the electron spin. In addition to the spin-orbit interaction of the electron these comprise three
terms describing interactions between electron and nuclear spin, namely

Hfc =
µ0

4π

8π

3
δ(r)2gnµnµBS · I, (2.1)

Hdip =
µ0

4π
2gnµnµB

3(n ·S)(n · I)− S · I
r3

, (2.2)

Hang =
µ0

4π
2gnµnµB

L · I
r3

, (2.3)

where µ0 is the vacuum permeability, µB the Bohr magneton, and gnµn the nuclear gyromagnetic
ratio with nuclear g-factor gn and nuclear magneton µn; r is the vector pointing from the nucleus to
the electron, r = |r|,n = r/r, and S,L, and I denote the electron spin, electron angular momentum
and nuclear spin operators, respectively.

In a QD, the electron’s wave function is delocalized over 104− 107 lattice nuclei and it interacts with
all their spins

Hhfi =
∑

j

Hfc(rj , Ij) +Hdip(rj , Ij) +Hang(rj , Ij). (2.4)

In the cases of interest in this Thesis, the hyperfine interaction (HFI) is weak compared to the level
splitting between the electron’s motional eigenstates of the confinement Hamiltonian provided by
quantum dot potential (the “orbital part” of the Hamiltonian). Hence Hhfi can be treated as a
perturbation of the electron’s Hamiltonian and the leading term is given by the projection of Hhfi to
the subspace of the ground-state electron, which is a pure spin Hamiltonian into which the electron’s
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2 State Engineering and QIP with Nuclear Spins in QDs

|↑, i〉

|↓, i〉
HffHffHffHffHffHffHffHffHffHffHff

Fig. 2.5: A single-electron in the orbital ground state of a QD, delocalized over many lattice atoms carry-
ing nuclear spins (unpolarized). The Zeeman split electron states split in many hyperfine levels due to the
Overhauser term ASzAZ ; Hff couples the two manifolds.

wavefunction enters only parametrically by determining (a) the relative size of the three terms in
Eq. (2.4) and (b) the effective interaction strength with the jth nucleus.

For conduction band electrons in III-V materials such as (In)GaAs, which have mainly s character (the
conduction band is largely formed by s electrons) their hyperfine interaction is mainly given by the
contact term (since s wave functions have a finite overlap with the atomic nucleus) while the dipolar
and angular momentum terms are much smaller (due to symmetry and zero angular momentum) and
are neglected in the following. This yields the dominant (Fermi contact) hyperfine Hamiltonian which
is central to most of the investigations in the first two parts of this Thesis:

Hhf = S ·
N∑

j=1

αjIj ≡ AS ·A. (2.5)

Here we have introduced the hyperfine coupling constant A and the collective nuclear spin operator
A =

∑
j αjIj with normalization such that

∑N
j=1 αj = 1. 2

Typically, we are interested in a situation with additionally applied external magnetic field Bext =
Bextz in z direction and associated electronic and nuclear Zeeman terms. Then, there are two distinct
parts to Hhf : the Overhauser term ∝ SzAz, an additional, effective magnetic field in z direction
provided by the nuclei (“Overhauser field”) and the flip-flop term ∝ (S+A− + S−A+) describing the
exchange of spin quanta between the electron and the nuclei.
We often distinguish the detuned regime in which Hff is detuned g∗µBBext � A/

√
N and the resonant

regime in which the two energies are comparable (and the exchange of spin excitations between
electron and nuclei is efficient).

Let us add here a remark on the applicable energy scales in discussing the hyperfine dynamics in
QDs.

2With this normalization, A corresponds to the interaction energy of the electron spin with a fully polarized nuclear
spin system. For a typical state, the value is a factor ∼ 1/

√
N smaller (reflecting the typical size of the matrix

elements of the operators Ar). The number N of coupled nuclei is defined using some cutoff, neglecting very weakly
coupled nuclei. Typical values for N vary from 104 in small SAQDs to several 106 in large EDQDs.
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confinement energy 10− 100 meV
orbital energy differences 1− 10 meV
Zeeman energies 25 µeV/T

hyperfine interaction A ∼90 µeV GaAs, fully polarized
A ∼150 µeV InAs, fully polarized

A/
√
N ∼0.1− 1 µeV random state, dot size N = 104 − 106

∼ A/N ∼0.01− 10 neV single nucleus i/a with electron (“Knight field”)

nuclear Zeeman energy 4 neV/T
quadrupole interaction .10 neV strain induced shifts, cf., e.g., [168]
nuclear dipole interaction 8 peV for GaAs, [220]

Table 2.1: interaction energy scales in a quantum dot

Note that A ∼100 µeV gives the maximum interaction strength for fully polarized nuclei. It is often
expressed in terms of the equivalent effective magnetic field strength A/(g∗µB), which can amount
to several Tesla in fully polarized GaAs QDs. But the fraction of states showing such a strong
interaction is small, and for a randomly chosen nuclear state (or, in case of a highly polarized system,
when considering Hff only), the effective strength of the hyperfine interaction is reduced by a factor
∼
√
N to typical values of 0.1− 1 µeV depending on the size of the QD.

This yields a hierarchy of time scales which is useful in the analysis of the system: The electronic
dynamics (both orbital and Zeeman) is much faster than the HFI which is again much faster than the
nuclear Zeeman and dipolar dynamics. Moreover, HFI affects the electron much faster than it changes
a single nuclear spin (ratio between 1/N and 1/

√
N). These relations will

Note however, that for large nuclear polarization the HFI energy (Overhauser shift) is comparable to
typical Zeeman energies and can have decisive influence on the electronic dynamics which becomes
important, e.g., in the context of dynamical polarization of the nuclear spins (cf. Section 2.2.1,
p. 17).

Electron Spin Decoherence Due to Nuclei

The most notable effect of the hyperfine interaction is a fast dephasing of the electron spin qubit (on
a time scale of nanoseconds) in the random field of the (unpolarized) nuclear spin ensemble and a
slower decoherence of the electron spin due to fluctuation of the nuclear field on a time scale set by
the direct and mediated nuclear-nuclear interaction.

This interaction and its decohering effect on the electron spin has been studied in great detail and
with increasing sophistication of the analytical and numerical methods.

The main effects can already be seen in a semiclassical treatment in which the electron precesses
in a magnetic field including the quasistatic contribution of the Overhauser field which, in turn,
precesses (much more slowly) in the average field of the electron spin (Knight field) [36, 81, 175].
This approach is supported by [41], which argues that as long as only (ensemble averaged) electronic
properties are of interest a semiclassical treatment (classical approximation for the nuclear spins) is
adequate.
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2 State Engineering and QIP with Nuclear Spins in QDs

In a finite magnetic field (the case of detuned flip-flops), two central time scales were identified
[130, 131, 220]: the (hyperfine-induced) electron decoherence time T2,hf ∼ ~N/A which arises from
fluctuations of the nuclear spins (and thus the Overhauser field) due to the inhomogeneity of the
coupling constants αj . This can be in the range of 1− 10 µs for GaAs QDs. Much faster is the
ensemble dephasing time T ∗2,hf ∼ ~A/

√
N : it is given by the typical standard deviation of the

Overhauser field and leads to a dephasing of the electron spin within 10 ns (which can be avoided
with spin-echo techniques).

More involved quantum mechanical (perturbative) treatments analyze the highly non-Markovian
character of the interaction [51], predicting power-law decay of coherences and collapses and revivals.
The relaxation and dephasing of a DQD singlet-triplet qubit by the nuclear spin bath was analyzed
in [52, 248]. For a “narrowed” nuclear spin bath (prepared in an Az eigenstate) in a strong magnetic
field, the coherence time of the electron spin qubit is prolonged and the decay becomes Markovian
(exponential) [50].

Systematic expansions allowing to include intrinsic and mediated interaction between the nuclei
and taking into account n orders of the interaction were developed [269, 278, 282, 12]. These ap-
proaches were used to evaluate the decoherence after dephasing was removed using spin-echo pulses
and predict decoherence times no longer than 10 µs in GaAs unless more sophisticated dynami-
cal decoupling techniques [227, 163, 284] are employed or by sufficiently strong polarization [283]
achieved.

Analytical methods have been successfully employed to study the dynamics of the central spin system
for specific initial conditions of the system such as the fully polarized spin-bath with flipped central
spin [220]. The central spin system is integrable (even in the inhomogeneous case) and can be solved
by a Bethe ansatz [90]. For small N , this solution has been used to analyze the dynamics of the system
[22, 21], providing estimates for decoherence time as well as characteristic times of non-Markovian
features such as the amplitude and dominant frequency components of the damped oscillations of the
central spin.

We conclude this section by mentioning two very simple but useful approximations to the electron-
nuclear dynamics, that give a simple intuitive picture and allow rough estimates for the electron-
nuclear dynamics that often already contain the main qualitative features.

Homogeneous Coupling – It is often a good first approximation (especially for large QDs) to take
the coupling constants αj = 1/N . In that case, the collective nuclear operators A±,z (multiplied by
N) satisfy standard angular momentum commutation relations and the Hilbert space of the nuclear
spins (H = C2n for the case of spin-1/2 nuclei) decomposes into invariant subspaces H = ⊕J,βHJ,β
labeled by the total angular momentum J and a set of permutation quantum numbers β [7]. Then
dimHJ,β = 2J + 1 and it is spanned by the Jz-eigenvectors |J,m, β〉 ,m = −J, . . . , J (often referred
to as Dicke states). Since HFI preserves these subspaces the dynamics can be discussed on each one
separately.
Regarding decoherence of the electron spin, this can be readily obtained by letting the electron
interact with a |J,m, β〉 and averaging over J,m, weighing each subspace with its (J-dependent)
degeneracy [7].

Holstein-Primakoff approximation – A simple and useful theoretical method to analyze the dynamics
of is bosonization of the spins by the Holstein-Primakoff (HP) transformation [114]. By this one
refers to the following exact transformation expressing the spin operators J±, Jz of a spin-J system
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2.1 Introduction

in terms of bosonic creation and annihilation operators b, b†. Let us introduce it here although we
will mainly use if It is straight forward to check that

J− =
√

2J − b†b b (2.6a)

J+ = b†
√

2J − b†b (2.6b)

Jz = −J + b†b (2.6c)

hold on the subspace spanned by the first 2J + 1 eigenstates of b†b (and that this subspace is left
invariant by the operators on the right hand side of Eqs. (2.6a)). The transformation becomes useful
for highly polarized systems, i.e., if the square root can be expanded, leading to the HP approximation
J− ≈

√
2Jb + o(b†b/(2J)). This description and variations thereof have been used in several of the

results presented in this Thesis.

This picture [241] and its systematic extension to the inhomogeneous case [44], can be used to analyze
the dephasing and decoherence of the electron spin for a (sufficiently) polarized spin bath and in an
external magnetic field: the HP approximation then leads to a Jaynes-Cummings Hamiltonian for
the hyperfine interaction. Depending on the applied field, it describes detuned or resonant Rabi os-
cillations of the electron spin. In the former case, the variance of the Overhauser term b†bSz leads to
dephasing on a time scale 1/(A

√
Vatb†b). In the resonant case, there are Rabi oscillations induced by

Hff (with frequency ∼ A
√

2J) which lead to decay and revivals of the electron spin. Unless the state
is very narrow, they dephase under the influence of the Overhauser term [44]. Moreover, due the in-
homogeneity there are correction terms to HJC describing the coupling to other, independent bosonic
modes, which eventually leads to decoherence and decay of the JC dynamics.

Three main remedies to decoherence by the nuclear spin bath have been pursued:

• Dynamical Decoupling – Spin-echo schemes [60] can remove the dephasing due to the (qua-
sistatic) random mixture of effective Overhauser fields. But decoherence due to nuclear dy-
namics remains unless further efforts are taken, e.g., to dynamically decouple (some of the)
nuclear spins from each other [284] or by suitable state preparation [283]. However, even with-
out these more sophisticated techniques, nuclear spin dynamics is sufficiently slow [183, 138, 157]
to allow for electron coherence times of 200 µs [19] (in principle) well above the 1% error-per
gate rate required for fault tolerance [259].

• State preparation through polarization or measurement – Preparing the nuclear spins in an
eigenstate of the Overhauser field operator Az removes the main cause of dephasing (and also
restores to some extent Markovian decay of the electron spin [50]). This has motivated numer-
ous proposals for measuring Az [33, 136, 243, 93].
A second approach employs dissipative dynamics (typically, a suitable fast polarizing process
applied to the electron) to drive the nuclear spins deterministically to a highly polarized state
(with a large, sharp value of Az), a process known as dynamical nuclear polarization (DNP).
While for a purely thermal polarization procedure a noticeable reduction of ∆Az requires very
high polarizations (99% for a reduction by a factor 10) many DNP processes have a built-in reso-
nance structure which leads to a narrow steady-state Overhauser field even at low polarizations,
see Section 2.2.1.
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2 State Engineering and QIP with Nuclear Spins in QDs

• New Materials – As already mentioned, materials with low nuclear spin concentration have
been proposed for QIP applications to avoid the decoherence by hyperfine interaction. Most
notable and advanced among these are silicon-based systems such as P donors in Si [128] and
SiGe quantum dots [233, 264] and those based on carbon such as NV centers in diamond [272] 3.
Very long coherence times have been demonstrated in these systems [242, 173]. Still, also these
qubits are exposed to a spin-bath due to the non-zero fraction of spinful nuclei and spin-carrying
defects, so that the methods to describe and cope with this environment are still applicable
[60, 267].

This sets the stage for the work presented in this Thesis:

Preparing the State of the Nuclear Spins

Due to the weak interaction of the nuclear spins with external fields, direct thermal polarization
is not practical to prepare them in a pure state. Even at B =10 T and T =100 mK the thermal
polarization of GaAs nuclei would only be P = p+−p− = (e−βE+−e−βE−)/(e−βE+ +e−βE−) = 0.004
with E± = ±40 neV and β =0.1 /µeV. Instead, one uses the interaction with the electron (which
itself can be controlled very well as demonstrated in the QIP experiments reviewed above) to change
the nuclear state.

The standard approach is dynamical nuclear polarization (DNP), in which the electron spin is strongly
polarized and HFI used to transfer this polarization (partially) to the nuclei, DNP has a long and
successful history in bulk systems [188, 155, 174, 218] and afforded many insights in the spin dynamics
in solids [189, 174]. The novel aspect in DNP in QDs [146] is that a single microscopic quantum system
(two-level electron with fixed wave function) is used to polarize a mesoscopically small, well-isolated
nuclear spin system. The small size enhances the coupling per nucleus, has allowed experimentalists
to reach much higher polarization than in bulk, and the fixed wave function (and therefore fixed
interaction strength which each nucleus) may make the quantum coherences between the nuclear
spins relevant for the polarization process.

There are two main approaches to nuclear state preparation, either using dissipation (induced via HFI
with the electron) to drive them to a well-defined stationary state (dynamical nuclear polarization
(DNP)) or measurement, in which electronic and nuclear degrees of freedom are correlated by HFI and
measurements of the electron, e.g., detection of an Overhauser shift of the Zeeman splitting, is used to
extract information about the nuclear system. In Section 2.2 we present theoretical investigations into
both approaches as well as one that combines both of them to reach the limit in which Az is defined
to a precision on the order of a single spin-flip. Let us mention results on nuclear spin preparation
via transient unitary dynamics to prepare spin-squeezed states [214].

Using the QD Nuclear Spins for QIP

Nuclear spins can become useful for spin-qubit QIP in solid-state systems mainly as a high-quality
quantum memory. Atomic qubits mostly use hyperfine levels to store quantum information, and with
atom-like solid-state spin qubits (Si:P,NV centers) this direction has also been successfully pursued
[173, 242]. The case of QDs is different, due to the large number of weakly coupled nuclear spins

3Other approaches such as QDs in carbon nanotubes (CNTs) [171, 88] or in graphene [205] are still in a very early
stage of investigation and not further discussed here.
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which makes initialization of the memory difficult and almost precludes individual addressing of the
nuclei.

But similar to quantum memories (for light) proposed using spin-polarized atomic ensembles [148, 85],
collective excitations of a highly polarized nuclear spin system might be used to store quantum infor-
mation [247, 70, 153]. In Section 2.3 we present further applications in this vein.

2.2 Nuclear Spin State Engineering: Dynamical Polarization and Measurement

In this Section we present different approaches to the preparation of the nuclear spin ensemble in
a desired state. We are interested in reaching states characterized by reduced standard deviation
∆Az of the Overhauser field Az compared to the maximally mixed state (∆Az|1 ∼ 1/

√
N) and high

polarization. The motivation is mainly, that reduced Az-variance means longer electron T ∗2 time and
thus a better electron-spin qubit. In addition, the “internal” dynamics of the nuclear spin system
(e.g., due to dipole-dipole interaction) is slowed down for highly polarized states, thereby increasing
also the proper coherence time T2 [266]. Moreover, preparation of a well-defined nuclear spin state
is the starting point for using the nuclear spin system itself for QIP purposes, e.g., as a quantum
memory [247] and may also open the door to interesting studies of the dipolar nuclear spin system
to the detailed study of the nuclear spin system under the combined influence of the dipole-dipole
and the electron-mediated interactions [210, 234]. Finally, as we shall see, the dynamics of the state-
preparation process itself can be highly interesting, featuring bistability, cooperative effects, spin
squeezing, and steady-state phase transitions. This will be further explored in the first part of the
next Chapter (Section 3).

We consider first dynamical nuclear polarization (DNP) schemes, then measurement-based schemes
and finally a combination of the two.

2.2.1 Dynamical Nuclear Polarization

In our theoretical treatment of the nuclear polarization process we consider strong optical or electronic
driving of the electron and make use of the different timescales of electronic and hyperfine/nuclear
dynamics (cf. Tab. 2.1, p. 13) to adiabatically eliminate the electronic degree of freedom and derive
an effective quantum master equation for the nuclear spin system. This equation describes a situation
in which the electronic subsystem quickly settles into a (quasi-)stationary state which then effectively
drives a dissipative time evolution of the nuclear system.

Since the Overhauser field in GaAs QDs can be very strong, the separation of time scales is not com-
plete and the change of dynamics of the nuclear system (in particular, the build-up of an Overhauser
field) can significantly affect the electronic dynamics and thus its stationary state which then acts
back on the nuclear dynamics. This feedback between electronic and nuclear system is responsible
for the hysteretic and bistable dynamics observed in DNP.

Theoretically, cooling dynamics has mostly been considered using a semiclassical approximation in
which the nuclear spin operators were replaced by mean values in the spin-temperature approximation
[2, 174, 146, 63, 144, 212, 211, 58, 116, 213], in which coherences among the nuclear spins are neglected,
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see however, [201, 100, 101] for a quantum treatment of DNP in a DQD and [25, 26] for the interplay
of HFI and spin-orbit interaction.

This is appropriate if, as in bulk or quantum well systems, there is no fixed electron wave function
and many motional states are involved, or if the nuclear dephasing rate is large. In quantum dots,
however, the nuclei interact collectively with an electron in the motional ground state of the QD
and the higher motional levels are far detuned. Therefore the coupling strength of each nucleus is
fixed, and well-defined phase relationships between the nuclear spins can build up, necessitating a
quantum treatment of the process. This was pointed out by Imamoğlu et al. [120], who showed that
the cooling process can be inhibited by so-called dark states, which trap excitations and potentially
result in serious constraints on the achievable polarizations. Inhomogeneities (either inherent in the
system or introduced actively, e.g., by modulating the wave function of the electron) can mitigate
this problem [120], but the ideas were tested numerically only in very small systems (10 nuclear
spins).

Since the effect of inhomogeneities is expected to be reduced for larger systems [247], and thus
limitations due to dark states may be more severe (in fully homogeneous systems, the achievable
polarization would be negligible due to dark states) we developed in [G:5], reprinted on p. 49ff a
full quantum model of DNP which was refined in later work [G:18, G:20] and is summarized in the
following.

To exhibit most clearly the effects of collective coupling on the DNP dynamics, we consider the case
of a singly-charged QD in which the electron is fully polarized, e.g., by ideal optical pumping or
coupling to a fully polarized reservoir. The ensuing master equation for the reduced density matrix
µ of the nuclear spins then describes an almost ideal polarization process

µ̇ = cr
(
A−µA+ − {A+A−, µ}+/2

)
− i[g

2
Az + ciA

+A− + gnµnBextI
z, µ], (2.7)

which besides the (first) spin pumping term only contains Iz-preserving Hamiltonian terms describing
the nuclear Zeeman energy, the inhomogeneous Knight field of the electron (∝ Az) and an electron-
mediated interaction between the nuclear spins. The coefficients cr, ci are given by

cr =
g2α

4∆2
, (2.8)

ci =
g2ω0

4∆2
, (2.9)

where ∆ is the effective Zeeman splitting (including the instantaneous Overhauser field) between the
two electronic spin states, g = ghf

∑
j α

2
j the hyperfine coupling strength, ω0 the bare Zeeman split-

ting, and α electron tunnel coupling to the leads. For details, see Fig. 2.6 and [G:20].

From this form of the master equation several conclusions can be drawn that were derived and
explored more fully in [G:5, G:9, G:13, G:20]:

• Due to the collective nature of the spin pumping Lindblad operator A−, there are many not
fully polarized states |D〉 in the kernel of A−. For these, DNP is significantly slowed down (or
fully inhibited, if |D〉 is also eigenstate of the total Hamiltonian).

• This “blockade” is partially lifted by the inhomogeneous Knight field Az in the Hamiltonian.
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Fig. 2.6: Spin-blockade setting for DNP [G:20]. If
electron tunneling described by the parameters
α, β is fast, the electron reaches an ↓-polarized
quasi-steady state and then polarizes the nuclei
since spin-blockade can only be lifted by a hyper-
fine flip-flop.

Fig. 2.7: Polarization dynamics: Time-evolution
of Overhauser field in a generic DNP protocol
[G:5]. (A) Note the reduced asymptotic polariza-
tion if nuclear coherences are taken into account
(compared to the semiclassical model of a prod-
uct nuclear state. (B) Changing the electron wave
function can enhance the ultimate polarization by
lifting dark-state coherences.

• For completely homogeneous coupling only a fraction ≤ 1/
√
N can be polarized.

• To reach very high polarization, it may be useful to change the quantum dot potential so that
different electron wavefunctions (and hence different coupling constants αj) are operative at
different times, see Fig. 2.7.

• When solving the master equation Eq. (2.7) for 〈Izj (t)〉 we find that it depends only on the

spin-spin correlations 〈I+
j I
−
k 〉, which, in turn, depend on higher-order correlations, leading to

a hierarchy of equations. It can be solved numerically only for rather small systems, but it
suggests an approach to find approximate solutions by invoking factorization assumptions [6],
e.g., neglecting correlations between different spins or approximating fourth-order correlations
by Wick-like expressions of second order. Several of the standard The “semiclassical” approxi-
mation which assumes the nuclei to be in a product state at all times neglects all correlations
between different spins 〈I+

j I
−
k 〉 ∝ δjk. We will make frequent use of factorization schemes that

reduce fourth-order terms to products of second order terms to close the equation. This allows
to keep coherences between nuclear spins and effects like dark states (and superradiant states)
while still keeping the equations manageable and providing numerically accurate results for
small systems for which comparison with exact numerics is possible [G:8, G:13].

• The master equation Eq. (2.7) is closely related to the one studied in the context of the quantum
optical effect of superradiance [99]. This motivates the first studies reported in Section 3.
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• Note that the separation of time scales used in the derivation of Eq. (2.7) requires that we work
in the detuned regime. As seen in Eq. (2.8) this detuning slows DNP down.

• The coefficient of the master equation depends on the nuclear spin state via the Overhauser
shift that contributes to ∆. This introduces and effective nonlinearity into the dynamics which
can be understood as underlying, e.g., the bistable behavior predicted [57, 58, 145, 137] and
[G:18] and observed [142, 27, 216, 151] in DNP in QDs.

In the general case, the nuclear spin master equation contains more terms. One the one hand, we
have neglected any internal nuclear dynamics as, e.g., the slow depolarizing process that restores the
〈Az〉 = 0 stationary value in the absence of pumping. Other terms arise, since the electronic steady
state is usually not pure and more electronic levels and hyperfine induced transitions may be involved
(e.g., in a two-electron DQD, one usually has to consider five electronic states spanning the ground-
state subspace). Together with the effect that the nuclear spin state can have on the electronic
level scheme this can give rise to a very varied and rich dynamics, including “self-polarization”
[73, 146, 212], nuclear-spin “narrowing” and “dragging” [156], bi- and multi-stability [186, 118, 142,
4, 27, 169, 246, 58]. A recent and thorough review of DNP in optically active QDs is provided
[253].

In [G:14] and [G:23] we consider two such more complicated and realistic situations encountered in
two specific DNP experiments. We adapt the derivation of the master equation to the cases of an
optically driven neutral SAQDs (with five relevant levels – the empty QD and four excitonic states)
and a two-electron DQD in the inhomogeneous field of an on-sample nanomagnet. In both cases we
provide a simple model and show that the approximation by a rate equation for the nuclear spins that
captures the main features of the observed steady-state behavior. It allows to identify the operative
DNP mechanism and suggests how to improve the DNP process. The first is notable for the fact
that no polarization of the electronic steady state is needed to impart a large polarization to the
nuclear system. The polarizing dynamics occurs since one of the two possible flip-flop processes is far
more detuned that the other, leading to a net polarization rate. The experiment [G:23] achieves the
largest polarization reported in lateral QDs to date in an more usual way: the inhomogeneous field
of the nanomagnet changes the electronic steady state population (compared with the case without a
magnet) and selectively drains population two of the three main steady-state components by coupling
them much more efficiently than the third, leading to a polarized electronic steady state which drive
DNP.

Further theoretical development of the model in [G:13, G:20], where we explore, in particular, the
cooperative aspect of the collective dynamics which becomes most evident when we use Eq. (2.7)
to depolarize a nuclear spin system (that had previously been polarized by interaction with spin-↑
electrons) (cf. Section 3.2, p. 32).

If the objective is only to reduce the Overhauser field variance, then DNP is not the best procedure
to chose: DNP tries to increase |Az| by driving all nuclear spins into a polarized state and signif-
icant narrowing is only achieved for very high polarization, which requires to push all states into
a very small subspace of the total Hilbert space. Other Az eigenvalues (not close to maximal) are
highly degenerate and it may be preferable to measure the Overhauser field in order to reduce its
variance.
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2.2 Nuclear Spin State Engineering: Dynamical Polarization and Measurement

2.2.2 Measurement of the Ensemble Nuclear Spin

To measure the “Overhauser field operator” Az the natural choice is to exploit the QND-type coupling
SzAz and measure it via the electron. To suppress Hff which disturbs the QND coupling one works at
sufficiently strong magnetic field. Measuring the resonance frequency of electronic states as shifted
by the Overhauser term is one way to determine Az which has been pursued [33], however, the
natural linewidth of the QD exciton (1 µeV) corresponds to a width of several 100 nuclear spin
flips, hardly reducing ∆Az below its value in the fully mixed state. Instead, ESR, two-photon
resonance techniques or quantum phase estimation may allow a significant narrowing [136, 243, 93,
38].

In [G:2], reprinted on p. 84ff we propose a method for estimating an unknown quantum field associated
with a mesoscopic spin ensemble. By using an incoherent version of the quantum phase estimation
algorithm, [133, 182] we show that the number of qubit measurements scales linearly with the number
of significant digits of the estimation. We only assume the availability of single qubit operations such
as preparation of a known qubit state, rotations in the xy-plane, and measurement, of which only
rotations need to be fast. The estimation procedure that we describe would suppress the dephasing
of the qubit induced by the reservoir. If the measurement of the reservoir observable is sufficiently
fast and strong, it may in turn suppress the free evolution of the reservoir in a way that is reminiscent
of a quantum Zeno effect.

While our scheme is relatively fast and uses a minimum number of interactions to extract information
about Az the experimental demands (especially electron shuttling and precise timing and high-fidelity
single-electron spin measurements) are still quite demanding.

Our second approach [G:3], cf. p. 92 uses an optical method which only requires photon counting and
relies on the effect of electromagnetically induced transparency (EIT). EIT is two-photon resonance
effect in which a three-level atom with a Λ-configuration interacts with two lasers and is driven into
a coherent superposition of the two ground states which is decoupled from the lasers: If two lasers
are in two-photon resonance 4 so that in a suitable rotating frame the Hamiltonian of the atom
reads

H = ωe|e〉〈e|+ (Ω1|e〉〈1|+ Ω2|e〉〈2|+ h.c.) (2.10)

then |D〉 ∝ Ω2 |1〉 −Ω1 |2〉 is an eigenstate of H and not coupled to the excited state, i.e., it does not
scatter any laser light (it is “transparent” to the laser light; the atom remains “dark”). Spontaneous
emission from |e〉 brings the atom to state |D〉 with a finite rate and after that no photons are
scattered. This has also been referred to as “coherent population trapping” (CPT), cf., e.g., [226].
This effect depends very sensitively on the two-photon detuning between the levels/lasers: if one
ground-state level shifts relative to the other, the dark state becomes bright and the atom scatters
light. We propose to use this effect in a one-electron QD 5 to determine Az: in the detuned regime,
the number of scattered photons tells us, how far we are from resonance. By adjusting the laser
detunings (which can be done fast on the timescale of nuclear dynamics so that we can treat the
nuclei quasi-statically) until no more light is scattered we can determine AAz to within the width of
the two-photon resonance (which corresponds to a few nuclear spin flips).

4The detuning of the first laser from the transition 1↔ e should be the same as that of the second laser from 2↔ e.
5A Λ-scheme connecting the states |↑z〉 and |↓z〉 is possible, since the “diagonal” transitions (cf. Fig. 2.3) is weakly

allowed due to heavy-hole–light-hole mixing.
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2 State Engineering and QIP with Nuclear Spins in QDs

Fig. 2.8: EIT-based measurement scheme: conditional evolution of the Overhauser field distribution [G:3].
Given some prior Overhauser field distribution, we tune the lasers such that its maximum corresponds to two-
photon resonance. Conditioned on non-detection for a time t the peak is enhanced (dashed lines). A scattered
photon then modifies the OH distribution. Updatingteh distribution and tuning to the new peak leads to
further narrowing conditioned on non-detection. The third plot depicts a typical conditional distribution after
11 photo detections, the last one after ∼100 µs.

In fact, the “narrowing” techniques that were most successful in practice so far did not fall in either of
these classes. They are DNP schemes in which the DNP rate depends sensitively on the Overhauser
field (cf., e.g. Eq. (2.7)); this can lead to sharp resonances in DNP as a function of 〈Az〉. Combined
with the slow decay of the nuclear spin polarization to the unpolarized states this result in very
narrow “stationary state polarizations” [58] even if the total polarization is rather small [156, 275,
244, 18]

In the following section we present a method that builds on the EIT-measurement scheme to engineer
such a narrow stationary-state condition. If combined with measurement and feedback, it may allow
to prepare states of the nuclear system in which Az is determined to a precision corresponding to a
single nuclear spin flip. The scheme has already found application for state preparation in NV centers
[250].

2.2.3 Nuclear Spin Cooling Using Overhauser-Field-Selective CPT

In [G:11, G:12], reprinted on p. 96ff, we show that EIT/CPT in the spin states of a solid-state
emitter could be used to deterministically prepare a nuclear spin environment with ultra-narrow
Overhauser field distribution. This scheme is an extension of the EIT-based measurement scheme
just discussed. It considers again a single electron in an optically active QD under illumination by
two lasers and takes into account the laser-induced nuclear spin diffusion that is mediated by Hff . We
show that the diffusion rate is proportional to the population in the optically excited state (trion) of
the QD. Consequently, if for the given laser frequencies the current OH value does not satisfy the EIT
condition (two-photon detuning = Overhauser shift), the excited state will be populated, the nuclear
spins will diffuse and Az will change. The diffusion comes to rest at the dark state resonance when
the population in the excited state (ideally) drops to zero. We show that when the coupled system
is in the dark state, the Overhauser field has a standard deviation on the order A/N (corresponding
to a single spin flip).

It should be noted that the diffusion induced here is undirected (inducing a random walk) and there
is a large range of Az-eigenvalues to explore. However, the spectral density of Az is concentrated
in an interval [−1/

√
N,+1/

√
N ], while there are only exponentially few states with eigenvalues of
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2.3 Using the Nuclear Spins for QIP protocols

order 1 [G:12], see also [251]. This effectively restricts the interval to be explored by the random
walk and ensures that if the system leaves the trapping region it returns sufficiently quickly to keep
the steady-state Az-variance small.

An additional feature of the scheme is the possibility of using resonant fluorescence to verify the
preparation of a narrow nuclear spin distribution [G:3]; turning the laser fields off after a dark state
has been reached ensures that the Overhauser field distribution remains in the single-spin regime
within timescales determined by the (intrinsic) nuclear spin lifetime; the corresponding electron spin
T ∗2 time will then be prolonged by a factor ∼

√
N . Note that – by construction – this scheme

narrows a “generalized Overhauser field” Ãz which is renormalized by a contribution ∝ {A+, A−}+
(representing the leading-order contribution of Hff). This implies that the nuclear spins in the
prepared state do not evolve due to electron-mediated indirect interactions, eliminating a principal
contribution to electron spin T2 time [130, 248].

2.3 Using the Nuclear Spins for QIP protocols

In this section we propose and analyze different ways in which the nuclear spin ensemble may be made
useful for quantum information processing purposes. The main motivation are their strong coupling to
the electron and otherwise very good isolation and long life- and coherence time.

Broadly speaking, two ways to actively use nuclear spins in QDs for QIP have been explored. On
the one hand, the nuclear spins can be of help to perform quantum gates on the electron spin qubit,
since they can provide a stable, localized, effective magnetic field. Many single-qubit gates require
the controlled, time-dependent application of strong magnetic fields acting on individual spin qubits
in QDs, which is challenging to achieve. One solution is the inclusion of micro- or nanomagnets in
the setup [196, 185, 192] and to move the electrons (by electrical control) in their inhomogeneous
field to induce the desired gate [166, 104, 86]. Polarized nuclear spins could play a similar and
potentially more versatile role: even a 10% polarization difference between the two QDs in a GaAs
DQD amounts to a few 100 mT in effective field difference (much larger than nuclear field fluctuations)
and thanks to the long nuclear spin lifetimes this can be considered static on the timescale of the
electron dynamics. Combined with time-dependent voltages applied to the QD electrodes such a
static field gradient can be utilized for (single-qubit) gate operations [209] in lieu of time-dependent
magnetic fields which are difficult to produce quickly or in such a localized way. To implement a phase
gate, a spin qubit can be moved into a partially polarized QD for a suitable time; for singlet-triplet
qubits Overhauser-field gradients enable rotations between the computational states [86] or they
can be exploited to allow individual addressing of single electrons in a DQD by resonant microwave
radiation [154]; finally, NMR techniques allow the rapid rotation of the Overhauser field, thereby
providing localized oscillatory magnetic fields [167]. More complicated transitions between multi-
qubit states can be implemented via Landau-Zener type transitions in an inhomogeneous magnetic
field [194, 209, 91].

For the “static” Overhauser field applications, the only requirements are sufficiently narrow Over-
hauser field and sufficiently long relaxation time (T1) of the nuclear spins. Depending on the system,
lifetimes from seconds to hours have been observed [G:14, G:23], all much longer than the time needed
for Overhauser-field-based quantum gates (micro- to nanoseconds).
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2 State Engineering and QIP with Nuclear Spins in QDs

The second kind of QIP application involves quantum mechanical degrees of freedom of the nuclear
system and exploits the long coherence time of nuclear spin to store and process quantum information
in the nuclear spin system. These proposals of nuclear spin quantum memory [247, 153], quantum
interface [G:17], or quantum register [G:1] require relatively high nuclear polarization and have not
yet been implemented experimentally. For these applications, the coherence time (T2) of the nuclear
spin is crucial. In [62, 241, 282], T2 times for the nuclear spin qubit on the order of 1 ms are predicted.
There have been only a few studies of the nuclear spin T2 time in quantum wells [187] and quantum
dots [167], which confirm these values. Further improvements could be achieved with NMR dynamical
decoupling techniques and improved state preparation (high polarization).

As mentioned above, for NV centers and for Si:P, this expectation has been confirmed, and coherence
times above 180 s at few K temperatures [242] and still more than 1 s at room temperature [173] have
been demonstrated. In these cases, single nuclear spins are used for storage 6. They can be individ-
ually addressed spectroscopically due to the specific strength of their coupling to the central spin.
In contrast, in QDs the hyperfine splitting is quasi-continuous due to the large number of inhomoge-
neously coupled spins [251] and only collective excitations can be accessed.

In this Thesis we present a number of QIP applications of nuclear spins as quantum memory.

Nuclear Spin Quantum Register

We build on the quantum memory proposal [247] and the quantum optical analogy of the polarized
nuclear spin system and the electron spin as a (approximate) realization of the Jaynes-Cummings
model [231]. The Jaynes-Cummings Hamiltonian

HJC = g
(
S+a+ S−a†

)
(2.11)

has been extensively analyzed in quantum optics and for quantum information processing. It allows
(together with control over the two-level system) to prepare any state of the bosonic mode [159]. The
realization of HJC for cold trapped ions 7 was the basis for the seminal proposal of the trapped-ion
quantum computer [47].

In [G:1], cf. Section 7, p. 113 we exploit this analogy to show how to couple, manipulate, and measure
qubits realized as collective excitations of the nuclear spin ensemble. Ideally, the logical |0〉 is given
by the fully polarized state and logical |1〉 ∝ A+ |0〉. For large N we can use the Holstein-Primakoff
approximation A+ ≈

√
N (cf. Eqs. (2.6a)) to turn Hhf into a JC-Hamiltonian. Consequently,

quantum gates developed in the trapped-ion context can be used for the nuclear-spin-ensemble qubit
as well. This allows, in particular, the implementation of a C-NOT gate between electron-spin
and nuclear-ensemble qubits. Coupling between different nuclear-spin ensembles requires either to
coherently shuttle electrons between quantum dots or the off-line generation of entanglement which
can then be used to implement non-local gates by local operations and classical communication
[46]. We estimate the error contributions due to different imperfections and find that the fidelity
is limited by the width of the Overhauser field and that with polarizations above 90% and a factor

6Or a small number of individually addressable spins as demonstrated in [245].
7Two internal states of the ion were coupled via suitable lasers to the mode defined by ions’ quantized collective in

the harmonic trap.
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2.3 Using the Nuclear Spins for QIP protocols

10 reduction of the width of the Overhauser field, two-qubit gate fidelities above 0.99 should be
achievable.

Nuclear Spin Quantum Interface

The quantum optical analogy used above is extended in [G:17, G:16] (cf. Section 7, p. 117) to show
how to map states of the electromagnetic field coherently to (and from) the nuclear spin system.
Specifically, we then show that the nuclear spin quantum memory can also be used as part of a
light-matter quantum interface: a QD strongly coupled to a high-Q cavity can be used to engineer
an effective coupling

∝ A±b+A∓b† (2.12)

between an optical field mode b of the cavity and the nuclear spin system (plus some additional
terms as discussed in the paper). This is achieved as follows (cf. Fig. 2.9): cavity and control
laser drive a (detuned) Raman spin-flip transition between the two electron spin states. However,
we chose the laser frequency such that the two-photon detuning is large for the transition between
the two ground states, but resonant with a transition between two adjacent hyperfine levels. This
transition is made possible by Hff . As we discuss in [G:16], both terms ± are present in general (due

|⇑↑↓〉
|⇓↑↓〉

|↑,m + 1〉
|↑,m〉

|↑,m− 1〉

|↓,m− 1〉
|↓,m〉
|↓,m + 1〉

Ωl

b†

S+A−

Fig. 2.9: Coupling the nuclear spins to a cavity
mode. Laser (Ωl and cavity photon (a†)) are two-
photon detuned from the |↑〉 ↔ |↓〉 transition,
but resonant with flipping a single nuclear spin.
The hyperfine flip-flop term enables the other-
wise spin-forbidden transition |↑,m〉 ↔ |↑,m− 1〉
while emitting one cavity photon. Here m labels
the number of nuclear spin excitations above the
fully polarized state m = 0 (|m+ 1〉 = A+ |m〉).
Solid lines indicate energy levels, dashed lines
show the detuning of the operative transitions.
The HF splitting is not drawn to scale. A sec-
ond Λ scheme coupling to the other trion state is
not drawn (see [G:16]).

Fig. 2.10: Quantum interface performance: Opti-
mal fidelities for readout (top) and write-in (bot-
tom) of coherent states out of/into the quantum
memory plotted as a function of the interaction
time. The fidelities are computed based on the
quadratic bosonic interaction (Holstein-Primakoff
approximation) that approximates the actual cou-
pling, see [G:16].

to a second Λ scheme via the other trion state), but by tuning the control laser one of them can
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2 State Engineering and QIP with Nuclear Spins in QDs

be made resonant while the other can then be neglected (rotating wave approximation). Thus one
can obtain either a beamsplitter-type coupling between the two systems or a two-mode squeezing
interaction, which then allows to choose between (i) mapping the nuclear spin-state to the mode
(beamsplitter) or (ii) creating a two-mode squeezed state of nuclei and light. As we show in the
paper, by properly including the losses of the cavity (linear coupling to its output field), mapping
and squeezing can be achieved between nuclear spins and output mode, even for rather short-lived
cavities. The achievable fidelities for readout and teleportation-based write-in are plotted in Fig. 2.10
as a function of interaction time, i.e., how long the beamsplitter (squeezing) Hamiltonian is applied.
The classical limit (F = 0.5) is clearly overcome for a large range. The proposed set-up is clearly
quite challenging (strong coupling to a good cavity with well-defined output mode, highly polarized
nuclear spins), but if realized it would open several possibilities: the two-mode entangled state can be
used for teleporting quantum information into the nuclear spin system (quantum interface, write-in)
or, via entanglement swapping, to entangle two distant nuclear spin systems, which could, in turn,
be used to implement long-range two-qubit gates on electron-spin qubits.

Entangling Electrons via a maximally mixed Spin Bath

The previous proposals require very high nuclear spin polarization. The opposite regime of a com-
pletely mixed nuclear spin system (with density matrix ∝ 1) might be expected to be of no use what-
soever. But as we show in [G:8], p. 170 the very slow nuclear dynamics makes it possible to use this
fully mixed systems to mediate a coherent interaction and create multiparticle entanglement between
a sequence of electrons that sequentially interact with the same spin bath.

The idea is to couple a single electron spin (the “control electron”) coherently and resonantly to
the bath (via Hff). This creates a correlation between an increased Overhauser field and the control
electron spin. A sequence of N ↑x-polarized electrons (“target electrons”) then interacts off-resonantly
with the Overhauser field, rotating ↑x to ↓x and back with a frequency depending on the value of Az,
i.e it differs depending on whether the control electron flipped or not. For a static bath, this shift
is the same for a whole sequence of such electrons. Chosing the interaction time suitably we show
that the target electrons can now be projected into a GHZ-state by an measurement of the control
electron that erases the information whether the control electron had flipped or not. Surprisingly, the
resulting state is uncorrelated with the state of the highly mixed spin bath.

In [G:8] we analyze the effects of inhomogeneity in the hyperfine coupling and nuclear Zeeman energies
and conclude that our scheme could work even for realistic parameters, provided that the electrons
can be stored with high fidelity. We also show that the scheme can be modified to prepare a larger
class of multipartite entangled states (matrix product states of bond dimension 2). However, the
main point we want to make is that even a maximally mixed system can be used to mediate coherent
interaction and create entanglement.

After several QIP-applications of nuclear spin ensembles in QDs, we conclude this section with a
proposal involving a different solid-state system, NV centers in diamond, where single nuclear spins
close to the center can serve as a high-quality quantum memory.

Nuclear Spins Qubits in NV Centers

In [G:21], p. 162 we employ a nuclear spin quantum memory next to an NV center qubit (cf. p. 8
and 10).
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2.3 Using the Nuclear Spins for QIP protocols

Here, the NV center electron spin couples strongly to only a few proximal nuclear spins which can be
individually addressed spectroscopically. In these cases, several nuclear-spin qubits associated to the
defect have been addressed and entangled with the electron spin [180]. The nuclear spins have been
exploited as quantum memory to extend the qubit lifetime by several orders of magnitude [173] and
to improve the qubit measurement fidelity by repeated readout [125]. There have been very rapid and
impressive advances towards production, characterization, and manipulation of high-quality qubits in
diamond, with the especially attractive prospect that they might work almost at room temperature
[71]. Coherent interaction between two dipole-coupled NV centers [179, 72] and even between NV
centers in two different samples [16] (separated by a 3 m) was demonstrated.

Motivated by the rapid technological and theoretical progress of the diamond QIP platform, we
combine recent advances into a proposal to integrate NV center qubits into a scalable architecture
for a quantum computer.

The main (theoretical) challenge is to design the system such that qubits are close enough (to each
other) for strong interaction and fast quantum gates, but also far enough that individual readout
and parallel operation on different qubits is possible. The latter is important, since favorable error
correction thresholds depend on applying many gates in parallel.

We describe and analyze a feasible diamond-based architecture, which uses of a 2D array of single NV
centers, created, e.g., through implantation of ions and subsequent annealing [11]. Each NV center
constitutes an individual quantum register containing a nuclear spin and a localized electronic spin
[273]. The nuclear spin serves as the memory qubit, while the electronic spin will be used to initialize,
read out, and mediate coupling between nuclear spins of adjacent registers.

To allow for a separation of several 100 nm between NV center qubits (this is needed both for the
proposed methods of addressing and readout and to allow for finite implantation probability) we
invoke and extend the proposal [277] to mediate an interaction between NV centers by an optically
inactive “dark” spin chain data bus (DSCB), realized, e.g., by implanted Nitrogen impurities with
spin 1/2.

With these ingredients, we propose the following hierarchy of control to achieve a scalable architecture:
on the lowest level are plaquettes of 100− 500 nm in each direction. A single computational NV center
(with associated nuclear spin) is implanted per plaquette. The plaquettes are combined into a super-
plaquettes of 10×10 µm2 each of which can be controlled by confined microwave (MW) fields. The
full quantum register is then a square array of super-plaquettes.

The benefit of this structure is the following: having only one computational NV per plaquette allows
individual optical addressing (initialization, readout) by standard far-field sub-wavelengths techniques
such as STED [265] and, as we explain presently, is also sufficient for individual MW access. While
the NV centers are then too far for direct dipole-dipole interaction, they can be coupled using a
DSCB. The coupling via the DCSB (and single-qubit operations on the nuclear spins) are done by
MW fields. In order to allow for individual addressing, different NVs (within one super-plaquette)
must be distinguished spectroscopically. This can be achieved with a magnetic field gradient (in y
direction across the super-plaquette) if the NV centers are implanted such that each one has a unique
y coordinate (e.g., for an M ×M super-plaquette one defines M rows within each plaquette and then
in the (i, j)th plaquette the NV center is implanted in the ith row, thus column and row within the
super-plaquette uniquely determine the y position and therefor a unique MW resonance frequency,
enabling individual access. Different super-plaquettes can be accessed by their individual confined
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Fig. 2.12: Arrangement of plaquettes in super-
plaquettes and staggered positioning of the NV
centers within neighboring plaquettes to allow in-
dividual addressing (cf text and [G:21]).

MW field. By defining a dual lattice of super-plaquettes and switching between operating on either
one, qubits in different super-plaquettes can be coupled.

In [G:21] we analyze in detail the technical requirements of the design, and, in particular, different
methods to implement high-fidelity two-qubit gates via the DSCB [277] (the main idea is to use
resonant MW driving and the natural (off-resonant) dipolar interaction of the spins to engineer a flip-
flop (XX) interaction between neighbouring dark spins; this allows to swap qubits either sequentially
or using an effective direct coupling between the NVs, mediated by the chain; note that this works
even if the bus spins are completely mixed and no individual control of the dark spins is assumed), and
estimate the errors contributed by various imperfections (mainly arising from off-resonant couplings
in the spin-chain transfer and regarding the individual addressing of NV qubits and the effect of finite
temperature, which affects the transfer via the T -dependent lifetime of the NV center electron spin).
Gate fidelities of 0.99 could be achievable (at ∼250 K), which would be above the quantum error
correction threshold derived in [259].

A majority of the elements required for the realization of individual qubits in our architecture have
already been demonstrated, but the implementation and integration of the various proposed ele-
ments still requires substantial advances in areas ranging from quantum control to materials sci-
ence. Nevertheless, the above considerations indicate the feasibility of experimentally realizing a
solid-state quantum computer capable of operating under ambient conditions at or near room tem-
perature.
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3 Open Quantum Systems and Phase Transitions

3.1 Introduction

The most general time-evolution of a quantum system includes interaction with uncontrolled degrees
of freedom (the “environment”) and is therefore not unitary. Such coupling can cause decoherence
[288] and typically destroys quantum effects. Therefore, avoidance of dissipative couplings has been a
prime objective in most QIP experiments and central aspects of QIT such as quantum error correction
and quantum Shannon theory deal with how to avoid and fight the decohering effect of open-system
dynamics.
Recently, it was realized that, if properly designed, even purely dissipative coupling to uncontrolled
degrees of freedom could lead to a variety of genuine quantum effects, including many-body and long-
range entanglement and universal quantum computing [149, 257, 256]. This provides (yet another
[83, 202]) alternative to the standard gate-array version of quantum computation for which the famous
Di Vincenzo Criteria [69] (which listed pure, almost perfectly isolated qubits among the requirements
for quantum computing), were formulated. This may even be particularly robust way to perform
these tasks, since quantum properties are attained in the steady state of the open system dynamics.
Hence they are unaffected by timing and preparation errors and are reached while the system interacts
with its environment, which potentially facilitates observation of the effect.

Thus there is a twofold motivation for the study of open system dynamics in we can either design our
system (codes, subspaces) to protect it against decoherence or we can tweak to environment and the
coupling to it to make dissipation useful to perform QIP tasks or to observe quantum effects. The
latter is the motivation of the contributions summarized in this Chapter.

Before summarizing the results on the occurrence and properties of phase transitions in open quantum
systems, we touch upon a few concepts and models (Lindblad dynamics, phase transitions, central
spin model) that are the common background to the research reported here.

3.1.1 Lindblad Dynamics

The simplest class of open-system time evolutions is the one described by a Lindblad-type master
equation [32]. It encompasses the important class of systems that are weakly coupled to a mem-
oryless (Markovian) environment. The corresponding time evolution Tt = etL forms a semigroup
of completely positive (CP) maps with constant generator L. The generator is sometimes referred
to as the Liouville operator or Liouvillian of the open system and can always be brought to the
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form

L(ρ) = −i[H, ρ] +
∑

k

D(Lk)(ρ), (3.1)

with Dk(ρ) = LkρL
†
k −

1

2

{
ρ, L†kLk

}
. (3.2)

for hermitian H. This class of evolutions generalizes the unitary (Hamiltonian) evolution (Lk = 0) to
the case of non-hermitian generators. This analogy will by quite useful for some of our considerations
below.

CP semigroups are contractive ‖Tt‖ ≤ 1 and consequently the real part of the spectrum of the
generator L is ≤ 0. Generically, Tt describes the evolution of the quantum system towards a steady
state ρs characterized by

L(ρs) = 0. (3.3)

It has been shown that every Liouvillian L (of Lindblad form) has at least one such steady state. For
a more general analysis of the properties of Lindblad operators, cf. [13].

Our interest in the following focuses on the stationary state of a given L and how it depends on the
system parameters, in particular, on points of abrupt/non-analytical change, which may be linked to
phase transitions.

3.1.2 Phase Transitions

One of the central topics of statistical mechanics are the different phases a given physical system
can be in, their classification and the means to change one phase into another. Sometimes, this
change happens abruptly, a phenomenon called phase transition (PT). PTs are interesting since they
often display anomalous or singular behavior and since the behavior is universal, i.e., independent of
microscopic details of the system [279].

At zero temperature, a special kind of phase transition occurs, which is driven by quantum (instead
of thermal) fluctuations. These quantum phase transitions (QPTs) are related to some of the most
fascinating effects in quantum physics (BEC, quantum Hall effect, superconductivity) and have been
a subject of intense research in the last decades [217]. QPT are related to exotic phases of matter,
often intimately linked to many-body entanglement and pose a particular challenge for the classical
simulation of quantum dynamics.

PTs can also occur away from thermal equilibrium [111, 161], e.g., when a system is in contact
with reservoirs of different temperatures or if it is also driven by a coherent source. Dissipation
drives the system into a steady state, which generally depends of the parameters of system, drive,
and environment. As these parameters are changed, so is the steady state. At certain points in
parameter space an abrupt (non-analytic) change of steady-state properties may occur, giving rise
to a dissipative phase transition (DPT) [258, 263, 56, 177, 67, 161, 285, 75]. DPTs have been much
less studied than QPTs. The aim of the contributions summarized in this Chapter is to shed some
light on the physical and mathematical properties of DPTs. To this end we propose and analyze two
toy models of open quantum systems that allow far reaching analytical results while still supporting
a rich variety of physical effects.
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Before turning to these results, let us briefly introduce to simple models that have been extensively
studied as paradigmatic many-body quantum systems and that give rise to QPTs and DPTs and
motivate and inform the work of this Thesis.

3.1.3 The Central Spin Model and the Dicke Model

The central spin model is one of the canonical models in which a small quantum system can be
coupled to a large bath. Before coming in the focus of QIP as the model for hyperfine dynamics of
electron spin qubits in QDs it had been studied in other contexts, from from electron dynamics in
ferromagnetic grains to superconductors (see [281] for a brief overview) and as a model system for
decoherence [31, 54, 79].

In its simplest form, it consists of a set of N spin-1/2 particles coupled to a single central spin-1/2
by an isotropic Heisenberg interaction and exposed to an external field:

HCSM = ωSz + ~S ·
N∑

j=1

αj~Ij + ωn
∑

j

Izj . (3.4)

The Hamiltonian dynamics of this system and generalizations thereof (e.g., to larger spins, anisotropic
coupling) has been thoroughly studied. Eq. (3.4) belongs to the integrable family of Gaudin magnets
[90] and can be solved exactly by a Bethe ansatz [90, 235]. It is closely related to the BCS model of
superconductivity [281]. Due to the infinite range of the interaction, the mean field approximation
is exact in the thermodynamic limit (see discussion and references in [281]). The energy eigenvalues
of Eq. (3.4) are given via a set of algebraic equations [90, 22], but extracting the eigenvalues is
practical only for small systems and the physics of the CSM is still actively investigated [21, 80,
12].

In the next sections we study the dynamics under a central spin Hamiltonian augmented by dissipative
and driving terms. First, we analyze cooperative effects akin to superradiance. Then we add driving
and consider the steady state phase diagram of the driven and damped homogeneous central spin
model.

The CSM is an interesting candidate to study QPTs since it is related to another well-studied
system, the Dicke model [65] of a bosonic mode coupled to N two-level systems with Hamilto-
nian

HDicke = ωa†a+ ν
∑

j

Izj + g
N∑

j=1

(
I+
j a+ I−j a

†
)
. (3.5)

which is known to exhibit a transitions between a normal and a superradiant phase [110]. In the
former, the bosonic occupation number per atom vanishes in the thermodynamic limit, in the latter
there is a macroscopic occupancy. The (existence and character of the) transition is robust under
many modifications of Eq. (3.5) such as counter-rotating terms, multiple bosonic modes, position-
dependent coupling constants [112] (and [24] for a comprehensive review with special emphasis on
mesoscopic systems and the solid-state setting).

Most prominently, superradiance is seen in the transient evolution the Dicke model: as N (ini-
tially fully excited and independent) two-level atoms couple jointly to a single mode, a spontaneous
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build-up and reinforcement of correlations between the initially independent dipoles leads to strong
enhancement of emission. This is reflected in an intensity burst that can be many orders of mag-
nitude stronger than what one would be produced by the same number of independent emitters
[99, 24].

SR can also be observed in the stationary state of a dissipative Dicke model, provided that a driving
term (∝ Sx) is added that prevents that all excitations are lost from the system. It then describes the
process of (cooperative) resonance fluorescence, which is the textbook example of a dissipative phase
transition [39]. The model applies to two-level atoms in a cavity interacting with an external laser
field. The cavity mode is coupled to the atoms and to the other modes of the electromagnetic field,
which act as a reservoir and drive the atoms to a steady state. Without driving, in the steady state
all atoms are de-excited. As driving strength is increased, the atoms’ state is rotated on the Bloch
sphere towards the equator. At that point, the steady state abruptly changes and the polarization and
population inversion display a sudden change, indicating the appearance of a DPT. Experimental [92]
and theoretical studies [160, 200, 20, 222] revealed interesting features such as optical multistability,
first and second order phase transitions, and bipartite entanglement.

The close connection between HCSM and HDicke is obvious. While there cannot be a “macroscopic”
occupation of the central spin, in the case of a lossy “central” system a superradiantly enhanced de-
excitation of the N two-level systems is possible. In the following section we investigate superradiant
behavior in the dissipative central spin system realized by the electron and nuclear spins in a quantum
dot.

3.2 Superradiance with Nuclear Spins in QDs

Nuclear spins in a QD are an attractive system to investigate the central spin dynamics since they
combine the very well-isolated mesoscopic nuclear system with the clean and well-controlled cen-
tral electron spin. The Hamiltonian HCSM is the standard model used to describe the HFI in
QDs. The tools available to control the electron spin allows to introduce efficient damping, driv-
ing and monitoring of the dynamics. The CSM in the QD is far from the homogeneous limit, but
the robustness of the superradiant phase transition under position-dependent coupling constants in
the Dicke model [112] suggests that of SR behavior might still be observed for the inhomogeneous
CSM.

3.2.1 SR with Nuclear Spins in in SAQDs

In [G:13], reprinted on p. 175ff we explore the close similarity of the DNP master equation Eq. (2.7)
with the master equation of quantum optical superradiance (SR). We consider a singly-charged self-
assembled QD optically pumped to the spin-↓ state, for a sketch of the system see Fig. 3.1. The fast
decaying excited state is negligibly populated throughout and we can adiabatically eliminate it to
obtain the master equation for a dissipative central spin model

ρ̇ = Γr(S
−ρS+ − 1

2
S+S−ρ− 1

2
ρS+S−)− i[HCSM, ρ], (3.6)
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3.2 Superradiance with Nuclear Spins in QDs

where Γr is the effective optical pumping rate from the Sz = +1/2 to the Sz = −1/2 state and
HCSM = g

2(A+S−+A−S+) + gAzSz +ωSS
z. A QD electron in state |+〉 scatters laser photons until

it decays into |−〉 when the QD becomes dark. The flip-flop term in HCSM can return it to the bright
state |+〉. Thus every photon scattered by the QD is preceded by a HF spin flip. The superradiant
effect occurs in the rate with which the bright state is repopulated: for a fully polarized nuclear sys-
tem, the operative matrix element of 〈A+A−〉 is of order O(1/N) and increases up to O(1) as nuclear
spin polarization decays and coherence between the nuclear spin builds up.

Fig. 3.1: Superradiant dynamics of nuclear spins
in an optically driven QD: A shows the system:
the electron spin is optically pumped to the Sz =
−1/2-state |−〉 where it no longer interacts with
the driving field. HFI can return the electron to
|+〉 so that it can again scatter light.

Fig. 3.2: Superradiant signature of the scattered
light: scattered intensity as a function of time
for N = 212 spins in (IV) the ideal Dicke sys-
tem, and (III-I) the CSM for different values of
ε = A/(2|γr/2 + iωS |) = 0.99, 0.7, 0.3. We take
ωS = A/2 and dynamically compensate the in-
stantaneous Overhauser field.

In [G:13] we show that this behavior occurs in QD and NV systems with realistic parameters despite
the imperfections of the nuclear spin system compared to the Dicke model, i.e., the inhomogeneity
of the coupling constants αj , the Overhauser term SzAz (not present in HDicke), and finite initial
polarization.

As the signature of SR we consider the strong intensity peak and its (linear) scaling with system size
(cf. Fig. 3.2). For product states of the nuclear spins, the intensity is maximized for the initial (fully
polarized) state. Hence any increase in intensity beyond the initial value could be taken as sign of
nuclear spin coherence and SR. By numerically integrating Eq. (3.6) (exactly for small systems and
using a factorization method for larger ones) we find intensity profiles as in Fig. 3.2, displaying a
large increase in intensity even for the small (N < 400) systems we can handle, and see that the peak
height increases linearly with N , which extrapolates to an increase by a factor > 1000 for QDs with
N ∼ 104. We show that in rather small systems (N ∼ 10 as expected for NV centers in 13C-enriched
diamond) still an enhancement of 100% is predicted and the for QDs the SR effect persists even for
finite initial polarization.
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3.2.2 SR with Nuclear Spins in in EDQDs

Since the SR effect scales with particle number, it is tempting to turn to larger QDs such as lateral
EDQDs to observe it. However, in that case optical pumping is not available to drive the electron
spin. In [G:20], reprinted on p. 179ff we show that spin-dependent tunneling of the electron can lead
to a SR master equation predicting an ∝ N enhancement of the leakage current through an initially
polarized spin-blocked QD.

We consider a single QD in a magnetic field and tunnel coupled to two leads. The QD is tuned to the
spin-blockade regime, cf. Fig. 2.4A in which the spin ground state can be filled from the left but not
leave to the right and transport is only possible with assistance of spin-flip processes such as HFI.
We identify the conditions for which the leads can be eliminated and use the projection operator
technique to derive a Markovian master equation (similar to Eq. (2.7)) which describes the lifting of
the spin blockade by HFI. We show that this process is superradiantly enhanced for initially polarized
nuclear spins leading to a strong increase in current through the QD scaling linear with N . Although
the initial current is very weak (inversely proportional to N) it is of the order of currents already
measured in Pauli-blocked QDs and the rate of HF flips is fast compared to nuclear interactions as
long as N . 105. Therefore the N -fold increase over this initial value should be observable with
current setups for sufficient nuclear polarization in lateral QDs.

Let us now turn from transient to steady state signatures of superradiance. Following the analogy
of CSM and Dicke model and the existence of a dissipative superradiant PT in the driven and
damped Dicke model, we study a driven and damped central spin system in detail in the next section.
This provides a simple model to study general properties of phase transitions (e.g., their relation to
spectral properties of the Liouvillian) and it might help to understand the behavior observed in QD
experiments such as [152] with features reminiscent of a phase transition and possibly relate them to
dissipative many-body dynamics.

3.3 Dissipative Phase Transitions in the Central Spin System

In [G:18], reprinted on p. 196ff we analyze the steady-state phase diagram of a driven and damped
central spin system (CSS). In the model we consider, the central spin is externally driven and decays
through interaction with a Markovian environment, leading (in a rotating frame and under the
rotating wave approximation) to the master equation

ρ̇ = Lρ ≡ Jγ
(
S−ρS+ − 1

2
{S+S−, ρ}+

)
− i[H ′CSM, ρ], (3.7)

where

H ′CSM = JΩSx) + δωIz +
a

2
(S+I− + S−I+) + aS+S−Iz (3.8)

and Sα and Iα =
∑
σαi (α = +,−, z) denote electron and (homogeneous) collective nuclear spin

operators, respectively. JΩ is the Rabi frequency of the resonant external driving of the electron
while δω = ω − a/2 is the difference of hyperfine detuning ω and half the individual hyperfine
coupling strength a.
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Fig. 3.3: Schematic of the different phases and
transitions of master equation (3.7) studied in
[G:18] as driving Ω and detuning ω are varied. In
the two main phases of the system A (blue) and B
(red) – which together cover the whole phase dia-
gram – the system is found in a thermal squeezed
spin state. The different phase boundaries, region
of bistability (C) and the critical point (ω0,Ω0)
are fully described in [G:18], reprinted on p. 196ff.
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Fig. 3.4: Displays steady-state expectation values
of electron and nuclear spin observables. Note
the abrupt transition from almost fully positive
to negative polarization at the boundary b.

Our main tool for the analysis of the dynamics and phase diagram is the Holstein-Primakoff trans-
formation (cf. p. 15). We generalize it to allow for arbitrary direction of the polarization of the spin
bath by including a semiclassical displacement b → b +

√
Jβ, |β|2 < 2. Expanding the square root

terms (
√

2J − b†b) in orders ε = 1/
√
J introduces a hierarchy in the terms of the Liouvillian which

then allows for a perturbative treatment of Eq. (3.7).

The leading order term acts only on the central spin but depends on the semiclassical displacement
β. Thus the timescales of central spin and bath spin evolutions are separated by ε. The central
spin quickly reaches its (quasi)steady state ρs,e(β) and can be adiabatically eliminated (for given
β), yielding a effective master equation for the nuclear spin operators b that depends on ρs,e(β).
Keeping only terms up to second order in ε we can then self-consistently determine the steady-state
displacements (the “semiclassical solution”) and their stability by analyzing the dynamics of the
quantum fluctuations b. Since the effective master equation is quadratic in the bosonic operators,
exact analytical treatment is possible. In the thermodynamic limit J →∞ the description becomes
exact (as long as the stationary |β| <

√
2).

This allows to reach a detailed understanding of the system’s phase diagram, sketched in Fig. 3.3. We
can distinguish two phases of normal and anomalous polarization (A,B) which are separated by transi-
tion regions of bistability (C) and overdamping (D). The C and B are separated by a first-order phase
boundary at which the steady state polarization changes non-analytically. The line culminates in a
critical point at which the system undergoes a second order phase transition

These characterizations are supported by spectral analysis of the system’s Liouvillian. When crossing
b, the “dissipative gap” (or asymptotic decay rate (ADR): the largest non-zero real part of the
Liouvillian’s eigenvalues) closes indicating a PT. Away from the critical point, the corresponding
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imaginary parts remain different (cf. Fig. 3.5a) and we have a “direct crossing” of eigenstates,
reminiscent of first-order PTs. In contrast, at the critical point, the complex eigenvalues become
degenerate (cf. Fig. 3.5b). This behavior is related to an avoided crossing (for finite systems) which
vanishes in the thermodynamic limit (second-order PT). We show that at the critical point the
system becomes macroscopically spin-squeezed (Fig. 3.6), i.e. is driven to an N -particle entangled
state.
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Fig. 3.5: Complex energy of the two modes cor-
responding to the semiclassical solutions β± (for
γ = a). The solid line in the non-shaded area rep-
resents the ADR. (a) Along the line I (ω = 1.5ω0):
The eigenvalues miss each other in the complex
plane, only the real parts cross. (b) Along x
(ω = ω0): The complex eigenvalues degenerate
asymptotically at the critical point.

Ω/Ω0
ω

/ω
0

 

 

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Student Version of MATLAB

Fig. 3.6: The squeezing measure C =
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[143] in the
thermodynamic limit. C approaches 1 at (ω0, 0),
indicating diverging entanglement in the system.

Whether these features survive in the actual, inhomogeneous CSM realized in a QD remains to be
seen. The experience from the Dicke model suggests this to be the case. We provide some confirming
evidence.

To further explore the relation between characteristics of the steady-state phase diagram and the
spectrum of the system’s Liouvillian, we looked at several other simple open quantum systems,
namely 1d spin chains [G:24] and 1d quasifree fermionic systems [G:22].

3.4 Dissipative 1D Spin Chains

3.4.1 Quasifree Fermions

Dissipative fermionic systems and their critical behavior have received much attention recently.
Quasifree fermionic systems, described by quadratic Hamiltonians in the anticommuting creation
and annihilation operators combine several advantages. They are relatively simple both in mathe-
matical terms (fully described by their covariance matrix, scaling only quadratically in the number
of systems involved) and experimental demands (only linear couplings between the modes are re-
quired). Nevertheless, they encompass many intriguing effects including phase transitions [75, 286],
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Majorana fermions [134], topological ground states [66]. An important subset of 1D fermionic sys-
tems is related to spin chains (studied, e.g., as model of spin transport and used in Section 2.3,
p. 26 a means to couple spin-qubits in solids [277]) by the Jordan-Wigner transformation, see e.g.,
[181].

In [G:22], reprinted on p. 217ff we consider fermionic systems with quadratic Liouvillian, that is with
a Hamiltonian quadratic in the Fermi operators and a dissipator of Lindblad form with Lindblad
operators that are linear combinations of Fermi operators. For these systems we develop a general
formalism to study the time-evolution and steady-state behavior of the covariance matrix (see also
the independent (and more general) results in [75]). We focus on 1d translationally invariant systems
in which the thermodynamic limit can readily be obtained and derive, in particular, expressions for
the steady-state covariance matrix in the limit of weak dissipation.

Our methods can be extended to also include quadratic Lindblad operators as long as they are
hermitian, since in that case (of a dephasing interacting with an environment) the dynamical equation
for the covariance matrix is still closed.

We relate spectral properties of the Liouvillian L to steady-state properties of the fermionic system.
We see that phase transitions in the Hamiltonian part can be reflected in non-analytic behavior of
low-lying eigenvalues of L even in cases where the steady-state itself no longer bears any sign of
critical behavior.

3.4.2 Dissipative Spin Chains

One very clean and versatile realization of 1d (and 2d) spin systems are ultra-cold atoms in an optical
lattice [17, 162], which offer through laser cooling and manipulation powerful methods the engineer
effective Hamiltonians and cool many-body quantum systems close to their ground state. In view of
the interest in the dissipative dynamics of quantum systems it would therefore be interesting to add
controlled dissipation to the toolbox available in this setting.

In [G:24], reprinted on p. 230ff pursue a twofold aim: First, we propose a scheme to realize a
quantum spin system using ultra-cold atoms in an optical lattice in which both coherent interaction
and dissipation can be engineered and controlled, enabling the study the non-equilibrium and steady-
state physics of open and driven spin systems. To this end, we consider bosonic atoms in a 1d optical
lattice in the Mott regime with filling factor 1. In the Lamb-Dicke regime, so that we can access
the atoms’ motional degree of freedom optically. The anharmonicity of the trapping potential and
the decay we engineer restricts the dynamics to the two lowest motional bands, realizing an effective
spin-1

2 system. We show engineer the Hamiltonian for a XXZ chain in a tunable transverse magnetic
field and how to use far-detuned couplings to two internal atomic levels to obtain effective decay of
the spin-1

2 in the internal ground state (see Fig. 3.7).

In the second part, we highlight a peculiar feature of the steady-state diagram for small spin chains:
in the limit of weak dissipation, abrupt changes of steady-state expectation values for certain critical
values of the system parameters are observed. We explain this feature by relating it to degeneracy of
the system Hamiltonian and derive a sufficient condition for the occurrence of sharp peaks at critical
system parameters, see Fig. 3.8. This shows that in dissipative systems spectral properties of the
operative Hamiltonian can be accessible even far from the ground state.
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A

B C

Fig. 3.7: Engineering effective decay in the ground-
state subspace. (A) detuned two-photon transition
between two ground states g, r combined with de-
tuned coupling of r to spontaneously decaying level
e. Eliminating the fast, detuned e yields an effec-
tive decay of r with tunable rates γ,Γ, depicted in
(B). Tuning the effective driving on resonance with
the red phonon sideband leads to the effective cooling
dynamics in the ground state (C).

Fig. 3.8: Degeneracies in the Hamiltonian are accom-
panied by rapid changes in the steady state. Depicted
is the infidelity 1−F (ρs(B), ρs(B+δB)) of the steady
state at magnetic field B with the that at B+δB, cf.
[G:24]. The inset resolves the the peak around 0.25
(black box).
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4.1 Introduction

Quantum systems with infinite-dimensional Hilbert space supporting observables with continuous
spectrum (“continuous variables”(CV)) were a something of a late-comer in QIP. They were first
discussed in the context of quantum teleportation [254, 28], where they gave rise to the first demon-
stration of deterministic or unconditional teleportation [87]. All previous demonstration using two-
qubit entangled states realized with single photons worked only probabilistically, since no full Bell-
state analyzer can be built from purely linear-optics elements [37]. There are excellent and exten-
sive recent reviews on Gaussian states and QIP [29, 260, 261], hence this introduction will be very
brief.

The states of modes of the electromagnetic field are best described using the symmetric Fock space.
Among the states in this space, the family of Gaussian (or quasifree [195]) states plays a special
role.

Mathematically, these states are fully characterized by the first and second moments (the displacement
vector and the covariance matrix (CM)) of the field quadrature operators (with position-momentum-
like commutation relations). Each pair of canonically conjugate operators Xj , Pj defines a mode
and we consider only systems consisting of finitely many modes in the following. Thus a simple
finite description exists although the states are defined on an infinite-dimensional Hilbert space.
This simple description is related to the states’ description on “phase space”, a 2N dimensional
symplectic space to which almost all questions regarding Gaussian states and their transformations
can be translated [270] and which is the starting point for the “canonical quantization” of linear
classical systems.

From the practical point of view, most of the readily prepared states in quantum optical experiments
(vacuum, coherent, thermal states) are in this class. Crucially, also the (two-mode) squeezed states
that are central to the teleportation protocol belong to the Gaussian family. This reflects the fact
that all these states can be prepared starting with a simple initial state (such as the vacuum) by
applying only standard optical elements (beam splitters, interferometers, phase plates, squeezers) and
discarding modes. In fact, the set of Gaussian states is invariant under these operations and under an
important class of measurements (homodyne or heterodyne measurements).

Moreover, Gaussian states also naturally arise in material systems both from mechanical degrees of
freedom [121, 221, 198] and from central limit arguments [55, 195]: large ensembles of independent,
identically prepared quantum systems can be readily described by Gaussian quantum states. This
has been most extensively used in the QIP context for atomic vapors [103] where continuous-variable
quantum information has been readily exchanged between optical and atomic degrees of freedom. This
Thesis provides yet another example, namely the nuclear spin ensembles in the Holstein-Primakoff
approximation [114], cf., e.g. [G:17, G:18].
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The Gaussian setting is of especial interest from the perspective of quantum communication, since
the Gaussian channels are arguably the practically most important class of channels: quantum infor-
mation is almost invariably sent using photons (using optical fibers, free space, or, in the microwave
range, via superconducting transmission lines (part of the quantum computing architecture discussed
in, e.g., [223]). To a excellent approximations the corresponding channels, including the perfect,
the lossy, and the amplification channel fall in the class of Gaussian-preserving quantum operations
(“Gaussian operations”) [76, 261]. Therefore, large parts of quantum communication protocols can
be entirely formulated in Gaussian terms.

In addition to the transmission in space, bosonic channels also play a major role for ”transmission in
time”, i.e., in quantum memories. Several of the most advanced light-matter interfaces [103] make use
of atomic ensembles to store photonic quantum information in collective atomic degrees of freedom
which are in turn well described by bosonic modes. The quantum capacity of the corresponding
channel is the adequate figure of merit for such devices.

The entanglement properties of multipartite Gaussian states and the capabilities and limitations of
Gaussian operations for QIP tasks have been widely explored (see [261] for a very recent review).
Most notable is maybe the fact that the Gaussian setting alone does not allow for entanglement
distillation and hence neither for quantum error correction. On the other hand, it was shown that
for cryptography, the Gaussian setting is enough, i.e., when using Gaussian states for quantum key
distribution, the most general quantum operations do not provide a better attack than Gaussian
operations only [208].

Despite steady progress, many quantitative and qualitative questions in QIP remain open even in the
Gaussian setting. Most prominent here are questions concerning the capacity of Gaussian quantum
channels – both for the transmission of classical or of quantum information. In particular, it is a long-
standing and still open conjecture that the classical capacity of Gaussian channels can be attained
by Gaussian input states. Until now, it has been proved only for the (important) case of the lossy
channel [96].

The contribution of this Thesis to the field of Gaussian QIP is twofold, addressing the entanglement
properties of Gaussian states and the capacities of Gaussian channels.

4.2 Extremality of Gaussian States

In [G:4], reprinted on p. 242ff, we provide a novel characterization of multipartite Gaussian states
by an extremality property with respect to a class of functionals that contains, in particular, certain
entanglement measures. This result implies not only that Gaussian states are the least entangled
(e.g., in terms of “distillable entanglement”) among all states with the same second moments, but
can also help to show that Gaussian states are optimal for certain communication tasks. Our result
based on a general method, which exploits the central limit theorem as a active and local Gaus-
sification operation. Besides adding to previously known extremal characterizations of Gaussian
states (e.g., those with the highest entropy for given second moments) it may also used as a justi-
fication of the frequently made Gaussian approximation to general quantum states (as it excludes
an overestimation of entanglement 1, even in cases where the actual state is highly non-Gaussian.

1At least for certain standard measures of this quantity.
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Another important application has been obtained in quantum cryptography, proving the optimality
of the Gaussian attack, as was already mentioned [208]. Further applications can be found regarding
channel capacities.

4.3 Quantum Capacities of Gaussian Channels

This leads to the second result presented here, namely the determination of the quantum capacity of
certain Gaussian quantum channels. In [G:7], reprinted on p. 246ff, the task is to use Gaussian chan-
nels (completely positive maps preserving the Gaussian character of all input states) to transmit quan-
tum information. The quantum capacityQ(T ) of a channel T is the asymptotic rate at which quantum
information can be transmitted for many parallel uses of the channel. In general, Q is given by the
regularization of the highly non-additive coherent information J(ρ, T ) and no simple way to compute
the quantum capacity of (even finite-dimensional) channels is known.

We prove two results: First, given an arbitrary quantum channel T we construct a Gaussian channel
that lower-bounds its quantum capacity. To this end consider the state ρT obtained by letting T
act on an entangled state. There is a unique Gaussian state G(ρT ) with the same first and second
moments. The lower bound is given by the teleportation channel, using a G(ρT ) as the entangled
resource. That it is a lower bound follows since the quantum capacity of T is not smaller than the
one-way distillable entanglement in ρT (Q is not increased by a classical side-channel) which, by the
result of the previous section is lower-bounded by the same quantity computed for G(ρT ). Using the
teleportation channel TG provided by G(ρT ) is one (but not necessarily the best) way to distill the
state, hence

Q(T ) ≥ D←(ρT ) ≥ D←(G(ρT )) ≥ Q(TG). (4.1)

Second, building on previous results [64] that show that for degradable channels (i.e. channels, from
whose output the output of the complementary channel can be obtained) the coherent information
J(ρ, T ) can be expressed in terms of a conditional entropy. The latter is known to be strongly
subadditive and can therefore be shown to be maximized for Gaussian states by the argument of [G:4].
This implies that the quantum capacity is additive for Gaussian channels

Q
(
⊗i Ti

)
=
∑

i

sup
ρG

J
(
ρG, Ti

)
(4.2)

and can be computed by maximizing the righthand side over Gaussian states; as an example we pro-
vide a simple formula of the quantum capacity of the attenuation and amplification channels. We con-
clude by providing a necessary and sufficient criterion for degradability Gaussian channels and show
that generically, Gaussian channels are neither degradable nor antidegradable.

An especially striking example of the non-additivity of quantum capacity is super-activation [240]:
here, two quantum channels that have each zero quantum capacity (i.e., no quantum information
whatsoever can be transmitted no matter how many times the channel is used in parallel) are com-
bined into a channel with finite quantum capacity. This effect, first derived for finite-dimensional
systems, has also been shown to occur for Gaussian channels [239]. The known examples for Gaus-
sian superactivation require a large amount of squeezing. We address the question whether that
is necessary and provide a partial result towards a “yes” answer to this question. All presently
know examples of superactivation combine two channels that fail to have quantum capacity for two
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very different reasons, namely channels that are entanglement-breaking (or, equivalently [113], which
have a symmetric extension, i.e. which provide two identical outputs and thus would violate the
no-cloning theorem if they had finite quantum capacity) and “ppt-channels” that can produce only
output states that have positive partial transpose. In [G:19], reprinted on p. 250ff, we show that
for this type of superactivation, squeezing is indeed needed in the Gaussian context, since without
squeezing the ppt channel would also have a symmetric extension and therefore be unable to acti-
vate another symmetric-extension channel. Whether there are other way to achieve superactivation
(or even other Gaussian channels with zero quantum capacity [238]) remains an interesting open
problem.

4.4 Pairing of Fermionic States

Finally, we include in this Part a result that is not concerned with bosonic Gaussian states but rather
uses concepts and methods developed in this context and applies them to states describing fermionic
states (quasifree or general) instead. A central notion for fermions is pairing which is prototypically
realized in the BCS states of superconductivity. Motivated by a controversy on how to certify the
presence of pairing in experimentally prepared states [190, 289, 191] we attempt to clarify the matter
in [G:10], reprinted on p. 255ff, by proposing a clear mathematical definition of pairing intended to
capture its two-particle nature and to allow a systematic study of the set of paired states and its
properties.

Since pairing is a correlation between fermions, totally uncorrelated states (Slater rank 1 [74]) are cer-
tainly not paired. Moreover, the property should be independent of our choice of (single-particle) ba-
sis. The two-particle nature of pairing then leads us to define a state as paired if its expectation values
for two-particle observables (represented by hermitian elements in the linear hull of operators contain-
ing no more than two creation and two annihilation operators) cannot be reproduced by a separable
state. We show that BCS state are indeed paired according to this definition.

We then exploit that definition to obtain pairing criteria and to quantify pairing. For Gaussian
(quasifree) states a simple necessary and sufficient condition is obtained. For these states, pairing can
(loosely) be seen as the analog of (bosonic) squeezing in the fermionic setting.

For the general case, we derive a family of pairing witnesses (observables that have positive expec-
tation value for all unpaired states, but that attain a negative expectation value for some states
which are thus certified as paired), which, in particular, can be used to prove all BCS states as
paired.

We conclude by showing that pairing can be exploited for enhanced interferometry / phase esti-
mation and introduce a pairing measure that allows to quantify this resource-character of paired
states.
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In the preceding Chapters we have provided background and context to and an extended sum-
mary of the publications comprising this Thesis, which are reprinted in the subsequent Chap-
ter.

We have seen that QIP using spins in quantum dots and other nanostructures has made great progress
as a quantum computing in recent years and that the nuclear spin environment which is almost in-
evitably present in these systems can now be controlled to such an extent that its inclusion as a useful
agent for QIP purposes becomes feasible. We presented state preparation procedures (by dissipation
or measurement) and proposed QIP protocols that exploit the long nuclear coherence time for quan-
tum register or a light-matter interface.
At the same time, these investigations revealed an interesting dissipative quantum many-body dy-
namics that lead us to the study of the dissipative central spin model as a paradigmatic open quantum
system for the study of dissipative phase transitions. We showed that hyperfine interaction in a QD
could allow the observation of superradiant dynamics and first and second order phase transitions.
This suggested a relation of DPTs to spectral (degeneracy) properties of the operative Liouvillian
which we studied for the central spin model and 1d spin chains.
Turning to quantum information theory, we focused on Gaussian states and operations which are cen-
tral for (optical) communication. We proved an entanglement-related extremality property of Gaus-
sian states which is useful for security and optimality proofs in communication protocols and we used it
to obtain the quantum capacity of certain Gaussian channels (and general lower bounds).

Let us conclude with some forward looking remarks.

Thanks to state engineering and dynamical decoupling, the interaction with nuclear spins is no longer
the main source of decoherence in QD but is beginning to be put to good use for gate implementations.
In order to go further and involve the nuclei coherently in QIP, nuclear state preparation needs to
be enhanced beyond the current 60%-80% polarization.

It would be highly interesting to explore the limits of DNP via the QD electron spin and see whether
it is possible to approach the fully polarized state. At some point the nuclear interactions may
no longer be neglected, and dynamical decoupling techniques may be needed to suppress them.
Besides the QIP application, interesting physics may become accessible when studying the dynamics
of the mesoscopic nuclear spin system under the influence of direct and mediated dipolar coupling
[234].

Dissipative state preparation has been a fruitful approach in quantum optics and can be applicable
in the solid-state setting as well. Going beyond spin-squeezing [214, 129] it would be interesting to
exploit ideas from quantum optics [150, 257] to entangle distant quantum dots possible exploiting
the recently demonstrated coherent (electron) transport [276].
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Also apart from QIP, the dissipative dynamics of the QD central spin system holds plenty of interest.
Can the DPT obtained in the simple homogeneous model system be observed in realistic inhomo-
geneous systems? Can the model be used to explain the observation of anomalous Hanle effect
(including build-up and abrupt collapse of a transversal Overhauser field) observed in [152]? More
generally, can a theory of DPTs be developed, that gives a spectral condition for their occurrence
and classification? Is the concept of universality applicable to the dissipative case and what are the
corresponding classes and their relation to those occurring in QPTs?

In the field of Gaussian QIP, several hard, quantitative questions concerning channel capacities and
entanglement measures remain open, most prominently the calculation of the classical capacity of
Gaussian channels.
The characterization of the zero-quantum-capacity Gaussian channels would be interesting, in par-
ticular with regard to the possibility to discover new examples of superactivation.
Computation of the entanglement of formation for states beyond the symmetric two-mode states
would be interesting in itself, especially the question if it is additive. While the existence for which
EF [ρ⊗ρ] < 2EF (ρ) is known due to Hastings’ result [108], no examples have been constructed. While
there is no particular reason to expect a Gaussian example, the fact EF can be computed for some
of these states [94] (and generalizations seem possible [122]) may give some hope to make progress.
Since the Gaussian toolbox is not enough for the most general QIP tasks, it is interesting to ask what
is the best way to upgrade it by a non-Gaussian ingredient? Are there “magic states” as the ones
that can complement Clifford circuit to fault-tolerant universal quantum computation circuits [30]?
We know that single-photon states can do that [140] – but are they the best and can they be distilled
by Gaussian means?[G:6, G:15]
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We study theoretically the cooling of an ensemble of nuclear spins coupled to the spin of a localized electron
in a quantum dot. We obtain a master equation for the state of the nuclear spins interacting with a sequence of
polarized electrons that allows us to study quantitatively the cooling process including the effect of nuclear
spin coherences, which can lead to “dark states” of the nuclear system in which further cooling is inhibited. We
show that the inhomogeneous Knight field mitigates this effect strongly and that the remaining dark-state
limitations can be overcome by very few shifts of the electron wave function, allowing for cooling far beyond
the dark-state limit. Numerical integration of the master equation indicates that polarizations larger than 90%
can be achieved within a millisecond time scale.
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I. INTRODUCTION

Nuclear spins are one of the best studied quantum sys-
tems, and highly developed techniques such as NMR have
allowed detailed studies of the properties and dynamics of
molecular and solid-state systems.1 Due to their very long
decoherence time, nuclear spins �and hyperfine levels� have
also played a central role in many approaches to the imple-
mentation of quantum information processing �QIP�.2–6

Recently, the localized ensemble of nuclear spins in a
quantum dot �QD� has received special attention in the con-
text of QIP with electron spins in QDs: the nuclei couple via
a Fermi contact interaction to the electron spin7 and, as pre-
dicted by theory,8–12 have been shown in recent experiments
to constitute the major source of decoherence of electron
spin qubits in some of the most promising QD-based
implementations.13,14 The vice of this strong coupling is
turned into a virtue when the electron is used to manipulate
the state of the nuclear ensemble. This has long been ex-
ploited in dynamical nuclear polarization15–18 �DNP� in bulk
systems and has afforded many insights into the spin dynam-
ics in solids.17,19

DNP in quantum dots has come into focus more recently
in the context of QIP, since strongly polarized nuclei could
lead to much longer electron spin dephasing times,12 provide
strong local magnetic field gradients required in quantum
information proposals,20,21 and even allow one to utilize the
nuclear spins themselves as long-lived quantum memory.22,23

More generally, a highly polarized nuclear spin ensemble in
a QD provides, together with the electron spin, a strongly
coupled, well-isolated mesoscopic quantum system with
close similarities to the Jaynes-Cummings model in quantum
optics,23–25 with the fully polarized state corresponding to the
vacuum in all cavity modes. Thus ultrahigh DNP in QDs
may open the door to realize cavity-QED in quantum dots
and implement tasks such as state engineering.

Experimentally, significant nuclear polarization in self-
assembled QDs has been achieved.26–30 However, the degree
of polarization in these experiments was still too low to im-
prove electron spin coherence times considerably and still far
from the ground state.

Theoretically, cooling dynamics has mostly been consid-
ered in the spin temperature approximation,1,17,31,32 in which

coherences among the nuclear spins are neglected. This is
appropriate if, as in bulk or quantum well systems, there is
no fixed electron wave function and many motional states are
involved, or if the nuclear dephasing rate is large. In quan-
tum dots, however, the nuclei interact collectively with an
electron in the motional ground state of the QD and the
higher motional levels are far detuned. Therefore the cou-
pling strength of each nucleus is fixed, and well-defined
phase relationships between the nuclear spins can build up,
necessitating a quantum treatment of the process, which was
first pointed out by Imamoğlu et al.33 who showed that the
cooling process can be inhibited by so-called dark states,
which trap excitations and potentially result in serious con-
straints on the achievable polarizations. While it was pointed
out in Ref. 33 that inhomogeneities �either inherent in the
system or introduced actively by modulating the wave func-
tion of the electron� can mitigate this problem, these ideas
were put to numerical test only in very small one-
dimensional �1D� systems of ten nuclear spins. However, the
effect of inhomogeneities is expected to be reduced for real-
istic larger systems,22 and thus limitations due to dark states
are more severe.60

We consider the cooling of N nuclear spins in a QD
through interaction with polarized electrons. One cooling
cycle consists of �a� initialization of the electron spin in a
well-defined direction and �b� evolution of the combined sys-
tem for a “short” time. In this way the electron spin acts
effectively as a T=0 reservoir for the nuclear spin bath and
pumps excitation out of it.

We derive in a consistent manner a full quantum model of
this process, which allows us to numerically study particle
numbers of up to N�103. We show that a sufficient inhomo-
geneity of the couplings leads to a dephasing of nuclear spin
states and thus limitations due to dark states are partially
lifted. We demonstrate that enhanced cooling protocols in-
volving only a few ��10� modulations of the electron wave
function allow one to fully overcome these limitations, indi-
cating that Overhauser fields above 90% of the maximal
value can be created within the nuclear spin diffusion time.

The paper is organized as follows: In Sec. II we present
the generic cooling protocol and analyze its performance in
Sec. III; the applicability of the scheme to some specific
physical systems is studied in Sec. IV.

PHYSICAL REVIEW B 75, 155324 �2007�

1098-0121/2007/75�15�/155324�8� ©2007 The American Physical Society155324-1

Preparing the State of the Nuclear Spins: DNP

50



II. COOLING SCHEME

Interaction. The Fermi contact interaction between an
�s-type conduction band� electron spin S and the spins Ii of
the lattice nuclei leads to a Heisenberg-like coupling A�iIi ·S
to the nuclear spin at lattice site i, where A sets the overall
strength of the hyperfine interaction and the factor 0��i
�1 is determined by the probability to find the electron at
site i and the gyromagnetic ratio of the ith nucleus.7 In the
presence of an external magnetic field Bext we write the
Hamiltonian of the spin system with the collective nuclear
spin operators A�=�igiIi

� ��= ± ,z� as ��=1�

H =
g

2
�A+S− + S+A−� + gAzSz + g*�BBextS

z, �1�

where we have defined g=A��i�i
2 and gi=�i /��i�i

2, such
that �igi

2=1, and denoted the electron g factor by g* and the
Bohr magneton by �B.

We do not consider the Zeeman energy of the nuclear
spins, because for typical QDs it is much �103 times� smaller
than the electron’s Zeeman energy,7 and similarly we neglect
the even smaller dipolar interaction between the nuclei. The
effects of these are briefly discussed at the end of Sec. III.
Finally, we restrict the analysis to nuclear spins I=1/2 and
one nuclear species only in this article.

The first part of the above Hamiltonian exchanges spin
excitation between the electron and the nuclei, and it is this
mechanism that is used to create polarization. The second
part of the Hamiltonian constitutes a “quantum” magnetic
field, the Overhauser field, for the electron spin generated by
the nuclei.

The cooling scheme. We assume initially the electron spin
to be pointing in the −z direction ��e−�= �↓ �. In the absence
of a magnetic field this initial state defines the axis of quan-
tization. The cooling cycle we consider is an iteration be-
tween evolution with Hamiltonian, Eq. �1�, and reinitializa-
tion of the electron to �↓�. The nuclei effectively “see” a large
cold reservoir of electron spins, and the concatenated evolu-
tion of the nuclear spin density matrix becomes

� → ¯ Uttre�Ut�� � �↓�	↓ ��Ut
†
 � �↓�	↓ �Ut

†
¯ . �2�

Here Ut=exp�−iHt� is the time evolution operator, tre de-
notes the trace over the electron, and here and in the follow-
ing � will denote the state of the nuclear spin system only.
Spin-polarized currents or optical pumping with polarized
light give rise to a polarized electron bath, but also the fast
electrical control available in double QDs13 allows for the
creation of nuclear spin polarization without the need for
preprepared electrons, as we will detail in the last section of
this article.

Considering small times for the evolution in each indi-
vidual step of the cooling protocol, we expand the time evo-
lution operators in Eq. �2� to second order. The standard
deviation of the A±,z terms scales as A��i�i

2=g�O�A /�N�
for the initially totally mixed nuclear spin state, and thus for
�t	g−1��N /A we neglect higher orders. The readily ob-
tained master equation

�t+�t − �t = i
g�t

2
�Az,�t
 −

g2��t�2

8
�Az,�Az,�t



−
g2��t�2

8
�A+A−�t + �tA

+A− − 2A−�tA
+� �3�

contains a Hamiltonian part arising from the Overhauser
field and a contribution in Lindblad form. The latter gener-
ates the nuclear spin polarization and has been studied in the
limit of homogeneous coupling constants in the context of
superradiance.34–36

As polarization builds up and g	Az�
A /�N the Hamil-
tonian terms on the right-hand side of Eq. �3� may become
large �for fixed time step �t�. To preserve the validity of the
master equation one can either reduce the interaction time
�t�A−1 or assume that the Overhauser field 	Az� is approxi-
mately compensated by an applied magnetic field, so that
	gAz−g*�BBext��t	1 for all times. In the latter case �t is
short enough to ensure quasiresonant hyperfine flips despite
the random detunings stemming from the fluctuating Over-
hauser field and at the same time large enough to guarantee a
fast cooling rate.61 This is the situation we investigate in the
following. Without retuning the system in this manner the
polarization rate becomes dependent on the polarization it-
self and the emerging nonlinearities give rise to the bistabil-
ity effects observed in Refs. 14, 30, and 37–41 and limit the
final polarization.

Homogeneous coupling. Before we discuss general inho-
mogeneous couplings, consider for a moment the homoge-
neous case �i�1/N as a demonstration of some interesting
features of the above master equation. In this case, the op-
erators A±,z appearing in Eq. �3� form a spin algebra I±,z and
the collective angular momentum states �Dicke states�
�I ,mI ,�� provide an efficient description of the system
dynamics:42,22 the total spin quantum number I is not
changed by A±,z and the effect of Eq. �3� is simply to lower
�at an �I ,mI�-dependent rate
 the Iz quantum number. If mI

=−I is reached, the system cannot be cooled any further,
even if �for I	N /2� it is far from being fully polarized.
These dark states22,33 are a consequence of the collective
interaction, Eq. �1�. Thus spin excitations are trapped and
cooling to the ground state prevented. We evaluate the
steady-state polarization 	Iz�ss= 	iIi

z /�N�ss as

	Iz�ss

	Iz�0
=

2

2NN
�
I=0

N/2

I�2I + 1�DI =� 8

�N
+ O�1/N�; �4�

i.e., for a mesoscopic number of particles the obtained polar-
ization is negligible. In the above equation 	Iz�0 is the expec-
tation value in the completely polarized state, DI= � N

N/2−I
�

− � N
N/2−I−1

� is the degeneracy of the subspaces of different
total angular momentum, and the last equality has been ob-
tained by employing the Stirling formula.

Evolving the nuclei according to Eq. �3�, we find the exact
time evolution of the polarization as shown in Fig. 1. In these
and the following simulations g�t=0.1—i.e., �t=0.1g−1

�0.1�N /A. As expected the polarization decreases as 1/�N
as N increases, which underlines the importance of the
nuclear spin coherences. In particular this shows that an in-
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coherent spin temperature description of the process would
give even qualitatively wrong results. The time scale over
which the steady state is reached is �N / �g�tA�.

Inhomogeneous coupling. Consider now an inhomoge-
neous wave function. The results for the exact evolution of
the quantity of interest, 	Az�, are shown in Fig. 1. The cou-
pling constants gj in this example are taken from a 1D
Gaussian distribution with width N /4.62 The most important
and striking feature is that in this situation almost complete
polarization is obtained.

The reason that this is possible here is not that there are
no dark states in the case of inhomogeneous coupling con-
stants. On the contrary it has been shown that there exists a
one-to-one mapping22 from the familiar homogeneous dark
states ��I ,−I ,�� in the Dicke basis� to their inhomogeneous
counterparts, defined by A−�D�=0. The reason for obtaining
high polarization beyond the homogeneous limit is the
Hamiltonian part of the master equation �3�. To illustrate this
point, consider two spins with coupling constants g1�g2.
Then the dark state ��D��g2�↑ ↓ �−g1�↓ ↑ � evolves due to
the Az term in Eq. �3� to ei�gtg2�↑ ↓ �−e−i�gtg1�↓ ↑ �, where �g
is proportional to g1−g2. Obviously this state will become
“bright” again after a time �1/ �gi−gj� and A−�D��0. This
process is first order and, as we will detail later, “delivers”
coolable excitations sufficiently fast to maintain a high cool-
ing rate.

III. POLARIZATION DYNAMICS

The polarization dynamics of the nuclear ensemble is
governed by Eq. �3�. While for homogeneous systems the
collective angular momentum Dicke basis enables an effi-
cient description of the problem, for realistic large and inho-
mogeneous systems more effort is required.

To study the evolution of the nuclear polarization, we are
interested in the individual spin expectation values 	�i

+�i
−�.

These depend, via Eq. �3�, on all the elements of the covari-
ance matrix

�ij = 	�i
+� j

−� ,

which, in turn, depend on higher-order correlations as seen
from the equations of motion

��ij

�t
= �ij�ij − ��

k

gk�− gi	�k
+��i

+,�i
−
� j

−�

+ gj	�i
+�� j

−,� j
+
�k

−�� , �5�

where �ij = ig�gj −gi� /2−g2�t�gj −gi�2 /8 and �=g2�t /8 and
the �i

� refer to the Pauli matrices at site i.
The simultaneous solution of the ensuing hierarchy of

equations is only feasible for very small particle numbers N,
and further approximations are needed to treat the large sys-
tems of interest. We introduce several ways, labeled �i�–�v�,
of closing this set of equations and discuss their validity and
implications in detail below.

In the strongest approximation �i� all coherences between
different spins are neglected, yielding independent rate equa-
tions for each individual nuclear spin. This reproduces essen-
tially the spin-temperature description commonly employed
in the discussion of bulk DNP1,17 �each subset of spins with
identical coupling strengths gi is assigned its own effective
temperature�. This approach cannot reproduce the quantum
effects we want to study, but it can serve as a benchmark for
how strongly these are influencing the cooling process.

The simplest approximations that take quantum coher-
ences between nuclear spins into account close the hierarchy
of equations at the level of second-order correlations. Our
approximation �ii� is motivated by the generalized Holstein-
Primakoff description,43 which in lowest order treats the nu-
clei as bosonic modes �i

−→ai. The bosonic commutation
relations �ai ,aj

†
=�ij yield a closed set of equations for the
elements of the covariance matrix �. The bosonic description
is known to be accurate for highly polarized and moderately
inhomogeneous systems25 and allows one to bring results
and intuition from quantum optics to bear in the spin system
discussed here. Dark states are included in the form of the
vacuum of the collective mode b=�igiai coupled to the elec-
tron in Eq. �1�. For unpolarized systems �with on average
1/2 excitations per bosonic mode ai�, this description pro-
vides a lower bound on the performance of the cooling pro-
tocol, since in the absence of an inhomogeneous Knight field
cooling is limited to O�1� excitations per mode rather than
the O��N� coolable excitations expected at the beginning of
the cooling process for spins; cf. Eq. �4�. In the two limiting
cases discussed so far, Eq. �5� simplifies to

��ij

�t
= �− 2��ijgi

2�ii �i� spin temp.,

�ij�ij − ��
k

gk�gi�kj + gj�ik� �ii� bosonic. �
One can take into account more aspects of the spin alge-

bra by replacing some higher-order expectation values by
lower orders using the properties of Pauli matrices ��i

+ ,�i
−


=�i
z and �i

z�i
±= ±�i

±, obtaining

��ij

�t
= �ij�ij − ��ij�

k

gk�gi�kj + gj�ik�

− ��1 − �ij�− �
k�i

gkgi	�k
+�i

z� j
−� + gi

2�ij

− �
k�j

gkgj	�i
+� j

z�k
−� + gj

2�ij� . �6�

FIG. 1. �Color online� Exact polarization dynamics. Left: Ho-
mogeneous case, gj =1/�N. Right: In the inhomogeneous case, gj

�exp�−�j−N /2−1/4�2 /w2�. The term 1/4 is added to account for
asymmetry between electron wave function and the lattice and
avoid symmetry effects for this small scale system.

QUANTUM DESCRIPTION OF NUCLEAR SPIN COOLING… PHYSICAL REVIEW B 75, 155324 �2007�

155324-3

Preparing the State of the Nuclear Spins: DNP

52



The remaining higher-order expectation values �now having
distinct indices i� j , j�k� can be approximated in a Hartree-
like way44 �iii� or, having the bosonic limit in mind, by the
Wick theorem �iv�,

1

2
	�k

+�i
z� j

−� = ��ii −
1

2
��kj �iii� ,

−
1

2
�kj + �ki�ij + �kj�ii �iv� . �

The fifth and final approximation scheme we invoke has
been introduced in the context of superradiance as a Wick-
type factorization, which takes into account the partly
bosonic, partly fermionic properties of spin-1 /2 operators.36

In contrast to the last two factorization schemes, it does not
rely on a distinction of cases. It is directly based on the exact
equation �5� and approximates the three-operator-expectation
values in the following way:

1

2
	�k

+�i
z� j

−� = −
1

2
�kj − �ki�ij + �kj�ii �v� “spin. ”

Direct comparison of the approximation schemes �i�–�v�
with the exact solution for both homogeneous and inhomo-
geneous couplings is shown in Fig. 2. In the homogeneous
case the spin temperature description �i� is clearly qualita-
tively wrong, because it neglects correlations in the bath. The
bosonic description �ii� captures the feature of dark states,
but it overestimates their influence: Instead of ��N, only
one excitation can be removed. The two schemes based on a
distinction of cases, �iii� and �iv�, give very good results
initially, until roughly �N spins have been flipped. Then,
however, the polarization keeps increasing on a slow time
scale and does not reach a steady state in the correct time.
The �v� “spin” approximation gives very good results and
gets both the polarization time scale and the finally obtained
value of the polarization right within a few percent.

The comparison of the different approaches to the exact
solution for inhomogeneous couplings is restricted to small
particle numbers �see Fig. 2�. In this regime all introduced
approximation schemes reproduce the exact dynamics cor-
rectly. The reason for the good correspondence is the strong

dephasing of dark states and generally coherences between
nuclear spins for small inhomogeneous systems.

Using these approximations we present the polarization
dynamics for N=103 spins coupled through a 2D Gaussian
wave function in Fig. 3. For the data presented in this and the
following figure, we considered the spins in a 2D square
lattice geometry, with the lattice constant set to unity. The
bosonic description displays the lowest final polarization and
polarization rate �for the same reasons as in the homoge-
neous case� and is expected to give lower bounds on the
performance on the polarization procedure. Of particular in-
terest are the predictions of the �v�-“spin”-approximation
scheme, because its good performance in the completely ho-
mogeneous situation gives us confidence that also partial ho-
mogeneities are correctly accounted for. The achieved polar-
izations of �60% in this setting show the importance of the
intrinsic dephasing due to the inhomogeneity �homogeneous
coupling would allow for �5% polarization�. However, the
intrinsic inhomogeneity alone does not allow for ultrahigh
polarizations and we are thus led to investigate more sophis-
ticated cooling schemes. As shown later, in these enhanced
protocols all approximation schemes lead to the same con-
clusions.

To gain a better understanding of the presented phenom-
ena in the inhomogeneous situation, we go to an interaction
picture �I=U0�U0

†, with U0=exp�−iAzt /2�, which shows
very clearly the oscillating coherences between spins with
gi�gj:

��I

�t
= − ���

ij

gigje
−ig�gi−gj�t/2�i

+� j
−,�I�

+

+ 2��
ij

gigje
−ig�gi−gj�t/2� j

−�I�i
+. �7�

In the rotating-wave approximation �RWA�, the rotating
terms �gi�gj� are neglected and in the absence of exact sym-
metries the above equation reduces to the spin temperature
description. A partial rotating-wave approximation neglects
only the coherences between spins with considerably differ-

FIG. 2. �Color online� Comparison of different approximation
schemes for the homogeneous situation with N=100 �left� and the
case of Gaussian couplings �as in Fig. 1� and N=10 nuclear spins
�right�.

FIG. 3. �Color online� The polarization dynamics for N=1000
spins coupled with a 2D Gaussian wave function, which is shifted
from the origin by 1/3 in the x and y directions.
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ent coupling constants; i.e., the ratio between dephasing and
polarization rate is required to be large �4�gi−gj� / �g�tgigj�
�1
. This procedure gives a block-diagonal Liouvillian
which allows for the extension of the numerical studies to
particle numbers up to N=104.

In the RWA we evaluate the buildup time �p for the po-
larization as the inverse of the weighted average of the indi-
vidual spin decay times,

�p =�i
gi�i

�i
gi
�−1

=
4�i

gi

g�g�t��i
gi

3
= O 4N3/2

A�g�t�
� , �8�

and find good agreement with the numerically obtained time
scale to reach the steady state in all discussed schemes. For
example, for the data presented in Fig. 3 we find times of
3.4�105 �spin temp.�, 4.6�105 �bosonic�, and 3.3�105

�“spin”� in units of A−1 to reach �1−e−1��0.63 of the quasi-
steady-state Overhauser field. This agrees well with the ana-
lytical estimate �p�2.4�105/A, despite the differences in
the final polarizations obtained in the different approxima-
tion schemes. This correspondence between the RWA-based
estimate and the numerically obtained polarization times for
the coherent evolution indicates that the inhomogeneous
Knight field provides coolable excitations at a rate larger
than the polarization rate, thus not slowing down the process.

When the inhomogeneity of the coupling is large enough
to justify the rotating-wave approximation, each spin evolves
with its own Liouvillian and the nuclei remain in a product
state during the whole evolution. To keep the errors in the
derivation of the master equation �due to higher-order terms
of the expansion of the time evolution operators in Eq. �2�

small, it is sufficient to do so for each spin individually in
this case. This allows a larger time step �t	 �A�max�−1

=O�N /A� in each cycle, and therefore the cooling rate can be
significantly enhanced. The cooling time effectively scales
only linearly in the particle number

�̃p = O 4N

A��tA/N�� . �9�

Taking A=100 �eV�40 ps, a value typical for GaAs QDs,
and 0.1 as the value for the terms g�t and A /N�t in the
denominators of Eqs. �8� and �9�, respectively, we find that
approximately 4�103 and 3�105 spins can be cooled to
more than 90% of the steady-state value 	Az�ss within a mil-
lisecond.

We now study enhanced cooling protocols that lift the
dark-state limitations and which rely solely on the ability to
shift the center of the electron wave function. These shifts
can be effected by applying dc gate voltages to the QD. After
such a shift only very few spins will have the same coupling
constants for both wave functions and therefore singletlike
coherences are broken up. We confirm this expectation nu-
merically as shown in Fig. 4 for some exemplarily chosen
shifts of the electron wave function. The shifts range from a
few lattice sites to roughly the width of the electron wave
function. The timing of the shifts we have performed for
obtaining the data presented in Fig. 4 can be inferred from

the plots, as it is accompanied by a rapid increase in the
cooling rate.

Regarding the approximation schemes, we have found
that all schemes taking into account coherences, �ii�–�v�, pre-
dict the same behavior and the spin-based factorization �v�
offers the quantitatively best description. It is important to
note that all these descriptions coincide at the end of the
cooling protocol �shown in Fig. 4 only for �ii� and �v�
. In
particular the limiting bosonic model predicts the same high
��95% � polarizations and cooling rates as the other
schemes, which leads us to conclude that the O�10�-mode
changes are sufficient to achieve near-ground-state cooling
for realistically large numbers of nuclei in QDs.

Despite being a radical approximation at low polarization,
the bosonic scheme �ii� captures the cooling dynamics quali-
tatively and we remark that it can be generalized to provide
an accurate and conceptually simple description of the
electron-nuclear spin dynamics at high polarizations.25

The cooling schemes we have presented are governed by
the optimal time scale set by the hyperfine interaction con-
stant A, but the schemes themselves leave room for optimi-
zation: The cooling rate can be tuned by choosing �t adap-
tively during the cooling process. The mode changes can be
optimized by a careful choice of the size and the timing of
the shifts, and through more sophisticated deformations of
the electron wave function. These and further modifications

FIG. 4. �Color online� Polarization dynamics in the enhanced
cooling protocol for N=196 �upper plots� and N=1000 �lower plot�.
In the upper plots approximation schemes �ii� �left� and �v� �right�
have been invoked; the lower plot is based on the bosonic model
and the partial rotating-wave approximation �see text�. In all plots
the different lines are representing cooling procedures with differ-
ent numbers of mode changes. In the upper plots the randomly
chosen Gaussian modes with width w=N /4 are defined by
the centers ��1/3 ,1 /3� , �1.35,−0.81� , �0.32,−0.04� , �1.17,0.79� ,
�−0.13,−1.44� , �0.96,−0.17� , �0.35,0.88� , �1.27,0.71��. In the low-
er plot only two modes with centers ��1/3 ,1 /3� , �−3.15,−1.5��
have been iterated.
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are implementation dependent and will be the topic of future
work.

In using the Hamiltonian, Eq. �1�, we have neglected a
number of weak interactions that are present in actual sys-
tems and, while being much smaller than the dominant hy-
perfine term, may become important on the long time scales
required to reach high polarization. We argue in the follow-
ing that these terms do not affect the quantitative conclusions
obtained. While nuclear Zeeman energies are large enough to
cause additional dephasing between the nuclear spins, simi-
lar to the inhomogeneous Knight fields, this will only be
effective between nuclei of different Zeeman energy—i.e.,
belonging to different nuclear species. This leads to two to
three mutually decohered subsystems �in a partial rotating-
wave approximation�, each of which is described by our
model.

The nuclear dipole-dipole interaction45 can lead to both
diffusion and dephasing processes, both of which are of mi-
nor importance as shown below. Dipolar processes that
change Az are off-resonant and hence expected to be slow, as
indicated by the nuclear spin diffusion rates measured, e.g.,
in Ref. 46, and should not significantly affect the polariza-
tions reached. Resonant processes such as terms �Ii

zIj
z affect

the cooling process only insofar as they can cause dephasing
of dark states similar to the inhomogeneous Knight shift. The
rate at which coolable excitations are provided is set by the
energy difference for two nuclear spins in a dark pair. The
interaction energy for two neighboring spins is about
�10−5 �eV �Ref. 7�; hence, a singlet of neighboring spins
can dephase in �100 �s �or slower if all surrounding spins
are polarized�. Even widely separated spins interacting with
differently polarized environments dephase only up to a few
10 times faster than this �depending on the geometry�. Thus
we see that the dipolar dephasing is considerably slower than
that caused by the inhomogeneous Knight field, and only if
the latter becomes inefficient due to homogeneities �towards
the end of cooling a given mode� can the dipolar dephasing
contribute coolable excitations, but at a much slower rate
than what can be achieved by changing the electron wave
function and the ensuing return to a situation of strong
Knight inhomogeneity. Thus, one does not expect the cooling
process to be affected except for a slight additional dephas-
ing. However, on much longer time scales of tens of milli-
seconds the dipole-dipole interaction provides the depolariz-
ing mechanism �mainly affecting nuclei with a weak
hyperfine interaction� that needs to be considered, e.g., when
cooling much beyond 90% polarization is studied.

Clearly a polarization �100% of the electron “reservoir”
directly translates into limitations on the final polarization of
the nuclei. A quantification of this necessarily needs to refer
to the details of a concrete physical realization of our model,
which is not the topic of this article. The limitations can be
minute—e.g., in the case of the double-dot setup presented in
the next section.

IV. ADAPTING THE MODEL TO CONCRETE
PHYSICAL SETTINGS

The generic model of a single spin-1 /2 particle coupled
inhomogeneously to an ensemble of N nuclear spins can

readily be adapted to various experimental settings.
If a source of spin-polarized electrons is available, single

electron tunneling into the QD provides the initialization.
Controlled tunneling into and out of the QD with rates
�10 ns−1 appears feasible,47,48 justifying the description of
the dynamics by a suddenly switched on and off interaction.

For self-assembled QDs, optical pumping with polarized
light has been shown to provide a spin-polarized bath of
electrons that cools the nuclei.26–30 However, in this setup the
average dwell time of a single polarized electron in the dot is
large and the detuning due to the z component of the Over-
hauser field leads to instabilities39–41 in the nuclear polariza-
tion which are avoided in our scheme.

In double QDs in the two-electron regime49,50 the role of

the states �↓�,�↑� is played by the two-electron singlet �S̃� and
one of the triplet states; in the following, we consider �T+�
= �↑ ��↑ �. Tunnel coupling between the two dots and the ex-
ternal magnetic field is chosen such that the other triplet
states are off-resonant and cause only small corrections to
the dynamics sketched here.

As discussed in more detail in Refs. 49–51, the hyperfine
interaction in this system is described by the Hamiltonian
�lSl ·Al, where l=L ,R refers to the orbital state of the elec-

tron. Coupling between �S̃� and �T+� is mediated by the dif-
ference �A±= �AL

±−AR
±� /2 of the collective nuclear spin op-

erators of the two dots L ,R, while the effective Overhauser
field is given by the sum �AL

z +AR
z � /2. Thus we have that the

analysis of the previous sections applies to the double-dot
case in this regime �to zeroth order; cf. Ref. 52� with the
replacements

�↓� → �S̃�, �↑� → �T+� ,

A± → − �2�cos ���A±, Az → 1

2
�AL

z + AR
z � .

The adiabatic singlet has contributions from both the delo-
calized �1,1� and localized �0,2� charge states, and with cos �
we denote the amplitude of the �1,1� contribution50 �with
�m ,n� we denote a state with m electrons on the left and n
electrons on the right dot
. The effect of higher-order terms
�e.g., of the nuclear spin components �Az ,AL

±+AR
±� merits

more detailed analysis.
This system is of particular interest since fast electrical

control of gate voltages can provide a highly spin-polarized
electron system through near-unity fidelity initialization of a
singlet in the right-hand dot �S�0,2��.13,53 Starting from this
singlet, rapid adiabatic passage �1 ns �Ref. 13�
 by means of
tuning the asymmetry parameter � between the dots, initial-

izes the electrons to the adiabatic singlet �S̃� and brings the
system to the S-T+ resonance.

The transitions from the singlet to the other two triplets
T0,− are detuned by an external magnetic field �of order
100 mT in the experiments of Ref. 13�. After a time �t the
system is ramped back to the �0,2� charge region and the
electrons relax to the singlet ground state, completing one
cooling cycle. If relaxation to the state S�0,2� is fast, the
limiting time scale for this cycle is given by the hyperfine
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coupling constant A, showing that here the polarization rate
is governed by the natural and optimal time scale �and not
other, slower time scales, like, e.g., cotunneling in Refs. 32
and 37�.

In the GaAs double-dot setup the sudden approximation is
justified for typical tunnel couplings �10 �eV, which have
to be compared to the typical time scale for a hyperfine flip
�0.1 �eV and the fact that additionally all spin flip transi-
tions are off-resonant during the adiabatic ramp. At the S-T+
resonance selecting a suitable combination of external mag-
netic field and time step �t detunes the unwanted transitions
and at the same time ensures resonance for the polarizing
transition. Note also that the Overhauser field increases the
external magnetic field in materials with negative electron g
factor, like GaAs �g*�−0.44�, thus further suppressing un-
wanted transitions and requiring retuning of the end point of
the adiabatic ramp. Given the availability of fast �100 ps�
voltage pulses, the reinitialization of �S�0,2�� via a �0,1�
charge state is likely to be limited by the tunneling rate from
the reservoir to the QD. For optimal cooling efficiency this
rate should and could be made large �10A /�N.47,48

Since in the double-dot setup the “polarized” state is a
spin singlet, there is no inhomogeneous Knight field to
dephase the dark states and DNP will be severely limited.
However, there are many ways of providing it—for example,
by extending the cooling cycle to include a third step in
which a single-electron state of the double dot is realized or
by increasing the time spent at the S-T+ resonance in each
cooling cycle �the latter would require a reformulation of the
master equation �3� not presented here
. At the same time it
would be interesting to find evidence for quantum coherence
between nuclear spins in QDs by comparison of the obtained
Overhauser field in the case of strong and weak inhomoge-
neous Knight fields.54

V. CONCLUSIONS AND OUTLOOK

In summary we have presented a quantum treatment of a
dynamical nuclear spin polarization scheme in single-

electron quantum dots that takes into account quantum co-
herences between nuclei and allows numerical study of the
cooling dynamics for thousands of spins. We have quantified
limitations due to dark states and shown that these limits are
overcome by the inhomogeneous Knight shift and active
mode changes. From this we conclude that cooling to more
than 90% �of the maximal Overhauser field� is feasibly faster
than typical nuclear spin diffusion processes. Setups for the
experimental realization of our scheme have been proposed.

In order to go beyond the presented results to polariza-
tions larger than 99%, which would bring the system of
coupled nuclei close to a pure state and significantly reduce
electron spin decoherence, the presented scheme can be op-
timized, both in terms of timing �length of the individual
cooling step and wave function changes� and in terms of the
electron wave functions chosen. A further enhancement may
be achieved by combining the polarization scheme with Az

measurements56–58 to reduce the Az variance and to tailor the
interaction times and the external field to the measured Az

value. Dipolar interactions and other depolarizing processes
will become more important in later stages of the cooling
and need to be considered carefully in the development of
ground-state cooling techniques. More detailed studies of
these processes may, in addition, lead to schemes to monitor
the intrinsic �dipolar� nuclear dynamics via the hyperfine in-
teraction.

The combination of high polarization and long coherence
times makes the nuclear spin ensemble itself a candidate for
an active role in quantum computation. Like the actively
explored single-nucleus-spin qubits,5 collective excitations
of a polarized ensemble of spins could also be used for quan-
tum information purposes.23 Similar to their atomic
counterparts,59,63 the ensembles might become more suited
than their isolated constituents for certain quantum informa-
tion tasks. ACKNOWLEDGMENTS
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Abstract

We theoretically discuss the dynamical quantum process of polarizing the nuclear spins in a quantum dot via the hyperfine interaction with
the electron spin. The limit of homogeneous couplings, i.e. a flat electronic wave function, is analyzed in detail and approximate analytical so-
lutions are shown to provide accurate results, allowing for the determination of cooling potential and rates, both of which reflect the effect of
polarization-limiting dark states. We further provide a detailed microscopic description of these states that proves useful for the analysis of the
effect of electron wave function changes during the cooling procedure.
� 2007 Elsevier Masson SAS. All rights reserved.

PACS numbers: 71.70.Jp; 73.21.La

Keywords: Nuclear spins; Quantum dots; Quantum information

1. Introduction

Nuclear spin polarization in quantum dots (QD) has received
tremendous attention in recent years (see Ref. [1] and refer-
ences therein), because of its strong influence on the electron
spin coherence, which is crucial for quantum computation
[2], and because the nuclear spins themselves are an interesting
physical system with possibly long coherence times [3] and in-
teresting many body (dipolar) effects [4,5]. While most previ-
ous studies neglected quantum effects in the cooling process
it has been shown [1,6] that coherences between nuclei can in-
deed strongly influence and limit the polarization process. We
present here further evidence for these observations by consid-
ering the limit of a spatially homogeneous electron wave func-
tion, which is commonly assumed in studies of electron spin
decoherence. Indeed we show in the present work that for the
cooling process the level of homogeneity plays an important
role. Naturally our theory is directly applicable to QD poten-
tials and shapes producing a quasi-homogeneous electron

distribution. Furthermore, as an inhomogeneous wave function
can be approximated by a step function and our results bear
relevance for the dynamics in each of the steps, the results pre-
sented here can be transferred to more general situations (cf.
e.g. Ref. [7]).

We consider the cooling of N nuclear spins in a QD through
interaction with polarized electrons, as in Ref. [1]. One cool-
ing cycle consists of (i) initialization of the electron spin in
a well-defined direction j[i, and (ii) evolution of the com-
bined system for a ‘‘short’’ time Dt.

The hyperfine (HF) interaction for homogeneous coupling
constants reads

H ¼ A

2N

�
IþS� þ SþI�

�
þ A

N
IzSzþBextS

z: ð1Þ

S is the spin operator for the electron, A the HF coupling con-
stant, Z¼ 1, and Im ¼

P
i Im

i are the three components of the
homogeneous collective nuclear spin operators (m¼�, z).
The collective operators fulfill the angular momentum com-
mutation relations [Iþ, Iz]¼�Iþ, [Iþ, I�]¼ 2Iz. We take
I¼ 1/2 and neglect nuclear dipolar interactions, nuclear Zee-
man energies and species inhomogeneities (see Ref. [1] for
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a discussion of these effects). If the relevant system dynamics
happens on a timescale larger than Dt, as is the case in the
present study, we arrive at the continuous version of the master
equation of Ref. [1] for the density matrix r of the nuclei

d

dt
r¼ i

A

2N

�
Iz;r

�
�A2Dt

8N2

�
Iz;
�
Iz;r

��
�A2Dt

8N2

�
IþI�rþ rIþI� � 2I�r Iþ

�
: ð2Þ

Although we consider in our model the polarization process in
a single dot, the results bear relevance for spin cooling in the
recently investigated double QDs [8,9]. There, the polarizing
dynamics happens in the subspace of a two-electron singlet
and a polarized triplet; coupling between the two is mediated
by the difference dI� ¼ ðI�L � I�R Þ=2 of the collective nuclear
spin operators of the two dots L and R, while the effective
Overhauser field is given by the sum ðIz

L þ Iz
RÞ=2. In the homo-

geneous limit these operators obey the same algebra as the
‘‘bare’’ ones of our model, thus making our results directly
applicable.

2. Achievable polarization

Due to the collective coupling, singlet-like ‘‘dark states’’
can trap spin excitation and prevent cooling to the ground
state. This effect is for homogeneous couplings most conve-
niently described in the Dicke basis [10], which is well-
known for example from the literature on superradiance.
The basis states are jI;m; bi where I(Iþ 1) is the eigenvalue
of the collective angular momentum operator I2, and the
eigenvalue of Iz is given by m. The possible values of I
are N/2, N/2� 1, ., the smallest value being 0 if N is
even and 1/2 if N is odd; jmj � I. The b is the permutation
quantum number, which labels the different degenerate
states with the same quantum numbers I and m. The degen-
eracy D of the states depends only on I and not on m,
DðIÞ ¼ ð N

N=2�1 Þ�ð
N

N=2�I�1 Þ.
When acting on a state jI;m; bi, the operator I� decreases

the quantum number m by one I�jI;m; bi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ � mðm� 1Þ

p
jI;m� 1; bi. For m¼�I the action of

I� yields zero, and thus the states jI;�I; bi can not be polar-
ized further in a system evolving according to Eq. (2). The
steady state of the cooling process described by the master
Eq. (2) starting from a completely mixed state is thus

rss ¼ 1=2N
X

I

DðIÞð2Iþ 1ÞjI;�IihI;�Ij; ð3Þ

where the trace over the permutation quantum number b has
been performed.

We now evaluate the polarization of the steady state Eq. (3)
normalized to the polarization of the ground state

hIziss

hIzi0
¼ 2

2NN

"
4ðN� 1Þ!

ð½ðN� 1Þ=2�!Þ2
� 1

2

�
2N �

�
N
ðN=2Þ

��#
;

where for the fully polarized state one has a polarization hIzi ¼
�N=2. As an example this expression can applied to the case
N¼ 2, where one finds a final polarization of 3/4. This is the
expected result because one out of the four two-spin states
cannot be cooled (the singlet). In Fig. 1 it is shown that for in-
creasing particle number the possible polarization quickly de-
creases from 75% of the two-particle case. The negative
indications for cooling purposes are obvious.

Application of the Stirling formula N!z
ffiffiffiffiffiffi
2p
p

NNþ1=2e�N

gives the approximate result for N[1

hIziss

hIzi0
¼

ffiffiffiffiffiffiffi
8

pN

r
þOð1=NÞ: ð4Þ

For the mesoscopic particle numbers of interest in the study of
quantum dots, the obtainable polarization is thus negligible. In
Fig. 1 it is shown that the approximate first order formula
matches the exact value very well, as expected.

3. Time evolution

The study of the time evolution of the nuclear spin system
under the master Eq. (2) is similar to the study of the evolution
of the atomic population in superradiant light emission from
an ensemble of atoms. The latter problem has received consid-
erable attention in the quantum optics literature, see e.g. the
textbook [11] and review [12]. The focus of these studies
was slightly different than it is in the cooling protocol we
are considering. In quantum optics an ensemble with all atoms
excited is the most studied situation, because for this initial
condition one has pronounced signatures in the emitted light
pulses and it is experimentally accessible. Here on the other
hand, we are dealing with a completely mixed initial state.
This complicates the situation because in this mixture superra-
diant as well as subradiant states occur. Nevertheless we
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extract and present here approximate explicit analytic expres-
sions for the evolution of the nuclear spin polarization.

Instead of solving the dynamics of the density matrix of the
nuclei, we concentrate on the evolution of the variable of our
interest, hIzi. It obeys the equation of motion

d

dt
hIzi ¼ tr

�
Iz d

dt
r

�
¼�2k

	
IþI�



;

where we have introduced k ¼ A2Dt=8N2. The equation for the
polarization hIzi does not close, but couples to the variable
hIþI�i. The time evolution of this quantity depends on
hIþIzI�i. Continuing this procedure leads to a hierarchy of
coupled equations. Following the quantum optics literature
on superradiance we make a factorization assumption	
ðIzÞ2



¼ hIzi2; ð5Þ

which is equivalent to the assumption that hIz
i Iz

j i ¼ hIz
i ihIz

j i. In
the following we apply this factorization to obtain analytical
results for the time evolution of the polarization and check
its validity by comparison with the exact numerical solution.

Using this assumption the equation of motion for the polar-
ization becomes

d

dt
hIzi ¼ �2k

�	
I2


� hIzi2þhIzi

�
; ð6Þ

where I2 ¼ ðIzÞ2 þ ð1=2ÞðIþI� þ I�IþÞ was used. For each
given initial state jI;m; bi this equation is solved by

hIzðtÞiI;m¼ 1=2� nItan hðnIð2kt� c0ÞÞ; ð7Þ

where nI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4IðI þ 1Þ þ 1

p
=2 and the initial condition de-

pends on the value of m and enters through the constant c0

¼ arctanh½�2ðm� 1=2Þ=nI =ð2nIÞ� . In Fig. 2 we compare the
evolution of the polarization averaged over all initial states

hIzðtÞiaveraged ¼
X
I;m

DðIÞhIzðtÞiI;m ð8Þ

with the exact numerical calculation. The curves show good
agreement, which serves as an indication that the factorization
assumption captures the correct physics of the polarization
process.

To gain further insight into the evolution of the population,
we consider the evolution of a pure initial state with total
angular momentum and z-projection equal to the mean value
of the totally mixed state, i.e. m¼ 0 and Imean ¼
ð1=2NÞ

PN=2
I¼0 Ið2I þ 1ÞDðIÞ. Using the same approximations

as for the evaluation of the total obtainable polarizations
(Eq. (4)) one gets Imean ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2N=p

p
þOð1Þ. In this limit the

polarization develops according to

hIzðtÞimean¼�
1

2

ffiffiffiffiffiffi
8N

p

r
tan h

 ffiffiffiffiffiffi
8N

p

r
A2Dt

8N2
t

!
; ð9Þ

where we used
ffiffiffiffi
N
p

[1. Fig. 2 shows the evolution in the
‘‘mean state’’ for both the exact and the approximate expres-
sions for the mean value of the average spin Imean. Using the
exact mean the results are very close to the actual evolution:
Both the timescale and the final polarization are correctly pre-
dicted. When the approximate expression for the mean is em-
ployed, the timescale of the process is still correct. However,
the predicted final polarization differs from the real polariza-
tion. This is to be expected, since the approximated mean
value of I is only correct to order 1, which translates into
a Oð1=NÞ error for the polarization.

From Eq. (9) we can thus extract the timescale for reaching
the steady state of the polarization

thom ¼
N

A

ffiffiffiffiffiffi
8p
p

0:1
; ð10Þ

where we used Dt ¼ 0:1
ffiffiffiffi
N
p

=A, i.e. Dt is chosen such that the
condition necessary for the expansion of the time evolution
operator is fulfilled.

4. Microscopic description of dark states

In this section a new microscopic description of dark states
is introduced, which, besides providing handy intuition, will
serve in Section 5 as the basis for our estimations regarding
ground state cooling in homogeneous situations. We prove
that one can understand all dark states I�jI;�I;bi ¼ 0 as a su-
perposition of states describing n¼ N/2� I singlets and
2I¼ N� 2n polarized spins jYi. Let us denote a singlet of
spins i and j as jSiji and by jS si

2S
i¼1;Yi
��

the state with S sin-
glets jSsisiþ1

i and the remaining states spins in state jYi. The
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Fig. 2. Comparison between the various (semi-)analytical solutions based on

Eq. (5) and the exact numerical result for N¼ 100 particles. The ‘‘average’’

(dashed) line is averaged over all states in the initially totally mixed nuclear

state, see Eq. (8). The two other curves are directly obtained from Eq. (7)

by substituting one specific value for the angular momentum I that enters

the solution as a parameter; for the dashededotted line the average value of

the total angular momentum I has been calculated exactly and for the dotted

curve the approximate expression I ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2N=p

p
was used.
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idea is to show that the statistical mixture of all permutations
of jS i 2S

i¼1;Yi
��

PI ¼
1

N!

X
p˛SN

XðpÞPjSf1;.;2Sg;YiXðpÞy

(where for a permutation p ˛ SN let XðpÞjS si ;Yigf ¼
jS pðsiÞ ;Yigf ) is equal to the projector on the the (I, �I )-
subspace:

PI ¼
1

DðIÞ
X

b

I;�I;b

	

I;�I;b
:

To see this, we first observe that SNHp 1XðI;MÞðpÞ˛M2N

with X(I, M )(p) acting (as above) on the space spanned by
the vectors jI;M; bi with b ¼ 1;.;DðIÞ a label for the eigen
values of a set of permutation operators extending I

!2; and Iz

to a complete commuting set (e.g. P2i�1;2i; i ¼ 1;.;N=2 cf.
[10]) is a representation of the permutation group SN. The rep-
resentation must be irreducible, since if it were not, there
would exist at least two sets of vectors in HðI;MÞ that are not
connected by SN, hence the projector on one of those would
be an operator commuting with f I

!2; Iz;P2i�1;2ig, contradict-
ing that this is a complete set of commuting observables on
ðC2Þ5N . Finally, we clearly have XI,�I(p)PIX(I,�I )(p)y ¼ PI

and by Schur’s Lemma (which states that any operator com-
muting with all elements of a irrep is proportional to the iden-
tity see, e.g. Ref. [13]) it follows that PIf1I;�I . Counting the
number of permutations respectively the degeneracy of the
(I, �I )-subspace gives the normalization factor.

This shows that the projector on the (I, m)-subspace is given
by the equal-weight mixture of all permutations of N/2� I sin-
glets and the remaining 2I spins in the state jI;mi.

5. Mode changes

To cool beyond the dark state, the coupling operator
I� needs to be changed. In view of the analogy between a
(collectively addressed) system of spins and a bosonic mode,
such a transformation of I� can be viewed as addressing a differ-
ent ‘‘mode’’ of the system [1]. Any ~I� ¼

P
i giI

�
i with g! not

parallel to ð1;.; 1Þ represents a different mode in this termino-
logy. The number of modes that are needed to cool the nuclear
spins to the ground state is in general not easily estimated due to
the fact that orthogonal spin modes do not commute [14].

In order to get an estimate for the number of modes needed
for cooling the spins, we use the simple Hadamard basis for
the modes. The Hadamard matrices are recursively defined
by H0¼ 1, and

Hmþ1 ¼
1ffiffiffi
2
p
�

Hm Hm

Hm �Hm

�
:

The size of the matrix is 2m. Its columns are mutually orthog-
onal and represent the different modes we aim to address.
Changing from the standard homogeneous coupling to the

ith Hadamard mode could be achieved, e.g. by performing
phase flips jYij/� jYij for all j with (Hm)ji¼�1.

When applied after cooling with the first mode, such
a mode change has no effect on nuclei already in state jYi
but singlets are transformed to triplets (with zero z-projection)
if the phase of only one of the two spins is flipped, so that the
state in the new mode is

X
n

pðnÞ
X
p˛SN

Xn

u¼0

qðn;uÞ�XðpÞPjS1;.;2ðn�uÞ;YiXðpÞy5jT0ihT0j5u

where q(n, u) denotes the probability that u of the n singlets
become a triplet after the mode change. We assume that
changing from one Hadamard mode to the next typically
breaks up half the singlets in each of the terms in the mixture,
i.e. u ¼ n=2.

We now calculate the total angular momentum I2 of this
state, by first noting that in each of the above terms in the mix-
ture one can split the collective operators up into terms that act
on spins which remained untransformed by the mode change,
and the rest Sall spins ¼ ðSin some T0

þ SrestÞ. The mixed terms
between the two sums can be seen to be 0 readily. The terms
involving the unchanged (rest) spins have the same total spin
as before the mode change: Only singlets have been taken
away. For the spins that have turned from singlets to triplets
one can easily verify that their contribution to the new total an-
gular momentum is (N/2� Iold)/4.

In a semiclassical treatment we now calculate in the way
outlined above the average angular momentum after k mode
changes and arrive at the recursive formula

Ikþ1ðIkþ1þ 1Þ ¼ IkðIk þ 1Þ þ ðN=2� IkÞ=4; ð11Þ

where k is the index for the number of modes changes, and
from which we extract the minimal compatible polarization,
Iz
k¼�Ik. The numerical solution of the above recursive for-

mula presented in Fig. 3 indicates that order of OðNÞ modes
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are necessary to completely cool the nuclear spins. We have
verified this scaling behavior for a wide range of particle
numbers.

Note that a scheme employing Hadamard modes is not
optimal: if one had complete freedom in the choice of
modes, one could cool each spin individually and therefore
cool everything to the perfect ground state in N steps; which
is already better than the cooling procedure shown in Fig. 3.

We are thus lead to the conclusion that achieving high po-
larization for strictly homogeneous couplings is hard: Sophis-
ticated and undesirable control mechanisms for the electron
wave function might be needed. As seen in Ref. [1], an inho-
mogeneous coupling will significantly simplify the cooling
process.

6. Conclusions

We have presented a study of nuclear spin cooling in quan-
tum dots in the limit of a homogeneous electron wave func-
tion. We calculated exactly the cooling potential, presented
analytical formulas for the time evolution of the polarization
and, after introducing a handy intuition for the microscopic de-
scription of the dark states in the nuclear ensemble, showed
that many different (Hadamard-) electron wave function pro-
files are needed to completely polarize the nuclei. The results
underline the importance of the inhomogeneous Knight shift
in nuclear spin cooling, which mitigates these limitations so
strongly, that polarizations above 90% are achievable in real-
istic setups [1].
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Highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum
dot subject to resonant optical excitation of the neutral exciton transition. A large maximum polarization of
54% is observed and the effect is found to be much stronger upon pumping of the higher energy Zeeman level.
Time-resolved measurements allow us to directly monitor the buildup of the nuclear spin polarization in real
time and to quantitatively study the dynamics of the process. A strong dependence of the observed dynamic
nuclear polarization on the applied magnetic field is found, with resonances in the pumping efficiency observed
for particular magnetic fields. We develop a model that accounts for the observed behavior, where the pumping
of the nuclear spin system is due to hyperfine-mediated spin-flip transitions between the states of the neutral
exciton manifold.

DOI: 10.1103/PhysRevB.82.121307 PACS number�s�: 73.21.La, 78.67.Hc

Nuclear spin effects in semiconductor quantum dot �QD�
nanostructures have attracted much attention over recent
years.1–14 The hyperfine �hf� interaction of the 104–105

nuclear spins within the dot and the spin of an individual
electron that is electrically or optically generated is key to
address and control the nuclear spin system. This may pro-
vide optoelectronic access to the mesoscopic nuclear spin
system with strong potential for future applications in quan-
tum information technologies.2 The hf interaction limits the
electron-spin coherence in QDs �Refs. 3 and 15� making re-
liable strategies to control the nuclear field highly
desirable.4,5 From both perspectives, a highly polarized en-
semble of nuclear spins would be advantageous. To date, the
vast majority of experiments on dynamical nuclear polariza-
tion �DNP� have been carried out on charged QDs containing
a resident electron.6–8 However, this system is subject to fast
depolarization effects that are typically mediated by the re-
sidual electron in the dot.6 Comparatively few studies of
DNP in neutral QDs have been reported,9–14,16 for which a
stable polarization of the nuclear spin system over time
scales exceeding 1 h has been demonstrated.13

In this Rapid Communication we demonstrate pumping of
the nuclear spin system in an InGaAs QD via resonant opti-
cal excitation of the neutral exciton X0. Most surprisingly, a
strong asymmetry is found in the DNP efficiency for excita-
tion of the two transitions of the orbital ground state of the
dot. DNP predominantly occurs for pumping of the higher
energy Zeeman level. A theoretical model is presented that
accounts for the experimental results. Our results show that
the asymmetric and efficient resonant DNP arises from hf-
mediated spin-flip transitions between neutral exciton states.

As depicted schematically in the inset of Fig. 1�a�, the
samples investigated were GaAs n-i-Schottky photodiode
structures grown by molecular-beam epitaxy. A single layer
of nominally In0.5Ga0.5As self-assembled QDs was grown in
the i region using a partially covered island growth mecha-
nism. The diode is formed by a heavily n+-doped back con-
tact and a 3-nm-thick semitransparent Ti top contact which
allows the application of dc electric fields along the growth

direction of the QDs. The Ti top contact is covered with an
opaque Au layer in which 1-�m-wide circular apertures are
opened to facilitate optical access to single QDs. Photocur-
rent �PC� measurements were carried out on this structure at
10 K for different magnetic fields Bext using linearly polar-
ized light from a tunable external cavity Littman-Metcalf
diode laser. We employ the quantum-confined Stark effect
�QCSE� to tune the transitions of the QD into resonance with
the laser by sweeping the applied electric field while keeping
the laser energy fixed. Figure 1�a� shows the dc Stark shift of
the examined X0 state measured at Bext=0 T in both PC at
high ��30 kV /cm� and photoluminescence �PL� at lower
electric fields ��30 kV /cm�, which can be well described

50 45 40 35

?
det (nm

)

F (kV/cm)

B= 0 T

30 25 20 15

942

943

944

945

946

947

X-2X0
X0

X2-

(a)

(b)

de
t(n
m
)

1310

1312

1314

1316 B = 0 T

F (kV/cm)

λE
(m
eV
)

PC
(p
A)

43 44 45 46

250

200

150

100

50

F (kV/cm)

I

V GaAsn+-

GaAs

14
0n

m

Laser

downup randomization

E1
E2

FIG. 1. �Color online� �a� Combined PL and PC measurements
at Bext=0 T. Inset: schematic of the structure investigated consist-
ing of a single layer of self-assembled QDs is embedded in the
intrinsic region of a Schottky photodiode. �b� Both X0 s-shell states
measured in PC electric field sweeps at Bext=5 T. The individual
curves were measured as described in the text.
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using a second-order polynomial fit allowing a direct conver-
sion of applied electric field into transition energy.17 Figure
1�b� shows an example of an electric field sweep PC mea-
surement performed at Bext=5 T. The measurement clearly
reveals the two optically active �bright� s-shell states of X0,
denoted �E1� and �E2�, as they are tuned into and out of
resonance with the laser by the QCSE. The levels �E1� and
�E2� are separated by an energy gap �E=�EZ

2 +�1
2 in an ex-

ternally applied magnetic field, where EZ is the Zeeman en-
ergy and �1 the fine-structure splitting due to anisotropic ex-
change coupling.18 For EZ��1, the states �E1,2� correspond
to the bright excitons with angular momentum projection
Jz=+1��↓⇑�� and Jz=−1��↑⇓��, respectively, where ↑, ↓�⇑ ,⇓�
denote the electron- �hole-� spin orientation. A clear differ-
ence is observed between the two measurements performed
with opposite sweep directions of the electric field; from low
to high values �“sweep up”—blue trace, closed triangles in
Fig. 1�b�� and high to low values �“sweep down”—red trace,
closed squares in Fig. 1�b��. These observations are shown to
arise from DNP and the resulting effective Overhauser mag-
netic field BN. Partial polarization of the nuclear spin bath in
the QD arises from hf coupling to the spins of the electrons
pumped through the dot during the measurement and intro-
duces an Overhauser energy shift �N=ge�BBN, where �B is
the Bohr magneton and ge the electron g factor. To study
DNP it is important to obtain a reference measurement for an
unpolarized state of the QD nuclear spin system. We obtain
such data by first randomizing the nuclear spins prior to ev-
ery measurement point recorded during an electric field
sweep and also ensuring that our measurement does not in-
duce significant DNP. To achieve this, the sample was tuned
close to flatband and excited nonresonantly in the wetting
layer for 10 s with linearly polarized light. This procedure
pumps randomly oriented electron spins through the QD,
whereupon hf interactions efficiently depolarize the nuclear
spin system. This expectation is confirmed by the observa-
tions presented in Fig. 1�b�; when applying this randomiza-
tion procedure the sweep direction is found to have no influ-
ence on the measured resonance curves, the light green �open
circles� and dark green �closed circles� traces in Fig. 1�b�
corresponding to sweep-up and sweep-down directions, re-
spectively. We note that the observed insensitivity to sweep
direction when employing the randomization procedure is in
strong contrast to the results obtained without randomization
during the sweep �red trace, closed squares and blue trace,
closed triangles in Fig. 1�b��. For all measurements without
randomization, the electric field sweep was performed at a
speed that was slow compared to the time required to reach
the steady-state polarization of the nuclear spin system.
Therefore, each of the measurement points presented in Fig.
1�b� represents the steady-state situation of the nuclear spin
system. However, before every sweep we applied the ran-
domization process once to ensure a well-defined initial state
without residual DNP.

Figure 1�b� reveals an asymmetric behavior of DNP upon
pumping of the two bright exciton states of X0. For the up
sweep �blue trace, closed triangles in Fig. 1�b��, first �E2�
comes into resonance with the laser as the energies of the
states are shifted via the QCSE. No significant DNP effects
are observed upon exciting �E2� since the measured PC sig-

nal coincides exactly with the reference curve recorded with-
out DNP effects. However, as �E1� is tuned into resonance
with the excitation laser, the nuclear spin bath is clearly sub-
ject to DNP since a shift of the �E1� resonance to higher
energies is observed. When the electric field is swept in the
opposite direction �red trace, closed squares in Fig. 1�b��,
first the �E1� state is tuned into resonance with the laser lead-
ing to a buildup of BN. After the �E1� state has been tuned
through the laser, the energetically lower �E2� state ap-
proaches the laser energy. The measurements presented in
Fig. 1�b� clearly show that the �E2� peak in the PC signal is
now redshifted as compared to the reference measurement.
This observation unequivocally shows that the nuclear field
created by optical pumping of �E1� is still present.

Figure 2 presents time-resolved PC measurements per-
formed at Bext=2.5 T. These measurements allow us to in-
vestigate the buildup dynamics of �N. The timing and electric
field sequence used for the measurements is depicted sche-
matically in Fig. 2�a�. First, we employed the randomization
procedure to delete any residual DNP. Following this, the
electric field is set to a value FS that defines a specific initial
�red� detuning �di� of �E1� from the laser. Finally, the laser is
switched on and we record the PC signal as a function of
time. The middle and right panel of Fig. 2�b� shows the
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FIG. 2. �Color online� �a� Timing of electric field sequence and
laser excitation of the sample used for time resolved measurements
of �N. �b� Center and right panel: time-dependent PC signal of �E1�
for different initial detunings of the spin state from the laser di

�defined by FS�. Left panel: steady-state PC values of the time-
dependent measurements as a function of FS �yellow/light gray
symbols� in comparison with corresponding electric field sweep
measurements �green trace, closed circles and blue trace, closed
triangles; color and symbol coding identical to Fig. 1�b��. �c� Left
panel: �N

s as a function of time for different di. Right panel: time tequ

until �N
s is reached as a function of di. The black solid line is a

exponential fit, where an offset of 30 s is included. Identical sym-
bols �� ,� , . . .� in different panels refer to the same di.
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temporal dependence of the PC for different di. For all de-
tunings di�36 �eV, the PC signal first increases to a com-
mon maximum value and then decreases to a steady-state
value IPC

equ characteristic of each di. For di�36 �eV a mono-
tonic increase in the PC signal toward the individual IPC

equ

value is observed. Plotting IPC
equ versus di and comparing the

result with the electric field sweep measurements presented
in the left panel of Fig. 2�b� clearly shows that they directly
map out the sweep-up curve �yellow/light gray symbols and
blue trace, closed triangles in Fig. 2�b��. This observation
directly confirms that the electric field sweeps presented in
Fig. 2�b� are indeed performed adiabatically, such that the
system remains in a steady state during measurement. Time-
resolved control experiments performed at different Bext con-
firm that this is also the case for all electric field sweeps. The
initial increase in the PC signal arises from the buildup of an
Overhauser shift that serves to reduce the red detuning of
�E1� from the laser. The maximum PC signal is reached when
the �E1� state is exactly in resonance with the laser. As �N
increases further, �E1� becomes blue detuned from the laser
until the system reaches the steady-state value �N

s . These
measurements allow us to directly monitor the time evolu-
tion of the Overhauser shift of �E1�. To do this, we mapped
the steady-state PC spectrum recorded with randomization
�green trace, closed circles in Fig. 2�b�� onto the time-
resolved data by shifting it such as to reproduce the instan-
taneous PC signal measured at a time t. The instantaneous
Overhauser shift �N�t� can then be extracted from this shift
and the results of this procedure are plotted in the left panel
of Fig. 2�c� for different values of di. A characteristic behav-
ior is observed for all curves that becomes more pronounced
for larger di. A first slow linear increase in �N is followed by
a faster buildup as the steep slope on the high-energy flank of
the resonance approaches the laser energy. This direct reso-
nance is accompanied by a strong increase in excitation rate
of the QD and thus, a much higher nuclear spin pumping
rate. Finally, the increase in �N slows down as the system
approaches the steady state. In the right panel of Fig. 2�c�,
we plot the time required to reach saturation tequ �Ref. 19� as
a function of di. The dependence of tequ on di can be well
described using a monoexponential fit with an offset �solid
black line� that reflects the asymptotic approach of the sys-
tem toward the steady state. Even for initial detunings far
below one linewidth ��15 �eV�, where the QD excitation
rate is highest, we always find tequ�30 s. For di�15 �eV,
the initial overlap of �E1� with the laser is much smaller. The
lower excitation rate results in a slower �N buildup. We mea-
sured the buildup dynamics of �N for di up to 40 �eV, lead-
ing to tequ in excess of 700 s. For di�40 �eV, no DNP is
observed over a time scale of 1000 s. These measurements
allow us to directly estimate the net electron-nuclear spin-
flip-flop rate �ff and the efficiency of the process. At Bext
=2.5 T, we obtain �N

s =80 �eV, corresponding to a nuclear
spin bath polarization of P=32%,7 i.e., 	104 polarized nu-
clei. For small detunings �di�15 �eV�, tequ is typically on
the order of 10 s or longer indicating an average �ff
	103 s−1. We note that this is an average value since the
detuning and, therefore, the dynamics change continuously
throughout the measurement. In our experiment the ampli-
tude of typical PC signals are 100–200 pA, corresponding to

the generation of 	1010 excitons per second. These observa-
tions show that only one electron in 107 actually undergoes a
net spin-flip-flop event with a nucleus before tunneling out of
the dot.

A systematic investigation of �N
s as a function of the ap-

plied magnetic field is presented in Fig. 3�b�. For Bext
=0–6 T, �N

s created via resonant excitation of �E1� increases
with increasing Bext and then decreases monotonically for
Bext�6 T. The maximum observed Overhauser shift of �N

s

�135 �eV obtained for Bext�6 T corresponds to a nuclear
polarization of P=54% �Ref. 7� and an Overhauser field of
BN=3.8 T �using ge=−0.6 calculated for our InGaAs QDs
�Ref. 20� and similar to values found in the literature21,22�. In
strong contrast, resonant excitation of �E2� does not result in
any pumping of the nuclear spin bath for Bext�4 T. For
Bext	4 T a small Overhauser shift is observed. However,
the magnitude of �N

s is always significantly smaller than that
induced by pumping of �E1� at the same Bext. Most remark-
ably, the direction of BN with respect to Bext is found to be
identical for excitation of both �E1� and �E2� since in both
cases �N is found to result in an increase in �E over the
value measured without DNP effects.

The pumping of the nuclear spin bath can be explained
via hf-mediated electron-nuclear spin-flip-flop processes that
exchange the orientation of the electron and a nuclear spin.
This process is described by the flip-flop part of the hf
Hamiltonian Hff	S+
 jIj

−+S−
 jIj
+,23 where S
 and Ij


 are the
raising and lowering operators for the electron and jth
nuclear spin, respectively. To understand the principle char-
acteristics of the DNP curve in Fig. 3�b� we consider the
exciton level structure shown in Fig. 3�a�. The two bright
exciton states �E1,2� are split from the two optically inactive
�dark� excitons �E3,4� by the large isotropic exchange split-
ting �	150 �eV�.18 Bright and dark doublets are also split
by anisotropic exchange �1 �with �1

bright=40 �eV measured
at Bext=0 T� and are, therefore, a superposition of the pure
spin states with a mixing ratio that decreases with increasing
Bext. The hf flip-flops couple bright and dark excitons,

�↑⇓�→
S−

�↓⇓� and �↓⇑�→
S+

�↑⇑�. Since only bright excitons are
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FIG. 3. �Color online� �a� Calculated Breit-Rabi diagram for the
bright ��E1,2�� and dark ��E3,4�� exciton states. �b� Steady-state
Overhauser shift �N

s created by resonant excitation of either of the
two X0 states �E1� and �E2� as a function of Bext obtained from
experiment �circles� and calculated using the model described in the
text �solid line�. The dashed vertical lines indicate the crossing of
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excited by the laser and tunneling quickly removes all exci-
tons from the QD, the hf flip flops occur only from bright to
dark states. As we see from Fig. 3�a� the dark exciton state
�E3���↑⇑� is energetically closer to both bright states than
�E4���↓⇓�. This makes hf-induced transitions to �E3� in
which the electron spin flips up �S+� more likely than those to
�E4� in which it flips down �see Fig. 3�a�� since the flip rate
scales with the inverse of the energy difference squared �and
the matrix elements between the two states�.24 Consequently,
the resonant optical pumping has the result that nuclear spins
are predominantly flipped to align antiparallel with Bext. This
qualitatively explains why we observe unidirectional nuclear
polarization independent of the net polarization of the elec-
trons pumped through the dot. The peaks observed in Fig.
3�b� are related to the crossing of different exciton levels: as
�E3� crosses either �E2� or �E1�, hf flips become very likely
and nuclear polarization builds up. This process is particu-
larly efficient for the higher energy exciton �E1� �orange/dark
gray curve in Fig. 3�b�� since the coupling matrix element
�E3�Hff�E1� is close to a maximum as �E1� is of predominant
�↓⇑� character. Efficient coupling between �E1� and �E3� is
preserved over a wide range of electric fields since DNP
causes both an energy shift of �E1� and shifts the magnetic
field for which �E1� and �E3� cross to larger values. This leads
to a stronger and higher peak in the achieved nuclear polar-
ization that is also shifted to higher Bext values than expected
from the crossing of the states without BN. In contrast, for
the lower energy exciton �E2� DNP is much less effective
since this state has predominant �↑⇓� character and
�E3�Hff�E2� is small but nonzero due to the �weak� admixture
of �↓⇑� in �E2� arising from the anisotropic exchange. This
leads to the small DNP peak at low magnetic field around the
crossing of �E2� and �E3� �black curve in Fig. 3�b��. No DNP
is observed at Bext�0 T since now both doublets are of
strongly mixed spin character18 and the energy difference to

both dark states is almost identical for each bright state. For
large Bext, hf flip-flops are ineffective since the bright and
dark exciton states are strongly detuned with the result that
DNP is suppressed.

All these features are reproduced by our simulations
shown in Fig. 3�b�. Our theoretical approach makes use of
the separation of time scales between the fast excitonic and
slow nuclear dynamics. The exciton experiences the Over-
hauser field of quasistatic nuclei and quickly reaches a steady
state determined by optical driving, tunneling, and the hf
coupling. Dark exciton populations in this steady state arise
from the transverse components of BN �hf flip flops� and
determine �on the slow nuclear time scale� the “instanta-
neous” nuclear polarization rate. This rate is used in the
simulation of the PC measurements: for given magnetic field
Bext, laser frequency �L, and nuclear polarization P we de-
termine the rate, change P accordingly and repeat until the
steady-state polarization is reached. Keeping P fixed, the de-
tuning is then shifted and the process is repeated. From the
average exciton population �at given Bext, �L, and di� the
photocurrent is deduced and from the peaks in the PC curve
�N is obtained as described before. In the simulations we
assumed a finite laser-induced nuclear depolarization rate, as
without it the nuclear steady state would be almost fully
polarized throughout. A more detailed analysis of the nuclear
dynamics subject to optical pumping in the presence of tun-
neling will be presented elsewhere. At this point we would
like to mention that we were recently made aware of a paper
that describes optically mediated DNSP in a single InP/
GaInP QD interrogated via photoluminescence.25 The model
utilized to explain the results of that paper is fully consistent
with the one proposed here.
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Large nuclear spin polarization in gate-defined quantum dots using a single-domain
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The electron-nuclei (hyperfine) interaction is central to spin qubits in solid state systems. It
can be a severe decoherence source but also allows dynamic access to the nuclear spin states. We
study a double quantum dot exposed to an on-chip single-domain nanomagnet and show that its
inhomogeneous magnetic field crucially modifies the complex nuclear spin dynamics such that the
Overhauser field tends to compensate external magnetic fields. This turns out to be beneficial for
polarizing the nuclear spin ensemble. We reach a nuclear spin polarization of ' 50 %, unrivaled in
lateral dots, and explain our manipulation technique using a comprehensive rate equation model.

PACS numbers: 76.70.Fz, 81.07.Ta, 31.30.Gs, 07.55.Db

The hyperfine interaction (HFI) between few electrons
and a bath of nuclear spins induces a complex quantum
many-body dynamics which has been studied in a va-
riety of systems including phosphorus donors in silicon
[1], nitrogen vacancy centers in diamond [2], quantum
Hall systems [3], and semiconductor-based quantum dots,
both optically [4] and in transport [5, 6]. In GaAs dou-
ble quantum dots (DQDs), each electron interacts with
∼106 nuclear spins, which fluctuate thermally even at
cryogenic temperatures. Their HFI causes electron spin
decoherence [6–9], but it also offers a means to control the
nuclear spins dynamically [10–13]. As has been proposed
[14–17] and demonstrated [18–20], nuclear spin manipu-
lation facilitates nuclear state preparation, which can en-
hance spin coherence times [21, 22]. Nuclear spin manip-
ulation has also motivated theoretical proposals [23, 24]
and experimental realizations [25, 26] of nuclear spins as
quantum memory.

Here, we present a novel nuclear spin manipulation
technique. We couple a DQD with a single-domain nano-
magnet whose inhomogeneous magnetic field does not de-
pend on external fields. This allows measurements in a
new regime, which will increase our fundamental under-
standing and control of the coupled electron-nuclei sys-
tem common to a variety of platforms. As an example,
we demonstrate unusually strong dynamic nuclear spin
polarization (DNSP). In laterally defined DQDs, adia-
batic pumping experiments have produced polarizations
of 1–5 % [11–13], and using electron dipole spin reso-
nance, 16 % has been realized [10]. Using a simpler
experimental technique, we report ' 50 % polarization,
achieved by exploiting the benefits of our nanomagnet.

We measure the current, I, which results from a dc
voltage, here V = 1 mV, applied across the DQD exposed
to the inhomogeneous magnetic field of a nanomagnet
(see Figures 1a,c). As detailed in Figure 1b, electrons
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FIG. 1. (a) Scanning electron micrograph showing the Ti/Au
gates (yellow) used to define the DQD. Electrons tunnel se-
quentially from source (S) to drain (D) through the two QDs
located near . The (blue) single-domain Co nanomagnet
(200 (width) × 50 (height) × 2000 nm3, 2/5 visible) gener-
ates an inhomogeneous magnetic field, Bnm. (b) The tunnel-
ing sequence (0 1) → (1 1) → (0 2) → (0 1). Triplet-singlet
transitions {T−, T0, T+} → S11 require lifting of the PSB. (c)
The relevant layers of the heterostructure, gates, and nano-
magnet. The magnetic field lines (blue) are calculated accord-
ing to ref. 27. The black arrows indicate the local magnetic
fields BL

nm = (0, 32.3, 22.4) mT and BR
nm = (0, 5.2, 10.6) mT.

The 3 mT radius of represents the typical Overhauser field
fluctuations.
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cycle (0 1) → (1 1) → (0 2) → (0 1), where (mn) indi-
cates the number, m (n), of electrons in the left (right)
dot. The transition (0 1) → (1 1) loads one of four (1 1)
states, which consist of the singlet state, S11, and the
three triplet states, T11 = {T−, T0, T+}. Only T± have
a nonzero spin projection along the quantization axis,
which we choose parallel to the external magnetic field,
Bext (along the z-axis in Figure 1a). The only energeti-
cally accessible (0 2) state is the singlet state, S02. The
corresponding eigenenergies are plotted in Figure 2a as
a function of the energy detuning, ∆, between the dia-
batic singlet states S11 and S02. The singlet eigenstates,
Ss and Sa, are the symmetric and antisymmetric com-
binations of S11 and S02 mixed by the interdot tunnel
coupling, tc. T0 is at zero energy (neglecting exchange
coupling), while T± are split by their Zeeman energies,
E±z = ±gµB

(∣∣BL + BR
∣∣) /2, where BL (BR) is the local

magnetic field in the left (right) dot, g the Landé g-factor,
and µB the Bohr magneton. For ∆ > 0, the triplets are
well separated from Ss, but not from Sa.

In a homogeneous magnetic field
(
BL = BR

)
, tran-

sitions between triplets and singlets are forbidden by
Pauli spin blockade [28] (PSB) (dashed arrows in Fig-
ure 1b). Eventually the occupation cycle stalls in one
of the triplets resulting in I = 0 (neglecting cotunnel-
ing). DNSP requires I 6= 0, which can be induced by
a local field difference, BL − BR, that lifts the PSB by
coupling triplets to singlets. One way to produce in-
homogeneous fields is to include on-chip micromagnets,
which have been used for all-electric control of a single
electron spin [29–31]. However, at external fields be-
low a few hundred mT, micromagnets form magnetic do-
mains, which greatly reduce their fields. Here, we use a
nanomagnet (see Figure 1a), which forms a single mag-
netic domain (due to its shape anisotropy) and a sizable
∆B =

(
BL −BR

)
/2 even if Bext = 0 [32]. This pre-

viously unexplored regime proves to be highly beneficial
for controlling DNSP.

Even in the absence of on-chip magnets, the HFI be-
tween thermally fluctuating nuclear spins and electrons
creates an effective (Overhauser) field, Bnuc, which sta-
tistically varies between the two dots resulting in a small
leakage current near Bext ' 0 and ∆ ' 0 [33, 34]. Com-
pared to Bnuc, the nanomagnet’s inhomogeneous field,
Bnm, is more stable in time, and |∆Bnm| � |∆Bnuc| (see
Figure 1c). Bext is aligned along the easy axis (z-axis) of
the nanomagnet, which has a coercive field of 52 mT. Be-
cause the nanomagnet forms a single domain, Bext does
not affect the magnitude of Bnm. The associated ∆Bnm

results in a leakage current over a broad range of ∆ and
Bext including distinct current maxima along the Sa–T±
resonances (Figure 2b). These current features are seen
at small Bext and, hence, are not accessible with multido-
main magnets (see above). Our observed current features
are very different from measurements performed without
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FIG. 2. (a) The relevant eigenenergies as a function of
∆, for Bnuc = 0. The inhomogeneous Bnm causes singlet-
triplet mixing (see enlarged Sa–T− avoided crossing) and lifts
the PSB. (b) Leakage current, I, through the DQD ver-
sus ∆ (stepped from top to bottom) and Bext (swept at
−50 mT/min). The red dashed line is a numerical prediction
of the Sa–T± resonances without DNSP using tc = 12 µeV.
The white dashed line includes DNSP (via the Sa–T− res-
onance) using eq 1 with Γrel = 0.043 s−1, γ = 10 mT, and
α = 35 nA−1 s−1.

an on-chip magnet [33].

However, consideration of Bnm alone does not explain
all features in Figure 2b. We must include the HFI and
its effect on DNSP, as has proven necessary in other ex-
periments [19, 35–37]. The dashed red line in Figure 2b
is a prediction of the position of the Sa–T± resonances as
a function of Bext and ∆. It takes into account Bnm, but
neglects Bnuc [33]. Compared to this prediction, however,
the measured resonances (blue arrows in Figure 2b) occur
at larger |Bext|. As we will show, this shift can be ex-
plained by including DNSP, which produces a Bznuc that
compensates Bext, e. g., Bznuc < 0 when Bext > 0.

The connection to DNSP becomes evident with the
data shown in Figure 3a, which probes the Sa–T− reso-
nance as a function of time for a fixed ∆. We prepared the
nuclear spin polarization, P , to P ' 0 by waiting three
minutes at I = 0 before turning on the voltage across the
DQD. The current maximum, Imax, at the Sa–T− reso-
nance occurs later in time at larger Bext. Again, this can
be explained if Bznuc < 0 and compensates Bext. Because
the GaAs g-factor is negative, P = −Bznuc/B

max
nuc , where
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moment of maximal current, t (Imax), using eq 1 and the same
parameters as in Figure 2b. Red Trace: I(t) measured at

Bext = 25 mT. (b) Ṗ (P ) for three different Bext using eq 1
and the same parameters as in Figure 2b. Far from resonance
an exponential decay Ṗ = −ΓrelP remains (gray dashed line).
 , , mark the Bext–dependent “adjustable” fixed point and
� a “trivial” fixed point, which appears near P = 0 when
Bext & 45 mT.

Bmax
nuc ' 6.1 T is the Overhauser field magnitude pro-

duced when all nuclear spins are aligned [33]. Bznuc < 0
implies that P > 0, which can only be explained if DNSP
from T+ outweighs that from T−, despite the system be-
ing near the Sa–T− resonance. This peculiar situation
results from spin-selective lifting of the PSB (of T−) and
bolsters DNSP, as discussed below.

Our explanation starts with a rate equation model [19,
20, 38] including only polarization generated by T+ near
the Sa–T− resonance (A comprehensive calculation in [33]
Sec. III includes all (1 1) states). As a simplification, we
use the average polarization P =

(
PL + PR

)
/2. (PL 6=

PR would mainly affect the decay of T0, not T±.) The
overall rate equation is

Ṗ (t) = Γpol(t) [1− P (t)]− ΓrelP (t), (1)

where the polarization decay rate, Γrel, is constant, while
the build-up rate, Γpol(t), is proportional to current,
Γpol(t) = αI(t) > 0, as observed experimentally. For
convenience, we describe the current maximum at the

Sa–T− resonance as a Lorentzian

I(t) = Imax
(γ/2)

2

(
E−z − Ea

)2
+ (γ/2)

2
, (2)

where Imax is the (measured) resonant current and γ is
the effective width of the resonance. (Nonresonant states
contribute weakly to I(t).) Here

Ea =
(
−∆ +

√
t2c + ∆2

)
/2 (3)

is the energy of Sa. We approximate Ez by only including
the average z-component of Bnm, B

z

nm, so that

E−z ≈ |g|µB

(
Bext(t)−Bmax

nuc P (t) +B
z

nm

)
. (4)

Example Ṗ (P ) curves are plotted in Figure 3b and are
used to model the data in Figure 3a. P (t = 0) = 0 in this
measurement, and the model predicts Ṗ (P = 0) > 0 (evi-
dent in Figure 3b). Therefore, P increases in time until it
reaches a stable fixed point at Ṗ = 0 (and dṖ /dP < 0).
For Bext < 43 mT, P passes through the Sa–T− reso-
nance, which coincides with Ṗmax in Figure 3b. As Bext

is increased, the Sa–T− resonance moves to larger P , and
with it move Ṗmax and the stable “adjustable” fixed point
(A-FP, circles in Figure 3b). Accordingly, the measured
(resonant) Imax in Figures 3a appears later in time with
increasing Bext. When Bext ≈ 45 mT, a second stable
“trivial” fixed point (T-FP, square in Figure 3b) appears
near P = 0 and remains there for Bext > 45 mT. Hence,
we expect P to remain near zero (far from resonance)
at the T-FP. Indeed, no resonant current maximum is
observed for Bext & 43 mT in Figure 3a.

Eq 1 provides quantitative predictions of the time evo-
lution of the Sa–T− resonance associated with the mea-
sured Imax. Namely, it yields the white fits in Figures 2b
and 3a. These two separate fits share altogether four fit
parameters. The agreement between our model and data
indicates that the model captures the DNSP in both ex-
periments. In addition, Γrel agrees with reported values
[13].

Our model reveals a straightforward procedure to max-
imize P . We start at small Bext where the T-FP is ab-
sent and P is initialized at the A-FP (see top panel of
Figure 4a). This initialization requires small Bext and
sufficient singlet–triplet mixing and is only possible with
a single-domain nanomagnet. To reach a large P , we
increase Bext (with a sufficiently slow sweep rate) drag-
ging the A-FP, and P along with it (see middle panel
of Figure 4a). This dragging procedure works up to a
maximum polarization, Pmax, occurring when the decay
of P overwhelms its build-up and Ṗmax = 0 (see bottom
panel of Figure 4a). Pmax is defined by solving eq 1 for
Ṗ (Pmax) = 0:

Pmax/ (1− Pmax) = αImax/Γrel ≡ Γmax
pol /Γrel, (5)
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FIG. 4. (a) Ṗ (P ) for threeBext using eq 1 with Imax = 1.2 pA
and the fit parameters from Figure 2b. � marks the T-FP
and  the A-FP. (b) Leakage current, I, for various ∆ in the
PSB regime [see (c)] measured while continuously increas-
ing Bext (at 30 mT/min) after initialization at the A-FP at
Bext = 50 mT. (All but the lowest trace are vertically off-
set in increments of 125 fA.) Sharp current peaks (marked by
arrows) correspond to the maximum polarization, Pmax(∆),
in (a). (c) Pmax/ (1− Pmax) from (b) (filled circles) and I
(black/green traces), measured along the (black/green) lines
in the inset, versus ∆. Inset : I measured as a function of
gate voltages VL,R (see Figure 1a). The region of suppressed
I within the double triangle of finite current marks PSB. (d)
Pmax/ (1− Pmax) versus I, extracted from the traces in (c).
The gray square is predicted from the data in Figure 2b. The
black line expresses eq 5 with α/Γrel = 0.81 pA−1 using the
fit parameters from Figure 2b.

where Γmax
pol , Pmax > 0 and both depend on ∆ via Imax.

At Bmax
ext (the field corresponding to Pmax), the A-FP

coincides with the Sa–T− resonance, and we expect a
current maximum.

Indeed, the leakage current measured during such
DNSP sweeps, displayed for various ∆ in Figure 4b, fea-
tures a sharp current maximum at a particular Bext (see
arrows), which we identify as Bmax

ext (∆). For Bext >
Bmax

ext , the A-FP is lost, and the nuclear spin polariza-
tion decays (Ṗ < 0) with rate Γrel.
Pmax(∆) compensates Bmax

ext (∆) so that we can equate
Pmax(∆) = Bmax

ext (∆)/Bmax
nuc . Pmax/(1 − Pmax) and I

measured versus ∆ are shown side-by-side in Figure 4c
demonstrating a striking correlation between Pmax/(1−
Pmax) and I. In fact, in accordance with eq 5, Figure 4d
shows that Pmax/ (1− Pmax) ∝ I confirming our assump-
tion that Γpol ∝ I. The straight black line in Figure 4d
expresses eq 5 using the fit parameters from Figure 2b.

The ability to explain three very different data sets (Fig-
ures 2b, 3a, 4d) with one set of fit parameters corrobo-
rates the interpretation of the current peaks in Figure 4b
and the validity of our rate equation model [33].

Our highest Bmax
ext ' 2.9 T (green data in Figure 4b)

corresponds to P ' 50 % (and generates an Overhauser
field gradient of ∼ 1 T/100nm across the DQD bound-
ary). This exceeds by far previously reported polariza-
tions in laterally defined DQDs [10–13](a complementary
measurement of P in [33] Sec. VI).

To detail how Bnm and the HFI combine to lift the
PSB and induce DNSP, we compare our system with
two simpler scenarios. If the HFI were the only mech-
anism to lift PSB, no DNSP would be expected since
all triplets are loaded equally often resulting in as many
up as down nuclear spin flips. In experiments without a
nanomagnet [36, 39], cotunneling weakly lifts the PSB (in
competition with the HFI) and does so equally for each
triplet, nearly irrespective of its energy. In contrast, the
hyperfine-induced decay rate is strongly energy depen-
dent. Therefore, near the Sa–T− resonance, T− generates
more nuclear spin flips than T+, and P < 0 is observed
without nanomagnet.

In our case, Bnm mixes T− and Sa strongly near their
resonance, resulting in two (1 1) states that are no longer
in PSB. Hyperfine-induced decay is heavily suppressed in
these mixed states. In this situation, the HFI still con-
tributes to the decay of T+ (and T0) thereby producing
DNSP and P > 0. In an alternative approach, DNSP
has been studied for large tc (∼ 100 µeV) by sweeping
∆[36, 37, 39]. However, when tc ∼ 1–10 µeV, which is fa-
vorable for spin qubits, P is limited by the energy of Sa

in the PSB regime, so that |P | . tc/ (2 |g|µBB
max
nuc ) ∼

10 %. Moreover, Bznuc < 0 in our system provides a
distinct advantage because Bznuc compensates Bext such
that the total effective magnetic field is constant during
the polarization build-up; therefore, P is only limited by
αImax/Γrel when dragging P with Bext.

We have demonstrated a nuclear spin polarization of
' 50 % in a DQD based on the enhanced ability to ma-
nipulate the nuclear spin ensemble using an on-chip nano-
magnet. Larger polarizations can be expected upon fur-
ther optimization of the electronic spectrum, sample ge-
ometry and materials. Our results demonstrate the flex-
ibility offered by an on-chip nanomagnet, which could be
used for all-electric ESR [29] while simultaneously polar-
izing the nuclear spin ensemble at small tc values ideal
for spin qubit operation. Such a system could be used
to improve nuclear state preparation techniques [12, 40–
42] or for measuring complex nuclear phenomena such
as spin squeezing [43], quantum memory [23, 24], dark
states [44], quantum phase transitions [45], and superra-
diance [46].
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I. OVERVIEW

The following supplementary material provides additional information related to various aspects of the main article.
We start in Section II with details about the sample design and the experimental setup of the measurements. In Section
III we introduce a model Hamilton operator which describes the hyperfine interaction (HFI) in our double quantum
dot (DQD) setup including the inhomogeneous magnetic field of the nanomagnet. Based on a rate equation model,
in Section IV, we perturbatively solve the dynamic nuclear spin polarization (DNSP) problem by explicitly taking
into account the contributions of all four (1 1) states. We show that the perturbative solution justifies the simplified
model used in the main article. Section V provides detailed explanations of the current features in Fig. 2b of the
main article. In Section VI we present results of a complementary experiment that gives additional evidence of the
validity of our model and of our interpretation of the data in Fig. 4 of the main article in terms of a large nuclear
spin polarization. Section VII describes the fitting procedure for the data in Figs. 2b, 3a of the main article.

II. SAMPLE DESIGN AND EXPERIMENTAL SETUP

The samples have been fabricated from a GaAs / AlGaAs heterostructure containing a two-dimensional electron
system (2DES) 85 nm below the surface. At cryogenic temperatures, the 2DES has a carrier density of 1.19× 1011 cm−2

and a mobility of 0.36× 106 cm2 V−1 s−1. Metallic gate electrodes (30 nm gold on top of 5 nm titanium) have been
fabricated on the sample surface by electron-beam lithography and standard evaporation/lift-off techniques (Fig. S1a).
The Co nanomagnet with a thickness of 50 nm was evaporated directly on top of the leftmost gate and capped with
5 nm of Au to prevent oxidization. Negative voltages applied to these electrodes are used to deplete locally the 2DES
and thereby define the DQD. The absolute electron occupation, (m n), was determined by quantum-point-contact
charge detection[R1]. All measurements have been performed in a dilution refrigerator at an electron temperature of
∼ 100 mK. Fig. S1b sketches the experimental situation in this Letter. A source-drain voltage of V = (µS − µD)/e
is applied across the DQD between degenerate leads. The DQD is in the Pauli-spin blockade, where a triplet state
can only contribute to current if it is coupled to a singlet state, e.g., by field inhomogeneity or interaction with the
ensemble of NL(R) ∼ 106 nuclei.

III. THE HAMILTONIAN

The total Hamiltonian of the system includes electrostatic, magnetic, and hyperfine contributions and is given (in
the relevant subspace depicted in Fig. S1b) by

H = Hel +HB +Hhf. (S1)
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FIG. S1. Experimental setup a) SEM image of the DQD device used in the experiments. b) A DQD in Pauli-spin blockade
(typical experimental situation), while a voltage V is applied between the degenerate 2D leads with chemical potentials µS and
µD. Vertical lines are tunnel barriers. The right dot always contains at least one electron. The dashed horizontal lines are the
spin-split chemical potentials of the spin up/down (0 1) states, where the chemical potential of a quantum dot is defined as the
energy needed to add one more electron. The solid horizontal lines are the chemical potentials of the five relevant two-electron
basis states, where EZ is the Zeeman energy and ∆ is the energy detuning between the singlet states, S11 and S02.

Using the diabatic singlet-triplet basis {T+, T0, T−, S11, S02}, the electrostatic contribution is

Hel = tc/2 (|S11〉 〈S02|+ |S02〉 〈S11|)−∆ |S02〉 〈S02| , (S2)

where ∆ is the interdot energy detuning (see Fig. S1) and tc is the interdot tunnel splitting (see Fig. 2a of the main
article). The interaction between the local magnetic fields and the electron spins in the two dots is described by

HB = gµB

[(
Bext + BL

nm

)
· SL +

(
Bext + BR

nm

)
· SR

]
, (S3)

where Bext is the external magnetic field, BL,R
nm the local magnetic field of the nanomagnet, SL,R the local electron

spin operator, g the electron g-factor, and µB the Bohr magneton.
The wave function of an electron confined in a lateral GaAs-dot overlaps with∼ 106 nuclei. The hyperfine interaction

between the electron spin and the nuclear spins is dominated by the contact term HL,R
con =

∑
k A

L,R
k IL,R

k · SL,R, where

IL,R
k is the kth nuclear spin operator and AL,R

k the hyperfine coupling constants. AL,R
k is proportional to the overlap

between the wavefunctions of the kth nucleus in left/right dot and the electron and varies by isotope type. It is
common to define an average A reflecting the natural abundance of isotope type and the average overlap with the
electron wavefunction. In this approximation, the contact Hamiltonian is HL,R

con = AIL,R · SL,R, where IL,R is the
average nuclear spin (ensemble) operator and A = 85 µeV in GaAs[R2]. Electrons in the left/right dot couple to
different sets of nuclei, and we can write

Hhf = HL
con +HR

con = A
(
IL · SL + IR · SR

)
= A

∑

i=L,R

(
IizS

i
z +

Ii+S
i
− + Ii−S

i
+

2

)
, (S4)

where SL,R
z and IL,R

z are the corresponding z-projection operators; and SL,R
± = SL,R

x ± iSL,R
y and IL,R

± = IL,R
x ± iIL,R

y

are the spin raising and lowering operators. In a semiclassical approximation IL,R can be replaced by the effective
nuclear magnetic (Overhauser) field[R3] BL,R

nuc = A
〈
IL,R

〉
/ (gµB), where 〈. . .〉 denotes the expectation value, and

〈I〉max = 3/2 in GaAs. In ESR experiments (not shown), we measured g ' −0.36 in our system. This predicts,
for fully polarized nuclear spins (P = 1), an Overhauser field magnitude of Bmax

nuc = A 〈I〉max / (|g|µB) ' 6.1 T. The
semiclassical version of Hhf has the same form as HB (see Eq. (S3)), and we can summarize

HB +Hhf = gµB

(
BL · SL + BR · SR

)
, (S5)

where BL,R = Bext + BL,R
nm + BL,R

nuc is the total effective magnetic field acting on an electron in the left and right dot,
respectively.

In analogy to B =
(
BL + BR

)
/2 and ∆B =

(
BL −BR

)
/2, we define the symmetric and antisymmetric spin

operators S =
(
SL + SR

)
/2 and ∆S =

(
SL − SR

)
/2. We then use B± = Bx±iBy, ∆B± = ∆Bx±i∆By, S± = Sx±iSy
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and ∆S± = ∆Sx ± i∆Sy, defined akin to the spin raising and lowering operators in equation (S4), to write equation
(S5) analogous to the right hand side of equation (S4):

HB +Hhf = gµB

(
2BzSz + 2∆Bz∆Sz + ∆B+∆S− + ∆B−∆S+ +B+S− +B−S+

)
. (S6)

With the quantization axis, ẑ, defined parallel to Bext, the matrix representation of the (semiclassical) total Hamil-
tonian in the basis spanned by the diabatic singlet and triplet states {T+, T0, T−, S11, S02} is

H = µ?

T+ T0 T− S11 S02







√
2 Bz B− 0 −∆B− 0 T+ = |↑↑〉

B+ 0 B−
√

2∆Bz 0 T0 = (|↑↓〉+ |↓↑〉) /
√

2

0 B+ −
√

2 Bz ∆B+ 0 T− = |↓↓〉

−∆B+

√
2∆Bz ∆B− 0 t?c/2 S11 = (|↑↓〉 − |↓↑〉) /

√
2

0 0 0 t?c/2 −∆? S02 = |0, ↑↓〉

(S7)

where µ? = gµB/
√

2, t?c = tc/µ
? and ∆? = ∆/µ?. The matrix representation (S7) illustrates that the x- and y-

components of ∆B mix T± with S11, while the z-component of ∆B mixes T0 (which has no spin component along
the z-axis) with S11. Instead, Bz leads to the Zeeman splitting of the T± states. Note that the off-diagonal terms
B±, which mix T± with T0, vanish if the quantization axis is chosen parallel to B.

IV. PERTURBATION CALCULATION OF DNSP

In the main article, we use a simplified approximation that only considers the hyperfine contribution from T+. In
this section, we calculate the hyperfine-induced decay of all (1 1) states using perturbation theory (Fermi’s golden
rule) similar to reference [R4] in which, however, the effects of a nanomagnet were not included. Here we show that
the simplified model produces the pertinent features of the perturbation theory, justifying the approximation used in
the main article.

We start by writing equation (S1) as H = H0 +H+
ff +H−ff , where

H0 = Hel +HB + 2gµB

(
B
z

nucSz + ∆Bznuc∆Sz

)
, (S8)

H±ff = gµB

(
B
±
nucS∓ + ∆B±nuc∆S∓

)
, (S9)

are the bare Hamiltonian and hyperfine flip-flop Hamiltonians, respectively. We treat H+
ff + H−ff as a perturbation

of H0. Diagonalization of H0 provides the unperturbed eigenvalues, En, of the nth eigenstate, |n〉. We account for
coupling to the leads by a simple master equation with four Lindblad operators (eliminating the intermediate stage
in the sequential tunneling process (0 2)→ (0 1)→ (1 1)) and assuming that the four (1 1) states {T+, T0, T−, S11} are
populated with equal rate:

d

dt
ρ =

1

i~
[H0, ρ] +

ΓR
4

∑

x∈{T+,T0,T−,S11}

(
|x〉 〈S02| ρ |S02〉 〈x| −

1

2
(|S02〉 〈S02| ρ+ ρ |S02〉 〈S02|)

)
. (S10)

We approximate the dynamics by a rate equation for the populations ρ = (ρ11, ρ22, ρ33, ρ44, ρ55) in the five energy
eigenstates.

dρ

dt
= G(0)ρ. (S11)

The transition matrix G(0) = (G
(0)
ij )ij , describes decay of the level n with a rate Γ0

n = ΓRsn, determined by sn =

| 〈S02| n〉 |2, the overlap of |n〉 with the localized singlet state. Since only (1 1) states are refilled, the rate with which
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|m〉 is populated is proportional to (1− sm): Hence the matrix elements of G(0) are

G(0)
nm =

ΓR
4

(1− sn)sm (n 6= m), (S12)

G(0)
nn = −ΓR

4
sn (3 + sn) . (S13)

The width of the level |n〉 is given by ~Γ0
n = ~ΓRsn.

We include the hyperfine flip-flop processes using Fermi’s golden rule (assuming a constant density of states over
the range of energies of the (1 1) states) to determine the flip-flop rate from an initial state, |n〉, to the final state, |f〉
as

Γ±n→f =
2π

~
∣∣〈f
∣∣H±ff

∣∣n
〉∣∣2 1

2π

~
(

Γ0
f + Γ0

n

)

(En − Ef )
2

+
(
~Γ0

f+Γ0
n

2

)2

1∓ P
2

=

∣∣〈f
∣∣H±ff

∣∣n
〉∣∣2
(

Γ0
f + Γ0

n

)

(En − Ef )
2

+
(
~Γ0

f+Γ0
n

2

)2

1∓ P
2

,

where the factor (1∓ P ) /2 expresses the influence of polarization on the nuclear-spin flip rates. The total escape rate
from |n〉 is then

Γn = Γ0
n +

∑

f 6=n
(Γ+
n→f + Γ−n→f ). (S14)

We can neglect cotunneling in our sample, since its contribution to the leakage current is negligible compared to that
of the nanomagnet. The full rate equation is now given by

dρ

dt
= Gρ, (S15)

with Gnm = G
(0)
nm + Γ+

n→m + Γ−n→m(n 6= m) and Gnn = G
(0)
nn −

∑
m 6=n(Γ+

n→m + Γ−n→m).
We determine the leakage current and the DNSP rates by numerically solving for ρ̇ = 0, obtaining the steady state

populations ρss
n . The magnitude of the total current is given by

I = I0 + I+ + I− = e
∑

n

ρss
n Γn,

where e is the magnitude of the electron charge. I0 is the non-polarizing current induced by the nanomagnet, while
I± are the hyperfine-generated currents that polarize in opposite directions. I± are expressed as

I± = e
∑

n

ρnΓ±n .

To convert these currents into nuclear polarization rates, we write

Γ±pol =
2I±

eN
,

where we have normalized by e and included that the polarization, P =
(
N↑ −N↓

)
/N , changes by 2/N per nuclear

spin flip for N nuclei in total. The overall polarization rate equation is

Ṗ = Γ+
pol − Γ−pol − PΓrel. (S16)

In the main article, we neglect Γ−pol and approximate

Ṗ ' Γ+
pol − PΓrel ' αI (1− P )− PΓrel, (S17)

where α is taken as a constant (∼ 35 nA−1 s−1).
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To compare the above theoretical model with the simplified version used in the main text, Fig. S2 shows Ṗ versus
P and Bext predicted using the two models represented by equations (S16) and (S17). The simple model, shown
in Fig. S2a, predicts a narrow region of positive Ṗ running diagonally through the P–Bext plane. The perturbation
theory calculation, shown in Fig. S2b, predicts this same feature, which is associated with the Sa–T− resonance, as
well as more complicated behavior associated with other singlet–triplet resonances (see Fig. S2c). Both models predict
that the Sa–T− resonance is the only resonance which creates a stable fixed point at large P and Bext. Figs. S2c-e
demonstrate the good agreement between the simplified model (orange lines) and the perturbation calculation (black
lines) at the Sa–T− resonance. (The orange lines here are the same as the lines in Fig. 4a of the main article.)
Compared to the other two resonances, Ṗ at the Sa–T± resonances is very steep and provides strong feedback of the
nuclear spins toward the A-FP, a distinct advantage for DNSP. From Fig. S2, it is evident that equations (1–4) of the
main article are sufficient to model the nuclear polarization associated with the Sa–T− resonance.

The leftmost and rightmost Ṗ extrema in Figs. S2c-d are generated by the Ss–T± resonances, while the small feature
between the Sa–T± resonances corresponds to the crossing of the triplet levels at Bz = Bext + B

z

nm − PBmax
nuc ≈ 0.

Note that the nuclear field components B̄x,ynuc,∆B
x,y,z
nuc play an important role for our treatment, determining directly

the strength of the hyperfine flip-flop rates. For the DNSP rates depicted in Fig. S2 we have averaged calculations
for different values of the nuclear field fluctuations chosen according to a Gaussian distribution with zero mean and
standard deviation of ∼ 3 mT.

B
ex

t (
T)

0.0 0.2 0.4
0

1

2

3

P
0.0 0.2 0.4

P

–0.02

0.00

0.02
P (s–1)a b
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P
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P
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)

c d e
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FIG. S2. Nuclear polarization rate a) The nuclear polarization rate, Ṗ , calculated analytically using equation (1) of the

main article. The dashed horizontal lines correspond to the constant Bext slices shown in Fig. 3b of the main article. b) Ṗ
calculated numerically using equation (S16) with ΓR = 4.5 GHz and N = 106 nuclei. A random Gaussian distribution was
used for Bx

nuc and By
nuc as in reference [R5]. The scale bar applies to both a and b. Both calculations were performed using

tc = 12 µeV, ∆ = 8 µeV, Γrel = 0.04 s−1, and the magnetic field distribution of the nanomagnet (Fig. 1c, main article). c-d) Ṗ
as a function of P at constant Bext (lines in a,b) comparing the rate equation model [orange, equation (1) of the main article]
with the perturbation calculation [black, equation (S16)]. The ranges in P of these slices are indicated by the magenta lines
in b. The polarization rate extrema associated with the four singlet-triplet resonances are labeled in c. The top axis indicates
the z-component of the total effective magnetic field, Bz = Bext + B

z
nm − PBmax

nuc . In addition to the extrema associated with
the singlet-triplet resonances small polarization features appear near Bz = 0 (dashed vertical lines) where triplets become
degenerate.
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V. HYPERFINE- AND NON-HYPERFINE–INDUCED LEAKAGE CURRENT

The leakage current through the DQD shown in Fig. 2b of the main article contains a number of features which
can be traced back to the inhomogeneous field produced by the single domain nanomagnet. To illustrate this, in Fig.
S3 we show the PSB leakage current through two different DQD devices with identical gate layout. The data in Figs.
S3a and S3b show measurements for opposite sweep directions acquired on the sample also presented in the main
article but for a larger interdot tunnel coupling tc ∼ 15 µeV. These data are more richly featured compared to those
in Fig. S3c in which no nanomagnet was present (tc ∼ 1 µeV).

In Fig. S3c, the measured current is approximately symmetric with respect to the Bext = 0 axis, and the main
features are increased current along the ∆ = 0 and Bext = 0 axes (for ∆ & 0, that is, outside of Coulomb blockade)
and a global maximum at ∆ = Bext ' 0. Similar data have already been published and discussed in detail in reference
[R6]. In short, current is created by tc in combination with the hyperfine interaction, which mixes triplet and singlet
states strongly when ∆ ' 0 or Bext ' 0. The width of the current maximum along the Bext = 0 axis is determined
by the standard deviation of the fluctuating Bnuc[R5, R6]. The data in Figs. S3a and S3b illustrate that the sizeable
Bnm adds complexity. The following list provides a short explanation for each of the features specific for the sample
with nanomagnet:

• The most obvious response to expect when sweeping Bext is hysteresis of the magnetization of the single domain
nanomagnet. Because of its single-domain character, we expect the nanomagnet to switch polarization abruptly
when Bext passes the coercive field. An abrupt switch in magnetic field, in turn, should cause an equally abrupt
change in the leakage current signal. Such features are indeed observed in Figs. S3a,b at Bext ' ∓52 mT,
respectively (see white arrows), and are also seen in Fig. 2b of the main article.

• In the presence of Bnm, the eigenenergies of the T±–like states are never zero. However, the relevant magnetic
field,

∣∣BL + BR
∣∣ can be minimized by Bext, and at this minimum, the T± are most degenerate and a local

maximum of the leakage current is expected. For our Bnm values,
∣∣BL + BR

∣∣ is minimized at Bext ' ±12 mT,
depending on the polarization of the nanomagnet. These fields are indicated in Figs. S3a,b with red arrows and
faithfully identify the current maxima.

• The observation of distinct local current maxima at the Sa–T± resonance (black arrows in Figs. S3a and S3b)
and in Fig. 2b of the main article) is unique to samples containing a single domain nanomagnet. The sharpness
of these peaks can only be explained by taking into account the hyperfine induced dynamics of the nuclear spins.
The actual position of the Sa–T± resonance is shifted towards larger |Bext| compared to its prediction (see Fig.
2b of the main article). In the main article we explain this shift by taking into account the hyperfine induced
DNSP.

• Bnm mixes triplet and singlet states weakening the spin blockade and allowing leakage current to flow. However,
Bext tunes this mixing. In fact, the condition ∆B ‖ B defines a local minimum of the singlet mixture with
the T± states [R5]. This can be readily seen from the Hamiltonian in equation (S7) if the quantization axis
is chosen parallel to B. For our system, this condition is satisfied when Bext ' ±8 mT. We actually observe
current minima at slightly shifted values (see yellow arrows in Fig. S3a,b) owing to the complex DNSP that
occurs while sweeping Bext (see Fig. S2).

The current at finite Bext and small ∆ in Figs. S3a and S3b is characterized by strong switching noise and dragging
effects which has also been observed in samples without on-chip magnet[R6, R7]. We forgo a detailed discussion of
these effects, which can be explained in terms of the hyperfine dynamics in the presence of more than one stable fixed
point at ∆ ∼ 0[R4].
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FIG. S3. Spin-blockaded leakage current. a) The dc leakage current, I, as a function of Bext (swept from positive to
negative) and ∆ (stepped from positive to negative) (tc ∼ 15 µeV. b) Same as in a but for the opposite sweep direction of Bext

(from negative to positive). Arrows in a and b mark specific features explained in the main text. c) I as a function of Bext

and ∆ measured using a sample with an identical gate layout as the sample used in the main article, but without the on-chip
nanomagnet. Overall, maximum I values are one order of magnitude larger than in a and b owing to stronger source/drain
coupling with this particular gate tunning, but the region of enhanced I is much smaller. The magnetic field was stepped from
right to left and the energy detuning was swept from bottom to top. The perpendicular sweep direction compared to a and
b does not affect the main features of this measurement. It does however cause a noisy background which is typical for this
sweep direction and is caused by charge noise triggered by sweeping gate voltages.
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VI. NUCLEAR POLARIZATION BUILD-UP

Here we present additional data to support our interpretation of the DNSP data. Fig. S4 demonstrates that the
polarization dragging in Fig. 4b of the main article is reproducible. All the main features in Fig. S4a are reproducible,
especially the position of Bmax

ext where polarization is lost. The current measured at the beginning of each field sweep
near Bext = 0 is the typical leakage current that appears near Bext = 0 (see, for example, Fig. S5) and is extended
somewhat because of DNSP. We interpret the sharp current maximum (labeled Bmax

ext ) as the point of maximum
polarization (see main article). The δI in Fig. S4b results from losing the stable polarization condition and related
resonant current as the polarization decays and the system drifts away from resonance.

Fig. S5 shows a second technique for demonstrating the polarization created during fixed-point dragging measure-
ments. In Fig. S5a, we show I measured as a function of Bext and ∆ over a much larger range of Bext than Fig. 2b
of the main article. The current features at low Bext in S5a differ from those in Fig. 2b of the main article mostly
because ∆ was swept rather than Bext.

The current traces in Fig. S5b, measured at Bext = 250 mT after the nuclei have been polarized to P ≈ 4 %,
are very similar to the trace in Fig. S5c, which shows current measured at Bext = 17.5 mT and P = 0 %. The
quantitative similarity between the P ≈ 4 % current traces in Fig. S5b and the trace in Fig. S5c allows us to conclude
that Bznuc compensates Bext (Bznuc ' −Bext for Bext � |Bnm|) thereby reducing the total effective field. In contrast
to the polarized traces in Fig. S5b, which are almost symmetric with respect to ∆ = 0, the P = 0 % curve in Fig.
S5c is asymmetric and exhibits switching noise for ∆ > 0. We attribute this behavior to small changes in nuclear
spin polarization, while in Fig. S5b, the polarization is stabilized at the adjustable fixed point (A-FP). The current
traces in Fig. S5b measured at P ≈ 4 % are repeatable and much larger than the trace measured at P = 0 %. This
demonstrates that the polarization is finite and stable.

Current features, such as the local maxima in Fig. 2a of the main article and Fig. S4 at Bext > 1 T, are not seen
in Fig. S5a. These features are missing because ∆ is swept, and significant polarizations are not obtained. Taken
together with Figs. 2,3 of the main article, Figs. S4 and S5 demonstrate the ability of our system to generate large
nuclear spin polarization—and detect it.
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80
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FIG. S4. Polarization sweep repeatability a) Five polarization sweeps measured at a rate Ḃext = 35 mT/min and
∆ = 150 µeV. The traces are offset by N × 120 fA;N = 0, 1, 2, 3, 4 for clarity. The current bistabilities observed beyond Bmax

ext

are consistent with DNSP[R4, R6]. b) The details of a current trace near Bmax
ext taken from within the boxed region of a

demonstrate a sharp resonance and clear change in current, δI ' 11 fA, before and after sweeping through Bmax
ext .

13

Petersen et al., Phys. Rev. Lett. (acc., 2013): “Large nuclear spin polarization...”

79

http://dx.doi.org/10.1103/PhysRevLett.110.177602


Bext (T)

∆ 
(µ

eV
)

0.0 0.5 1.0 1.5

0.0

1.0

I (pA)

0.5

–50 0 50

0

1

0

1

I (
pA

)

Bext = 250 mT

a

c

b

∆ (µeV)

sweep

sweep

sweep

Bext = 17.5 mT

I (
pA

)

0

100

200

P ≈ 4%

P = 0%

P = 0%

0

100
I (fA)

50

–50

0

50

FIG. S5. PSB leakage current at large Bext a) Leakage current, I, as a function of ∆ and a large range of Bext. The
magnetic field has been stepped and ∆ has been swept from negative to positive to minimize DNSP effects. Inset : Enlarged
region centered at Bext = 250 mT showing the small (∼ 100 fA) leakage current when P = 0 %. b) The solid orange lines are I
measured while sweeping ∆ multiple times through ∆ = 0 into Coulomb blockade along the orange arrow in a. These data were
measured after ramping Bext from Bext ' 0 to Bext ' 250 mT (along the white arrow in a) creating a polarization of P ' 4 %.
The dashed blue line is I at P = 0 % extracted from a at Bext = 250 mT and is negligible compared to I with polarization. c)
I measured versus ∆ starting with unpolarized nuclei extracted from a at Bext = 17.5 mT.

VII. DATA FITTING

The fitting procedure of the data in article Figs. 2b and 3a involves solving numerically the nonlinear differential
equation given by equation (1) of the main article for a given set of parameters. This produces P (t), which is then
fed into equation (2) to find I(t). Our goal is not to reproduce the details of the measured I(t) traces, but only the
position of its maximum at the Sa–T− resonance, that is, the position of the resonant current Imax. Therefore, the
final step is to calculate the position of Imax using the numerical I(t). This procedure was repeated with different
parameter sets until an agreement between theory and data was found.

The numerical fit needs the following parameters: tc, γ, α, Imax, and Γrel (see equations (1–3) of the main article).
Imax and the ratio α/Γrel = 0.8 pA−1 (see main article Fig. 4d) were measured, thus reducing the overall number of
fit parameters to three.

For the time-dependent data (see main article Figs. 3), Imax = 100 fA is the measured peak height. Imax values for
the ∆-dependent data (see main article Fig. 2b) are unique for each value of ∆ because I is ∆ dependent. Fig. S6
details how Imax(∆) is extracted from the I measured as a function of Bext and ∆. The main result is that Imax(∆)
is identical to I(∆) measured near Bext = 0, where spin blockade is lifted.

When Bnm and Bnuc are known, the ∆–Bext position of the Sa–T− resonance can be approximated analyt-
ically. This approximation is used in equation (4) of the main article and includes only Bznm providing E±z '
±gµB

(
Bext −Bmax

nuc P +B
z

nm

)
. In Fig. S7, we compare exact numerical results with the analytical approximations

for all four singlet–triplet resonances. The analytical approximation for the Sa–T− resonance is in excellent agreement
with the numerical calculation for Bext ≥ 0.

One set of fit parameters (tc = 12 µeV, Γrel = 0.043 s−1, γ = 10± 1 mT, and α = 35 nA−1 s−1) reproduces the
data of two very different experiments in Figs. 2b,3a of the main text. The data sets were measured using identical
gate voltages. For a slightly different system tuning, only two parameters are expected to change, namely tc and
α, because they reflect the various hyperfine and non-hyperfine system rates, which are strongly gate dependent. γ
depends mostly on Bnm, which is constant, while Γrel should be independent of gate tuning because it is a property of
the nuclei. These expectations are supported in Fig. S8 where I versus Bext and time has been measured after making
the voltage of the top center gate more positive (see the gate design in Fig. 1a of the main article). The ability to
describe disparate sets of data in different tuning regimes with either no change or only justifiable adjustments to fit
parameters demonstrates the validity of our model.
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FIG. S8. Nuclear Spin Dynamics. Current measured as a function of time demonstrating DNSP at the Sa–T− resonance.
The dashed orange line is a numerical fit of the data. Here the system is tuned to a larger tunnel coupling compared to the
tuning used in Fig. 3 of the main article. As a result, tc = 22 µeV is larger, which makes Ea larger, and the current peak is
not observed until Bext ≈ 20 mT. Meanwhile, α = 14 nA−1 s−1 suffers from the increased tc. The other fit parameters are
unchanged, that is, γ = 10 mT and Γrel = 0.04 s−1.
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We describe a method for precise estimation of the polarization of a mesoscopic spin ensemble by using its
coupling to a single two-level system. Our approach requires a minimal number of measurements on the
two-level system for a given measurement precision. We consider the application of this method to the case of
nuclear-spin ensemble defined by a single electron-charged quantum dot: we show that decreasing the electron
spin dephasing due to nuclei and increasing the fidelity of nuclear-spin-based quantum memory could be within
the reach of present day experiments.
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I. INTRODUCTION

Decoherence of quantum systems induced by interactions
with low-frequency reservoirs is endemic in solid-state quan-
tum information processing �QIP� �1,2�. A frequently en-
countered scenario is the coupling of a two-level system
�qubit� to a mesoscopic bath of two-level systems such as
defects or background spins. The manifestly non-Markovian
nature of system-reservoir coupling in this scenario presents
challenges for the description of the long term dynamics as
well as for fault tolerant quantum error correction �3,4�. The
primary experimental signature of a low-frequency reservoir
is an unknown but slowly changing effective field that can
substantially reduce the ability to predict the system dynam-
ics. A possible strategy to mitigate this effect is to carry out
a quantum measurement which allows for an estimation of
the unknown reservoir field by controlled manipulation and
measurement of the qubit. A precise estimation of the field
acting on the large Hilbert space of the reservoir requires,
however, many repetitions of the procedure: this constitutes a
major limitation since in almost all cases of interest projec-
tive measurements on the qubit are slow �5� and in turn will
limit the accuracy of the estimation that can be achieved
before the reservoir field changes.

In this work, we propose a method for estimating an un-
known quantum field associated with a mesoscopic spin en-
semble. By using an incoherent version of the quantum
phase estimation algorithm �6,7�, we show that the number
of qubit measurements scale linearly with the number of sig-
nificant digits of the estimation. We only assume the avail-
ability of single-qubit operations such as preparation of a
known qubit state, rotations in the x-y plane, and measure-
ment, of which only rotations need to be fast. The estimation
procedure that we describe would suppress the dephasing of
the qubit induced by the reservoir; indeed, an interaction
with the estimated field leads to coherent unitary evolution
that could be used for quantum control of the qubit. If the
measurement of the reservoir observable is sufficiently fast
and strong, it may in turn suppress the free evolution of the
reservoir in a way that is reminiscent of a quantum Zeno
effect.

After presenting a detailed description of the measure-
ment procedure and discussing its performance and limita-
tions, we focus on a specific application of the procedure for
the case of a single quantum dot �QD� electron spin interact-
ing with the mesoscopic nuclear spin ensemble defined by
the QD. It is by now well known that the major source of
decoherence for the electron-spin qubits in QDs �8� is the
hyperfine interaction between the spins of the lattice nuclei
and the electron �9–15�. A particular feature of the hyperfine-
related dephasing is the long correlation time �tc� associated
with nuclear spins. This enables techniques such as spin echo
to greatly suppress the dephasing �16�. In �12� it was sug-
gested to measure the nuclear field to reduce electron-spin
decoherence times; precise knowledge of the instantaneous
value of the field would even allow for controlled unitary
operations. For example, knowledge of the field in adjacent
QDs yields an effective field gradient that could be used in
recently proposed quantum computing approaches with pairs
of electron spins �17�. Moreover, with sufficient control, the
collective spin of the nuclei in a QD may be used as a highly
coherent qubit-implementation in its own right �18–20�.

II. PHASE ESTIMATION

In the following we consider an indirect measurement
scheme in which the system under investigation is brought
into interaction with a probe spin �a two-level system in our
case� in a suitably prepared state. Measuring the probe spin
after a given interaction time t yields information about the
state of the system. We assume the mesoscopic system
evolves only slowly compared to the procedure, and further
that the measurement does not directly perturb the system. In
essence, we are performing a series of quantum nondemoli-
tion �QND� measurements on the system with the probe spin.

We consider an interaction Hamiltonian of the form

Hint = �Az � Sz �1�

which lends itself easily to a measurement of the observable
Az. The QND requirement is satisfied for �Hint ,Hbath�→0.
The applicability of Hint in situations of physical interest is
discussed in Sec. VI. Given this interaction, the strategy to
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measure Az is in close analogy to the so-called Ramsey in-
terferometry approach, which we now briefly review.

For example, an atomic transition has a fixed, scalar value
for Az which corresponds to the transition frequency. By
measuring Az as well as possible in a given time period, the
measurement apparatus can be locked to the fixed value, as
happens in atomic clocks. The probe spin S is prepared in a
state �+ �= ��↑ �+ �↓ �� /�2. It will undergo evolution under H
according to Ut=exp�−itAzSz�. After an interaction time t, the
probe spin’s state will be

cos��t�� + � + i sin��t��− � , �2�

where �=Az /2 is the precession frequency for the probe
spin. A measurement of the spin in the ��� basis yields a
probability cos2��t� of being in the ��� state. Accumulating
the results of many such measurements allows one to esti-
mate the value for � �and therefore Az�. In general, the best
estimate is limited by interaction time: for an expected un-
certainty in Az of �0 and an appropriate choice of t, M mea-
surements with fixed interaction times 1/�0 can estimate Az

to no better than ��0 /�M �see �21�, and references therein�.
In our scenario, the situation is slightly different in that Az

is now a quantum variable. For a state �s� in the Hilbert space
of the system H which is an eigenstate of Az with eigenvalue
2�s, the coupling induces oscillations:

Ut�s�� + � = �s��cos��st�� + � + i sin��st��− �� . �3�

Thus, the probability to measure the probe spin in state ���
given that the system is in a state �s� is p�+�s�=cos2��st� at
time t, providing information about which eigenvalue of Az is
realized. Comparing Eq. �2� to Eq. �3� indicates that the same
techniques used in atomic clocks �Ramsey interferometry�
could be used in this scenario to measure �s and thus project
the bath in some eigenstate of Az with an eigenvalue of �s to
within the uncertainty of the measurement.

Beyond the Ramsey approach, there are several ways to
extract this information, which differ in the choice of inter-
action times tj and the subsequent measurements. The gen-
eral results on quantum metrology of �22� show, however,
that the standard Ramsey scheme with fixed interaction time
t is already optimal in that the scaling of the final variance
with the inverse of the total interaction time cannot be im-
proved without using entangled probe states. Nevertheless,
the Ramsey scheme will not be the most suitable in all cir-
cumstances. For example, we have assumed so far that
preparation and measurement of the probe spin is fast when
compared to 1/�0. However, in many situations with single
quantum systems, this assumption is no longer true, and it
then becomes desirable to minimize the number of prepara-
tion and/or measurement steps in the scheme.

III. THE MEASUREMENT SCHEME

We now show that by varying the interaction time and the
final measurements such that each step yields the maximum
information about �s, we can obtain the same accuracy as
standard Ramsey techniques with a similar interaction time,
but only a logarithmic number of probe spin preparations

and measurements. As a trivial case, if Az had eigenvalues 0
and 1 only, then measuring the probe in the � basis after an
interaction time t1=�, we find � ��� with certainty, if the
systems are in an Az=0 �1� eigenstate; if they were initially
in a superposition, measuring the probe projects the system
to the corresponding eigenspaces. We can extend this simple
example �in the spirit of the quantum phase estimation algo-
rithm �6,7� and its application to the measurement of a clas-
sical field �23�� to implement an Az measurement by succes-
sively determining the binary digits of the eigenvalue. We
start with the ideal case, then generalize to a more realistic
scenario.

A. Ideal case

If all the eigenvalues of Az are an integer multiple of some
known number � and bounded by 2M�, then this procedure
yields a perfect Az measurement in M steps: let us write all
eigenvalues as 2�s=�2M	l=1

M sl2
−l. The sum we denote by s

and also use the notation s=0.s1s2 . . .sM. Starting now with
an interaction time t1=� /�, we have �st1=sM� /2 mod �.
Hence the state of the probe electron is flipped if and only if
sM =1. Therefore measuring the probe electron in state � ���
projects the nuclei to the subspace of even �odd� multiples of
� �see Fig. 1�. We denote the result of the first measurement
by rM =0�1� if the outcome was “� ���.” All the higher
digits have no effect on the measurement result since they

Az

P(Az)

rM=0 rM=1

rM-1rM=00 rM-1rM=10 rM-1rM=01 rM-1rM=11

∆0

FIG. 1. �Color online� Illustration of the first two steps of the
measurement procedure. The original distribution P�Az�, with rms
width �0 is shown at the top. After the first measurement, with
result rM =0,1, the conditional distribution �middle plots� reflects
the knowledge of the least significant bit. The next measurement
result rM−1 further reduces the distribution �bottom plots�.
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induce rotations by an integer multiple of � which have no
effect on the probabilities p�±�s�.

To measure the higher digits, we reduce the interaction
time by half in each subsequent step: tj+1=2−jt1 until we
reach tM =� /� in the final and shortest step. For j	1 the
rotation angle �stj �mod �� in the jth step does not only
depend on the jth binary digit of s but also on the previous
digits �which have already been measured, giving results
rM+1−l=sM+1−l, l=1, . . . , j−1�. The angle �stj �mod �� is
given by sM+1−j� /2+
 j with 
 j =� /2	l=1

j−1rM+1−l2
l−j, where

we have used the results rl already obtained. This over-
rotation by the angle 
 j can be taken into account in the
choice of the measurement basis for the jth step: if the jth
measurement is performed in a rotated basis �± j� that is de-
termined by the previous results rl, namely,

�+ j� ª cos 
 j� + � − i sin 
 j�− � , �4a�

�− j� ª sin 
 j� + � + i cos 
 j�− � , �4b�

then the jth measurement yields “�” �rM+1−j =0� if sM+1−j

=0 and “�” �rM+1−j =1� otherwise. Thus, after M measure-
ments we obtain rl=sl, "l=1, . . . ,M and have performed a
complete measurement of Az �where the number M of probe
particles used is the smallest integer such that 2M �Az /��.

Before proceeding, we note that the proposed scheme is
nothing but an “incoherent” implementation of the quantum
phase estimation algorithm: As originally proposed, this al-
gorithm allows measurement of the eigenvalue of a unitary U
by preparing M qubits �the control register� in the state
�+ ��M �i.e., the equal superposition of all computational ba-
sis states �j� , j=0, . . . ,2M −1� and performing controlled-
U2j−1

gates between the jth qubit and an additional register
prepared in an eigenstate �s� of U with U�s�=ei2�s�s�. The
controlled-U gates let each computational basis state acquire
a s-dependent phase: �l��ei2�ls � l�. Then the inverse quan-
tum Fourier transformation �QFT� is performed on the con-
trol register, which is then measured in the computational
basis, yielding the binary digits of s. Performing the QFT is
still a forbidding task, but not necessary here: the sequence
of measurements in the rotated basis �± j� described above is
in fact an implementation of the combination of QFT and
measurement into one step. This was previously suggested in
different contexts �24–26�.

B. Realistic case

In general, there is no known � such that all eigenvalues
s of Az are integer multiples of �. Nevertheless, as discussed
below, the above procedure can still produce a very accurate
measurement of Az if sufficiently many digits are measured.
Now we evaluate the performance of the proposed measure-
ment scheme in the realistic case of noninteger eigenvalues.
Since here we are interested in the fundamental limits of the
scheme, we will for now assume all operations on the probe
qubit �state preparation, measurement, and timing� to be ex-
act; the effect of these imperfections is considered in Sec. V.
Without loss of generality, let A and 0 denote the largest and
smallest eigenvalues of Az, respectively �46�, and choose
�=2A such that the eigenvalues of Az /� are all ��0, 1

2
�.

These are the eigenvalues s we measure in the following.
The function from which all relevant properties of our

strategy can be calculated is the conditional probability
pM�R �s� to obtain �after measuring M electrons� a result
R=0.r1r2 . . .rM given that the system was prepared
in an eigenstate with eigenvalue s. The probability to mea-
sure R is given by the product of the probabilities to measure
rM+1−j in the jth step, which is cos2��stj −
 j +rM+1−j� /2�
=cos2���s−R�2M−j�. Hence

pM�R�s� = 

k=0

M−1

cos2���s − R�2k� , �5�

see also �23�. This formula can be simplified by repeatedly
using 2 sin x=sin�x /2�cos�x /2� to give

pM�R�s� = � sin�2M��s − R��
2M sin���s − R���

2

. �6�

Assume the nuclei are initially prepared in a state � with
prior probability p�s� to find them in the eigenspace belong-
ing to the eigenvalue s. After the measurement, we can up-
date this distribution given our measurement result. We ob-
tain, according to Bayes’ formula

pM�s�R� =
pM�R�s�p�s�

	s
pM�R�s�p�s�

, �7�

with the expectation value denoted by s̄R.

IV. PERFORMANCE OF THE SCHEME

As the figure of merit for the performance of the measure-
ment scheme we take the improvement of the average uncer-
tainty in Az of the updated distribution

�Az,est
�M�

ª 	
R

pM�R��	
s

�s − s̄R�2pM�s�R� �8�

over the initial uncertainty �0=�Az
�0�. An upper bound to

�Az,est
�M� is given by the square root of the average variance

V̄

V̄M: = 	
R

pM�R�	
s

�s − s̄R�2pM�s�R� , �9�

as easily checked by the Cauchy-Schwarz inequality. We

now show that V̄M 2−M. We replace s̄R→ R̃=minR ,1−R�;
we can use any such replacement to obtain an upper bound,
as the expectation value x̄=	xp�x�x minimizes v�y�
=	xp�x��x−y�2. This choice means that measurement results
R	

1
2 are interpreted as 1−R, which is appropriate since the

scheme does not distinguish the numbers s=� and s�=1−�
and due to the choice of � only s��0, 1

2
� occur. Thus

V̄M  	
s

p�s�	
R

�s − R̃�2pM�R�s� = :	
s

p�s�V̄M�s� .

The terms V̄M�s� can be shown �47� to be bV2−M with
bV= �1+2−M� /2. This means that performing M measure-
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ments yields a state with Az uncertainty �Az,est�2−M/2. For
example, we need about 13 interactions with the probe spin
to reach the 1% level in �Az,est /� and about 7 more for every
additional factor of 10.

The overall procedure requires a total time TM
=	 j=1

M �tj +�m�=2t1�1−2−M�+M�m, which is an interaction
time �determined mainly by the time t1=� /�2M

=��2f�0�−12M needed for the least significant digit probed�
and the time to make M measurements ��m is the time to
make a single measurement�. We obtain for the average un-
certainty an upper bound in terms of the interaction time
Tint=TM −M�m needed:

�Az,est

�0
� �f

�0Tint
. �10�

Immediately the similarity with standard atomic clock ap-
proaches is apparent, as the uncertainty decreases with the
square root of the interaction time. However, while for an
atomic clock scheme, in which the interaction time per mea-
surement is kept fixed to �� / �f�0�, the total time to reach
the precision of Eq. �10� is TM

r =2t1+�m2M. For our method
the measurement time is reduced dramatically by a time
TM

r −TM =�m�2M −M�. In this manner our approach requires a
polynomial, rather than exponential, number of measure-
ments for a given accuracy, though the overall interaction
time is the same for both techniques.

It may be remarked that even the scaling in interaction
time differs significantly if other figures of merit are consid-
ered. For example, our scheme provides a square-root
speed-up in Tint over the standard Ramsey scheme if the aim
is to maximize the information gain or to minimize the con-
fidence interval �27�.

V. ERRORS AND FLUCTUATIONS IN Az

Up until now we have considered an idealized situation in
which the value of Az does not change over the course of the

measurement and in which preparation and measurement of
the probe system work with unit fidelity. Let us now inves-
tigate the robustness of our scheme in the presence of these
errors.

A. Preparation and measurement errors

By relying upon a small number of measurements, the
scheme we described becomes more susceptible to prepara-
tion and measurement errors. An error in the determination
of the kth digit leads to an increase of the error probability in
the subsequent digits. This error amplification leads to a scal-
ing of the final error of �p, where p is the probability of
incurring a preparation or measurement error in a single step.
We confirm this with Monte Carlo simulations of the mea-
surement procedure �Fig. 2�a��, leading to an asymptotic
bound:

�Az,est  �2f�0��p . �11�

Standard error correction �EC� techniques can be used to
overcome this problem. For example, by performing three
measurements for each digit and using majority vote, the
effective probability of error can be reduced to �3p2—at the
expense of tripling the interaction time and number of mea-
surements. While this may look like a big overhead, it should
be noted that the scheme can be significantly improved: the
least significant digits do not require any EC. For them, the
scheme gives noisy results even for error rate p=0 due to the
undetermined digits of Az, this does not affect the most sig-
nificant M /2 digits. This indicates that it may be enough to
apply EC for the leading digits.

As can be seen from Fig. 2�b�, this simple EC strategy
provides a significant improvement in the asymptotic �Az.
This is hardly changed, when EC is applied only to the lead-
ing half of the digits. Thus only twice as many measurements
�and an additional interaction time �2M/2+2 which is �TM� is
needed for an order-of-magnitude improvement in �Az. By

FIG. 2. �Color online� Estimation in the pres-
ence of preparation and measurement error p: the
logarithm of the improvement �Az,est /�0 is plot-
ted versus the number M of binary digits mea-
sured. The solid lines represent different error
rates �p=0: black circles; p=10−4 blue crosses;
p=10−2: red triangles; and p=10−1: green dia-
monds�. The broken red curves �triangles� dem-
onstrate the benefit of simple error correction �for
p=10−2�: strategy I �3 repetitions per digit: use
the majority result, either for all digits or only for
leading M /2 digits�; �dash-dotted, dotted—
almost undistinguishable�; strategy II �increase
number of repetitions for more significant digits
to 7 repetitions for leading M /8 digits, 5 for next
M /8, and 3 for next M /4�; dashed. We see that
the latter provides a better accuracy than the un-
corrected p=10−4 curve.
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repeating the measurement of more important digits even
more often, the effect of technical errors can be reduced even
further, as confirmed by Monte Carlo simulations �Fig. 2�b��.
We also note that further improvements �beyond M digits�
can be achieved by this technique. In essence, choosing a
digital approach to error correction for our digital technique
yields substantially better performance than adapting the
digital technique to an analog approach.

B. Estimation of bath decorrelation errors

In practice, internal bath dynamics will lead to fluctua-
tions in Az, such that Az�t��Az�t�� for times t and t� that are
sufficiently different. Furthermore, apparatus errors, as out-
lined above, lead to errors in our measurement procedure.
We will assume that the variations of Az are slow over short
time intervals, allowing us to approximate the M bit mea-
surement process as a continuous measurement over the time
TM with some additional noise with variance ��Az,est�M�2

��0
2. Then we will find the expected difference in our mea-

surement result and the value of Az at a later time.
Under the above approximations the value of the kth such

measurement �where a complete set of M bits takes a time
TM and the kth such measurement ends at time tk� is

mk =
1

TM
�

tk−TM

tk

Az�t�dt + Gk, �12�

where the noise from measurement is incorporated in the
stochastic noise variable Gk with �GkGk����kk��Az,est�M�2.
We can estimate Az at a later time, and find the variance of
this estimate from the actual value:

V̄M�t 	 tk� = ��mk − Az�t��2�

= �Gk
2� + �0

2 +
1

2TM
2 �

tk−TM

tk �
tk−TM

tk

�Az�t��,Az�t���+�dt�dt�

−
1

TM
�

tk−TM

tk

�Az�t��,Az�t��+�dt�

If we assume Az is a Gaussian variable with zero mean,
described by a spectral function S��� �i.e., �Az�t�Az�t+���
=�−�

� S���ei��d��, then

V̄M�t� = �Az,est�M�2 + �0
2 +

1

TM
2 �

−�

�

S���
sin2�TM�/2�

��/2�2 d�

− �
−�

�

S���
sin��t − tk + TM��� − sin��t − tk���

TM�/2
d� .

For Az that fluctuates slowly in time and corresponds to a
non-Markovian, low-frequency noise, the second moment of
S��� converges. We define

1

tc
2 =

1

�Az
2�
�

−�

�

S����2d� . �13�

When TM , t− tk+TM � tc, we may expand the sine terms in
the integrals. Taking t= tk+TM, the expected variance to or-
der �TM / tc�2 is

V̄M�t� � �Az,est�M�2 + �0
2�TM

tc
�2

� 7
3 − 1

12� . �14�

As an example case, we consider as realistic parameters
tc�1 ms and TM =16 �s with �Az,est

2 /�0
2=0.0252. These pa-

rameter choices are described in detail in Sec. VI. We find
that our variance 16 �s after the measurement is approxi-
mately 0.0352�0

2 with equal contributions from the measure-
ment noise and from the bath decorrelation. Substantially
faster decorrelation would dominate the noise in the esti-
mate, and render our technique unusable.

In the limit of slow decorrelation, this approach would
allow one to use the �random� field Az to perform a con-
trolled unitary of the form exp�−imkSz�� at a time t, with a
fidelity

F = exp�−���
t−�

t

Az�t��dt� − mk�2�/4� . �15�

For example, a � rotation around the probe spins’ z axis

would have a fidelity �1− V̄M�t��2 /�0
2, or 0.998 for the

above parameters.
We remark that this approach for estimation in the pres-

ence of bath fluctuations is not optimal �Kalman filtering
�28� would be more appropriate for making an estimation of
Az using the measurement results�. Furthermore, it does not
account for the nonlinear aspects of our measurement proce-
dure, nor does it incorporate any effect of the measurement
on the evolution of the bath �e.g., quantum Zeno effect�.
More detailed investigations of these aspects of the process
should be considered in an optimal control setting. Nonethe-
less, our simple analysis above indicates that slow decorre-
lation of the bath will lead to modest additional error in the
estimate of Az.

VI. EXAMPLE: ESTIMATING COLLECTIVE NUCLEAR
SPIN IN A QUANTUM DOT

Now we apply these general results to the problem of
estimating the collective spin of the lattice nuclei in a QD.

The interaction of a single electron spin in a QD with the

spins of the lattice nuclei I�j is described by the Fermi contact
term �11�

S� · 	
j

� jI�j , �16�

where the sum in Eq. �16� runs over all the N lattice nuclei.
The � j are constants describing the coupling of the jth
nuclear spin with the electron. They are proportional to the
modulus squared of the electron wave function at the loca-
tion of the jth nucleus and are normalized such that
	 j� jI

�j�=A, which denotes the hyperfine coupling strength.
Due to the small size of the nuclear Zeeman energies, the

nuclei are typically in a highly mixed state even at dilution
refrigerator temperatures. This implies that the electron ex-

periences an effective magnetic field �Overhauser field, B� nuc�
with large variance, reducing the fidelity of quantum
memory and quantum gates. This reduction arises both from
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the inhomogeneous nature of the field �B� nuc varies from dot

to dot� �29� and the variation of B� nuc over time due to
nuclear-spin dynamics �even a single electron experiences
different field strengths over time, implying loss of fidelity
due to time-ensemble averaging�.

In a large external magnetic field in the z direction the
spin flips described by the x and y terms are suppressed
and—in the interaction picture and the rotating wave
approximation—the relevant Hamiltonian is of the type
given in Eq. �1�, where Az is now the collective nuclear-spin
operator

Az = 	
j=1

N

� jIz
�j�, �17�

which gives the projection of the Overhauser field along the
external field axis by Bnuc,z=�Az /g*. Before continuing, let
us remark here that one can expect to obtain an effective
coupling of the type Eq. �1� in a similar fashion as a good

approximation to a general spin-environment coupling S� ·A� ,
whenever the computational basis states of the qubit are non-
degenerate �as guaranteed in the system studied here by the
external field� and the coupling to the environment is suffi-
ciently weak such that bit-flip errors are detuned.

To realize the single-spin operations needed for our
protocol—preparation, rotation, and read-out—many ap-
proaches have been suggested as part of a quantum comput-
ing implementation with electron spin qubits in QDs using
either electrical or optical control �see, e.g., �30� for a recent
review�.

The experimental progress towards coherent single-spin
manipulation has been remarkable in recent years. In particu-
lar, the kind of operations needed for our protocol have al-
ready been implemented in different settings: For self-
assembled dots, state preparation with F�0.99 has been
realized �31�, while for electrically defined dots, a single-
spin measurement with a fidelity of F�0.72 was reported
�32�. In the double-dot setting �16�, all three operations have
recently been demonstrated, and we estimate the combined
fidelity to be F�0.7.

As can be seen from Fig. 2, at the level of 1% accuracy of
state preparation, rotation, and read-out, the proposed
nuclear-spin measurement should be realizable. As discussed
in many specific proposals �30� these error rates appear at-
tainable in both the transport and the optical setting. Apart
from single qubit operations, our proposal also requires pre-
cise control of the interaction time. Fast arbitrary wave form
generators used in the double-dot experiments, have time
resolutions better than 30 ps �48� and minimum step sizes of
200 ps, which translates into errors of a few percent in esti-
mating Az with initial uncertainties of order 1 ns−1. Uncer-
tainties of this order are expected for large QDs �N�106�
even if they are unpolarized and for smaller ones at corre-
spondingly higher polarization �see below�.

For GaAs and InAs QDs in the single electron regime,
A�50–200 ns−1 and N�104–106. The uncertainty
�0

2= �Az
2�− �Az�2= �T2

*�−2 determines the inhomogeneous
dephasing time T2

* �12�. Especially at low polarization P, this

uncertainty is large �0
2�A2�1− P2� /N, and without correc-

tion Hzz leads to fast inhomogeneous dephasing of electron-
spin qubits: T2

*�10 ns has been observed �1,33,34�. How-
ever, as Az is slowly varying �9,10,16�, it may be estimated,
thereby reducing the uncertainty in its value and the corre-
sponding dephasing. This is expected to be particularly ef-
fective, when combining the estimation with recent progress
in polarizing the nuclear-spin ensemble �33,35,36�.

In a QD system such as �5�, with �m�1 �s and for
1 /�0�10 ns we can estimate 8 digits �M =8� �improving
�Az,est by a factor of at least 16� in a total time TM =16 �s. In
contrast, a standard atomic clock measurement scheme
would require a time �280 �s.

We now consider limits to the estimation process, focus-
ing on expected variations of Az due to nuclear-spin ex-
change and preparation and measurement errors. Nuclear-
spin exchange, in which two nuclei switch spin states, may
occur directly by dipole-dipole interactions or indirectly via
virtual electron spin flips. Such flips lead to variations of Az
as spins i and j may have �i�� j.

The dipole-dipole process, with a 1/r3 scaling, may be
approximated by a diffusive process at length scales substan-
tially longer than the lattice spacing �15,37�. The length scale
for a spin at site i to a site j such that � j ��i is not satisfied
is on the order of the QD radius �5–50 nm�; for diffusion
constants appropriate for GaAs �38�, the time scale for a
change of Az comparable to �Az by this process is
�0.01–10 s.

However, nuclear-spin exchange mediated by virtual
electron-spin flips may be faster. This process is the first
correction to the rotating wave approximation, and is due to
the �heretofore neglected� terms in the contact interaction,
Hff=� /2�A+S−+A−S+�, which are suppressed to first order by
the electron Larmor precession frequency �z. These have
been considered in detail elsewhere �10,12,39–42�. Using
perturbation theory to fourth order, the estimated decorrela-
tion time for Az is tc

−1=A2 / ��zN
3/2�, giving values

0.1–100 ms−1 for our parameter range �42�. Taking
tc=1 ms, we may estimate the optimal number of digits to
measure. Using Eq. �14�, the best measurement time is given
by TM � tc /2M/2 and for the values used above, M �10–11 is
optimal. We note as a direct corollary that our measurement
scheme provides a sensitive probe of the nuclear-spin dy-
namics on nanometer length scales.

We now consider implications of these results for improv-
ing the performance of nuclear-spin ensembles, both as
quantum memory �19� and as a qubit �20�. The dominant
error mechanism is the same as for other spin-qubit schemes
in QDs: uncertainty in Az. The proposed measurement
scheme alleviates this problem. However, the nuclear-spin
ensembles operate in a subspace of collective states �0� and
�1�, where the first is a “dark state,” characterized by
A−�0�=0 �and the second is �A+�0�, where A±=	 j� jI±

�j��.
Thus �0� is an A− eigenstate and cannot be an Az eigenstate
when �k�const �except for full polarization�. Therefore, the
measurement (which essentially projects to certain Az eigens-
paces �Az� �a−�a ,a+�a��) moves the system out of the
computational space, leading to leakage errors. The incom-
mensurate requirements of measuring Az and using an A−
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eigenstate place an additional restriction on the precision of
the measurement. The optimal number of digits can be esti-
mated in perturbation theory, using an interaction time
Tint�2t1 and numerical results �19� on the polarization de-
pendence of �0. We find that for high polarization P	90% a
relative error of �a /a�1% is achievable.

VII. CONCLUSIONS

We have shown that a measurement approach based on
quantum phase estimation can accurately measure a slowly
varying mesoscopic environment coupled to a qubit via a
pure dephasing Hamiltonian. By letting a qubit interact for a
sequence of well-controlled times and measuring its state
after the interaction, the value of the dephasing variable can
be determined, thus reducing significantly the dephasing rate.

The procedure requires fast single qubit rotations, but can
tolerate realistically slow qubit measurements, since the
phase estimation approach minimizes the number of mea-
surements. Limitations due to measurement and preparation
errors may be overcome by combining our approach with
standard error correction techniques. Fluctuations in the en-
vironment can also be tolerated, and our measurement still
provides the basis for a good estimate, if the decorrelation
time of the environment is not too short.

In view of the implementation of our scheme, we have
considered the hyperfine coupling of an electron spin in a
quantum dot to the nuclear-spin ensemble. Our calculations
show that the Overhauser field in a quantum dot can be ac-

curately measured in times shorter than the nuclear decorre-
lation time by shuttling suitably prepared electrons through
the dot. Given recent advances in electron measurement and
control �5,16� this protocol could be used to alleviate the
effect of hyperfine decoherence of electron-spin qubits and
allow for a detailed study of the nuclear-spin dynamics in
quantum dots. Our approach complements other approaches
to measuring the Overhauser field in a quantum dot that have
recently been explored �43,44�.

While we discussed a single electron in a single quantum
dot, the method can also be applied, with modification to
preparation and measurement procedures �49�, to the case of
two electrons in a double dot �1,34,45�.

As we have seen, the Hamiltonian Eq. �1� can serve as a
good approximation to more general qubit-environment cou-
pling in the case of weak coupling and a nondegenerate qu-
bit. Therefore, we expect that this technique may find an
application in other systems with long measurement times
and slowly varying mesoscopic environments.
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We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot
under optical excitation and photon detection. At the two-photon resonance between the two electron-spin
states, the detection of light scattering from the intermediate exciton state acts as a weak quantum
measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent
population trapping state without light scattering, the nuclear state is projected into an eigenstate of
the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that
this limit can be approached by adapting the driving frequencies when a photon is detected. We use a
Lindblad equation to describe the driven system under photon emission and detection. Numerically, we
find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 �s.

DOI: 10.1103/PhysRevLett.96.136401 PACS numbers: 71.70.Jp, 03.67.Pp, 78.67.Hc

Introduction.—Single electron spins localized in small
artificial structures, such as semiconductor quantum dots
(QDs), have become available and to a large extent control-
lable [1–4]. Of particular interest is the phase coherence of
electron spins as single quantum objects, both from a
fundamental physics point of view and because of their
potential use as quantum bits (qubits) for quantum infor-
mation processing [5,6].

A number of physical mechanisms that lead to the
gradual reduction of the quantum phase coherence (deco-
herence) of the electron spin have been analyzed [7]. It has
been established experimentally [2–4] and theoretically
[8–13] that, in a GaAs QD, the predominant decoherence
mechanism is the hyperfine coupling to the nuclear spins in
the host material. For an unpolarized ensemble of N nuclei
and an effective hyperfine interaction energy A, the de-
phasing time in a weak magnetic field is T�2 � 1=������
N
p

=A, where � is the width of the distribution of nuclear
field values hz parallel to the field. In a typical GaAs QD
with A� 90 �eV or A=g�B � 3:5 T [14], the number of
Ga and As nuclei (spin I � 3=2) is N � 5� 105 and T�2 �
5 ns; this value is supported by the experimental evidence
[4,15]. The T�2 decay originates from nuclear ensemble
averaging and can be prolonged by narrowing the nuclear
spin distribution [12]. Another strategy is to polarize the
nuclear spins [8], but this requires a polarization close to
100% which is currently not available [12]. Two schemes
have been proposed to achieve a narrowing of the nuclear
spin distribution, based on electron transport [16] and gate-
controlled electronic Rabi oscillations [17].

Here we analyze an optical scheme for nuclear spin
preparation that makes use of spin-flip two-photon
(Raman) resonance in a driven three-level system (TLS),
in analogy to electromagnetically induced transparency
(EIT) in atoms [18,19]. The lowest electronic states in a

QD formed in a III-V semiconductor (e.g., GaAs) that are
optically active under �� circularly polarized excitation
are the Zeeman-split ground state of a single localized
conduction-band (EC) electron and the negatively charged
exciton (trion) jXi, i.e., two electrons (spin up and down)
plus one valence band heavy hole (hh) with angular mo-
mentum Jz0 � �3=2 (Fig. 1). The J � 3=2 sector in the
valence band is split into light hole and hh states along the
axis z0 of strong QD confinement. Here we assume excita-
tion from the hh (Jz0 � �3=2) subband only. The axis z in

FIG. 1 (color online). Three-level system. State 1 (2) is a spin-
up (-down) conduction-band (EC) electron, with splitting
g�BBtot � �hz, where �hz is the z component of the nuclear
(Overhauser) field fluctuations. State 3 is a trion with Jz0 � 3=2.
Two laser fields with frequencies !p and !c are applied near the
13 and 23 resonances with detunings �1;2. For a �� circularly
polarized excitation (along z0), both transitions are allowed for
� � 0 and transitions to the Jz0 � �3=2 states are forbidden.
Inset: Structural axis z0, leading to a splitting in EV and spin
quantization axis z k Btot in EC where cos� � z � z0 < 1.
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EC is parallel to the total magnetic field Btot, and we
assume that the axes z and z0 enclose an angle � > 0.
The spin-up and -down states in EC are then j"i 	 j"iz �
cos
��j"iz0 � sin
��j#iz0 and j#i	 j#iz� cos
��j#iz0�
sin
��j"iz0 . Two circularly polarized (��) continuous-
wave lasers at the frequencies !p � !X �!" ��1 and
!c � !X �!# � �2 stimulate the transitions between j"i
and jXi and between j#i and jXi, while the trion with Jz0 �
�3=2 is not excited.

The narrowing of the nuclear field distribution � is based
on light scattering in a TLS, where two long-lived (spin)
states are coupled resonantly to an excited state that decays
by spontaneous emission. When the two lasers satisfy
exact two-photon resonance � � �1 ��2 � 0, one of
the eigenstates of the system is a superposition of the
two spin states with a vanishing excited state jXi compo-
nent. The TLS at � � 0 is driven to this dark state with a
vanishing light scattering rate [19]. The population of jXi
and, thus, the photon scattering rate is nonzero for � � 0.
In the presence of the nuclear spins, this resonance moves
to � � �hz, where �hz is the deviation of the nuclear field
(along z) from its mean hhzi. The absence of photon
emission during a waiting time t constitutes a weak mea-
surement of the quantum operator �hz. In the limit t! 1,
it becomes a strong measurement, projecting the nuclear
state onto j�hz � 0i (width � � 0), thus eliminating elec-
tron decoherence due to the fluctuating field �hz.

Model.—The Hamiltonian for the TLS coupled to nuclei
is H � H0 �Hint �Hhf , where H0 � �
@!z=2��z �
@!XPX, with �i � �i � 0, the block-diagonal 3� 3 ma-
trix with the Pauli matrix �i in the upper left corner and 0
elsewhere, and PX � jXihXj � 
001�T
001�. The spin
splitting is given as @!z � g�BBtot � jg�BB� hhij, the
sum of the external magnetic and the mean nuclear fields.
The nuclear (Overhauser) field operator is h �

PN
i�1 AiIi,

where Ai � aiv0j�
ri�j2, and �
ri� denotes the electron
wave function at the position ri of the ith atomic nucleus,
v0 is the volume of the unit cell, and ai is the hyperfine
coupling strength for the nuclear species at site i. The
classical laser fields in the rotating wave approximation
(RWA) are described by [19] Hint � �pei!ptjXi�
h"j ��cei!ctjXih#j � H:c: The coupling of the electron
spin to the quantum fluctuations of h is described byHhf �

� 1
2�h ��, where �h � h� hhi. In the rotating frame

~�
t� � U
t��
t�, with U
t��e�i!ptP"�e�i!ctP# �PX,
where P" � j"ih"j and P# � j#ih#j, we find ~H
t� � U
t��
H
t� � @!pP" � @!cP#�U
t�y and, up to a constant (we
drop the tilde and use H for the Hamiltonian henceforth),

H
t� � �
@

2

� 0 �p

0 �� �c

�p �c ��

0
B@

1
CA� @

2
�hz�z �H?; (1)

where � � �1 ��2. The hyperfine flip-flop terms H? �
@
�h���eit
!p�!c� � �h���e�it
!p�!c��=4 are oscillat-
ing rapidly at the frequency !p �!c � g�BBtot=@� �

and can be neglected in the RWA [20], leading to a block-
diagonal Hamiltonian H � diag
H1; H2; . . . ; HK�, with

Hk � �
@

2

�hkz � � 0 �p

0 ��hkz � � �c

�p �c ��

0
B@

1
CA; (2)

where �hkz for k � 1; 2; . . . ; K are the eigenvalues of the
operator �hz and K � 
2I � 1�N is the dimension of the
nuclear spin Hilbert space. The state of the TLS combined
with the nuclear spins is described by the density matrix �,
which we divide up into 3-by-3 blocks �kk0 and which
evolves according to the generalized master equation [19]

_� � L� 	
1

i@
H;�� �W�; (3)

with the Hamiltonian equation (1) and the dissipative
term W��

P
��";#�X�
2��X��X���XX����XX�=2�P

��#;X	�
2������������������=2, where �ij �
�ij � 1 � jiihjj. The rate �X� describes the radiative de-
cay of jXi into � � j"i; j#i, while 	� is the pure dephasing
rate of state � � j#i; jXi with respect to j"i. Since H is
block-diagonal, Eq. (3) leads to the closed form

_� kk0 �
1

i@

Hk�kk0 � �kk0Hk0 � �W�kk0 : (4)

The diagonal blocks obey the familiar Lindblad equation,

_� kk � Lk�kk; Lk � �iHk; �� �W�: (5)

Stationary state.—We start with the factorized state
�0 � 
0 � �0, with arbitrary initial density matrices 
0

and �0 �
P
kk0�kk0 j�h

k
zih�h

k0
z j of the TLS and the nuclear

ensemble, where j�hkzi are eigenstates of �hz. We assume a
Gaussian �kk � 
2���1=2��1 exp�
�hkz�

2=2�2�, with the
width � � �0 � A=

����
N
p

, plotted as a solid line in Fig. 2(a).
For our numerics, we choose A � 90 �eV, N � 5� 105,
corresponding to �0 ’ 0:13 �eV ’ 0:2@�, with � � 1 ns,
and a sample of n� K states (n� 4000) [21]. Because of
the hyperfine coupling, the TLS and the nuclei are en-
tangled in the stationary state �� �

P
kk0 ��kk0 � j�h

k
zih�hk

0

z j
with _�� � L �� � 0. We derived an analytical expression for
the 3-by-3 diagonal blocks ��kk of �� as a function of all
parameters, including �hk.

Evolution of the observed system.—In order to enhance
the electron-spin coherence, we aim at narrowing the
nuclear spin distribution �kk. For a Gaussian distribution,
this amounts to decreasing the width �, thus increasing the
electron coherence time t0 ’ 1=2�. Ideally, we would
perform a projective measurement P on the nuclear spins,
P ��kkP / �
�h

k
z � ��. A successive approximation of P is

achieved by monitoring the photon emission from the QD.
The longer the period t during which no photon is emitted,
the higher is the probability for �hz to be at the two-photon
resonance, �hz � �.

To describe the state of the system conditional on a
measurement record, we use the conditional density matrix
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�c. In the absence of photon emission, �c obeys Eq. (5)
with Lk replaced by Lk � S, where the collapse operator
S describes spontaneous emission of the state jXi into j"i
and j#i with rates �X" and �X# [22],

_� c
kk � 
Lk � S��ckk; S� �

X
��";#

�X���X��X�: (6)

We have numerically calculated �c in the absence of
emitted photons for a duration t. We plot the updated
distribution �kk from � � Tr��c as a dashed line in
Fig. 2(a). We find that the a posteriori �kk is concentrated
around the two-photon resonance. As the off-diagonal
elements (coherences) of � are constrained by positivity,
j�kk0 j �

����������������
�kk�k0k0
p

, they are also reduced by the narrowing
of �kk. This process is eventually stopped by a photon
emission.

Photon emission.—The stationary emission rate is [22]

�em � TrS ��
t� � �
X
k


�kk�XX�kk; (7)

where � � �X" � �X#. The average photon number during
time t is hNphi � t�em, and the a priori probability for
Nph � 0 is, according to Poissonian statistics, Pdark
t� �
exp
��emt�. The waiting time distribution for photon
emissions is pwait
t� � ��1

em exp
��emt� with mean hti �
��1

em . The narrowing of �kk, Eqs. (6) and (7), leads to a
decreasing �em and an increasing hti.

With Eq. (7), we find the update rule for � upon photon
emission, �0 � Tr�S�

c=TrS�c, or

�0kk �
�kk
�kk�XXP
j
�jj
�jj�XX

; (8)

where �kk and 
�kk�XX � hXj�kkjXi are taken before the
emission. The population in the Overhauser field �hz
corresponding to the two-photon resonance �hz � � is
depleted by the photon emission [Fig. 2(b), solid line].

Adaptive technique.—The stationary, isolated TLS at the
two-photon resonance is in a dark state. However, the
coupling to the nuclei introduces a nonzero probability
for occupation of jXi and for photon emission. Since the
detection of a photon provides information about �hz, the
photon emission does not necessarily signify a failed at-
tempt to narrow the nuclear field distribution but can be
used as an input for the next weak measurement with ad-
justed frequencies of the driving lasers, !0p � !p � �=2
and !0c � !c � �=2, so that the new two-photon reso-
nance condition is �hz � �0, where �0 � �� � while
�0 � �. We choose � such that the new resonance with
the Overhauser field lies in one of the two maxima �hmax

z
formed after the photon emission; see Fig. 2(b). This
situation is described by Eq. (2) with the substitution �!
�� �hmax

z . The adaptive technique also works by chang-
ing only one of the laser frequencies. Right after the photon
emission, the TLS is in one of the single electron states j "i
or j #i. Within a time 1=�, much faster than any nuclear
time scale, the system will reach the new stationary state.
The photon emission from the QD can again be monitored,
leading to an enhanced nuclear population at the new
resonance [Fig. 2(b), dashed line], thus further narrowing
the nuclear distribution. Repeating this procedure leads to a
nuclear width that is limited only by the width of the EIT
resonance [Figs. 2(c) and 2(d)].

Electron-spin decoherence.—The electron-spin coher-
ence is quantified using the expectation value of the raising
operator S�
t� in a state jx�i that is prepared perpendicular
to the total field Btot and is freely precessing about the
fluctuating nuclear field �hz, hS�
t�i 	 hx�jS�
t�jx�i. We
obtain hS�
t�i � 
@=2�

P
k�kk exp
it�hkz�, which we plot in

Fig. 3 at various stages in an adaptive optical measurement
scheme. As the off-diagonal elements �kk0 for k � k0 do not
enter hS�
t�i and Eq. (4) decouples, these results are valid
for any �0 consistent with the chosen Overhauser field
probability distribution. We make a Gaussian fit hS�
t�i /
exp
�t2=t20� for short times t and plot the coherence time t0
as a function of the total waiting time in Fig. 4. This is the
main result of our theoretical analysis: The repeated ob-
servation of the QD photon emission and adaptation of the
laser frequencies !c and !p after each photon emission
leads to a pronounced enhancement of the electron coher-
ence time, for the realistic parameters chosen, from t0 �
5 ns to �500 ns within a total observation time of 10 �s.

−0.4 −0.2 0 0.2 0.4
δhz [µeV]

0

5

10

15

20

ν(
δh

z)

(c)

−0.4 −0.2 0 0.2 0.4

δhz [µeV]

0

1

2

3

ν(
δh

z)

(a)

−0.4 −0.2 0 0.2 0.4
δhz [µeV]

0

100

200

300
(d)

−0.4 −0.2 0 0.2 0.4

δhz [µeV]

0

2

4

6(b)

−0.07 −0.06
δhz [µeV]

10
0

30
0

ν(
δh

z)

FIG. 2. Conditional evolution of the nuclear spin distribution
�
�hkz� � �kk. (a) During the first period t1 without photon
emission, the initial Gaussian distribution (solid line) develops
a peak at the two-photon resonance (dashed line). (b) Change of
�
�hz� after emission at t1 (solid line), until before emission
time t2 of the second photon (dashed line). The two-photon
resonance � is shifted to the position of the left maximum
(adaptive technique). The depleted region around �hkz � 0 de-
velops at t1. (c) Analogous situation between t11 and t12.
(d) �
�hz� is obtained after a total time of 10 �s.
Inset: Magnification of peak in (d). The width of �
�hz� is
reduced by a factor of � 100 compared to the initial width in
(a). The parameters are �c � �p � 0:2 ns�1, � � 0, �X" �
�X# � 1 ns�1, and 	# � 	X � 0:001 ns�1.
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Imperfect detectors.—We cannot expect to have perfect
photon detectors at our disposal; therefore, we discuss here
the case of a detector with efficiency e < 1. For an imper-
fect detector, Eq. (6) becomes _�ckk � 
Lk � eS��ckk, re-
flecting that photons are detected with probability e. We
have numerically analyzed the case of e � 10% (other
parameters as above) and find t0 � 460 ns after a some-
what longer preparation time t � 50 �s. This is still much
shorter than the time after which the nuclear spin decays,
around 0.01 s due to higher-order hyperfine flip-flop terms
[17], but possibly longer due to Knight-shift gradient ef-
fects. Nuclear flip-flop processes occur on a time scale of
�100 �s [14] but are ineffective in changing hz in a
magnetic field that enforces nuclear spin conservation
and, thus, preserve hz for short-range flip-flops while
long-range flip-flops are suppressed by the Knight-shift
gradient. This picture is supported by the observed slow
(*1 s) decay of polarized nuclear spins in contact with
donors in GaAs [23]. While a quantitative theory for the
relevant time scale of nuclear spin decay due to nuclear-

dipole interactions is missing, the arguments given above
suggest that our picture of a slow decay is reasonable.

Conclusions.—We find that it is possible to efficiently
enhance the quantum phase coherence of an electron spin
in a QD surrounded by a large ensemble of nuclear spins by
a continuous weak measurement of the Overhauser field
using optical excitation at a two-photon resonance of the
TLS formed by j"i, j#i, and jXi. An intriguing question is
whether the electron-spin coherence can be enhanced by a
quantum Zeno type effect to the point where it is ultimately
determined by spin-orbit interaction: Since the reservoir
correlation time of dominant electron-spin decoherence
due to flip-flop terms of the hyperfine interaction is
�1 �s, this would most likely require high efficiency
detection of the scattered photons.
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FIG. 4. Characteristic time t0 of the initial Gaussian decay of
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0�ij in Fig. 3 as a function of the optical prepa-
ration time t, averaged over 50 numerical runs (error bars
indicate the standard deviation).
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FIG. 3 (color online). Electron coherence function
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0�ij vs electronic precession time t calculated
from �
�hz� in Fig. 2 after emission of the nth photon (n �
1; 6; . . . ; 26). The initial decay is approximately Gaussian.
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We show that a quantum interference effect in optical absorption from two electronic spin states of a

solid-state emitter can be used to prepare the surrounding environment of nuclear spins in well-defined

states, thereby suppressing electronic spin dephasing. The coupled electron-nuclei system evolves into a

coherent population trapping state by optical-excitation-induced nuclear-spin diffusion for a broad range

of initial optical detunings. The spectroscopic signature of this evolution where the single-electron

strongly modifies its environment is a drastic broadening of the dark resonance in optical absorption

experiments. The large difference in electronic and nuclear time scales allows us to verify the preparation

of nuclear spins in the desired state.

DOI: 10.1103/PhysRevLett.105.267202 PACS numbers: 75.40.Gb, 03.65.Yz, 78.67.Hc

The phenomenon of coherent population trapping (CPT)
in three-level emitters [1] is at the heart of a number of key
advances in quantum optics, such as subrecoil cooling of
atoms [2] and slow-light propagation [3,4]. In these experi-
ments, optical excitation from two low-energy (spin) states
to a common optically excited state vanishes due to a
quantum interference effect, leading to the formation of a
dark resonance whenever the two driving laser fields sat-
isfy the two-photon resonance condition. The fundamental
limit on how well quantum interference eliminates optical
absorption is provided by the decoherence rate (T�1

2 ) of the
two low-energy spin states. Typically, this decoherence
rate is assumed to be induced by a Markovian reservoir
which is not influenced by its coupling to the emitter.

Unlike their atomic counterparts, solid-state spins are
subject to non-Markovian dephasing [5,6] due to their
coupling to reservoirs with long correlation times. In par-
ticular, hyperfine coupling to nuclear spins constitutes the
most important source of decoherence for spin qubits. It
was proposed that polarizing or measuring nuclear spins
could alleviate the (T�

2) decoherence process [5], which
prompted theoretical [7,8] and experimental efforts aimed
at narrowing down the Overhauser-field (OF) distribution
[9–11]. Remarkably, recent experiments achieved a sub-
stantial manipulation of the nuclear spins (reservoir) by
using the electron spin (system) itself [10–15].

In this Letter, we show that CPT in the spin states of a
solid-state emitter could be used to deterministically pre-
pare a nuclear-spin environment with ultranarrow OF dis-
tribution. This is achieved via anomalous diffusion
processes associated with optical excitation [2]. As a con-
sequence of the anomalous diffusion, the coupled electron-
nuclei system dynamically switches back and forth
between a trapped regime where nuclear-spin diffusion
slows down drastically due to the formation of an elec-
tronic dark state and a nontrapped regime where optical

excitation leads to fast diffusion [16]. When the coupled
system is in the dark state, the nuclear-spin distribution has
a standard deviation that is close to the single-spin limit.
An additional feature of the scheme is the possibility of
using resonant fluorescence to verify the preparation of a
narrow nuclear-spin distribution [17]; turning the laser
fields off after determining the coupled system to be in
the dark state ensures that the OF distribution remains in
the single-spin regimewithin time scales determined by the
(intrinsic) nuclear-spin lifetime. The electron spin T�

2 time

is then prolonged by a factor� ffiffiffiffi
N

p
, where N is the number

of nuclear spins. Remarkably, nuclear spins in the prepared
state do not evolve due to electron-mediated indirect inter-
actions, eliminating a principal contribution to electron
spin T2 time [5,6].
We consider a solid-state emitter where two ground

electronic spin states (j "i; j #i) are coupled by two laser
fields to a common optically excited state jti [Fig. 1(a)].
The laser with frequency !p (!c) coupling the j "i $ jti
(j #i $ jti) transition with Rabi frequency �p (�c) is

referred to as the probe (coupling) field. The state jti
decays via spontaneous emission back to the two ground
spin states (for simplicity we assume the rates �t" ¼ �t# ¼
�=2). Denoting the Zeeman energy of the electron spin due
to the external field Bz with !z and the energy of jti with
!t, we express the bare optical detunings relevant for the
CPT system as �!p ¼ !t þ!z=2�!p and �!c ¼
!t �!z=2�!c. In the absence of any spin interactions
or decoherence, laser fields satisfying the two-photon reso-
nance condition (� ¼ �!p � �!c ¼ 0) pump the elec-

tron spin into the dark state jDi/�cj "i��pj #i, which is

decoupled from optical excitation. When �!c ¼ 0 and
�p, �c��, the absorption line shape of the emitter is a

Lorentzian with a quantum interference induced transpar-
ency in the center, that has a width ��trans�ð�2

pþ�2
cÞ=�.
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In practice, the electronic spin states of most solid-state
emitters are mutually coupled via hyperfine interactions
with a nuclear-spin ensemble consisting of N nuclei
Hhyp¼g

P
N
i ai½Iiz�zþ 1

2ðIiþ��þIi��þÞ�. Here, ai defines
the normalized (unitless) hyperfine coupling constant be-
tween the emitter electron and the ith nucleus (

P
a2i ¼1).

In this convention g � AH=
P

ai quantifies the collective
hyperfine coupling strength, with AH denoting the hyper-
fine interaction constant of the material [18]. �� and
Ii� (� ¼ þ;�; z) are the electronic and nuclear-spin
operators, respectively; �þ ¼ j "ih# j. Collective nuclear-
spin operators can be defined as I� � P

iaiI
i
�; in general,

these operators do not satisfy angular momentum commu-
tation relations. In the limit of a large external field (!z�
g), the direct electron-nuclei flip-flop processes Iþ�� þ
I��þ are strongly suppressed due to the large mismatch in

the electronic and nuclear Zeeman splitting. In contrast,
optical excitation does allow for energy conservation in an
optically assisted electron-nuclear spin-flip process.
Our analysis of CPT in the presence of hyperfine inter-

actions with a (single-isotope) nuclear-spin reservoir starts
with the master equation, obtained by eliminating the
radiation field reservoir using a Born-Markov approxima-
tion. We then apply a Schrieffer-Wolff transformation and
use � ¼ g=ð2!zÞ as a small expansion parameter to elimi-
nate the direct hyperfine flip-flop interaction. The resulting
master equation then reads

_�¼ �

2
ð1S ��tt �fjtihtj;�gþÞ� i½H;��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ �2

�

4
1S �Dð�ttÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼ L0ð�Þ þ �2L1ð�ttÞ;

(1)

where �tt ¼ htj�jti acts on the Hilbert space of nuclear
spins, 1S ¼ j "ih" j þ j #ih# j, fgþ denotes the anticommu-
tator, and H ¼ Hlaser þ ~Hspin. Here, ~Hspin ¼ g�zðIz � �

2 	fIþ; I�gþ � �=gÞ describes the effective magnetic field
experienced by the electron, with contributions from the
two-photon detuning and the hyperfine interactions; we
refer to the latter as the generalized OF g~Iz ¼ gðIz � �

2 	fIþ; I�gþÞ; the second term in the generalized OF stems
from electronic energy renormalization due to virtual hy-
perfine flip-flop processes. Hlaser ¼ �cj #ihtj þ�pj "i	
htj þ H:c: denotes the laser coupling, and the term

Dð�Þ ¼ Iþ�I� þ I��Iþ � 1
2fIþI� þ I�Iþ; �gþ (2)

describes an optically assisted nuclear diffusion process
that is lowest order in � [19]. At this point we neglect
intrinsic nuclear-spin evolution in the absence of hyperfine
interaction, which we address when we analyze the cooling
time scales. If M> 1 nuclear species (isotopes) are
present, a simple extension of Eq. (1), where each isotope
couples to the electron independently, will be valid pro-
vided that �g=j!s

z �!r
zj � 1 8 s � r; here !s

z is the
Larmor frequency of the sth nuclear species [20].
The term L0ð�Þ describes the evolution of the coupled

system that leaves ~Iz a constant of motion; for a two-
photon detuning � each eigenvector j�i of ~Iz (with eigen-
value �) corresponds to a steady-state solutionL0ð��Þ ¼ 0
with �� ¼ �eð�Þ � j�ih�j. Here, �eð�Þ ¼ h�j��j�i is the
steady-state solution of the optical Bloch equations (OBE).
In the OBE �eff ¼ g�� � gives the effective two-photon
detuning that determines the CPT condition. The term L1

describes the evolution of ~Iz due to hyperfine-assisted light
scattering, taking place on time scales longer than that of
the electron by a factor ��2. The corresponding nuclear
spin-flip rates in positive (Dþ) and negative direction (D�)
are D
 ¼ �2 �

2 �
e
ttð�ÞhI�I
i, where �e

ttð�Þ ¼ htj�eð�Þjti is
the population in state jti. D
 are directly obtained from
Eq. (1) [Fig. 1(b), dashed black lines]. Each nuclear spin-
flip event changes h~Izi by a value of order ai.
The interplay of dynamics due to ~Hspin and L1 is at the

heart of the nuclear-spin cooling scheme we analyze in this

FIG. 1 (color). (a) The energy level diagram of a solid-state
emitter exhibiting coherent population trapping (CPT).
(b) Nuclear-spin diffusion rates depending on the nuclear-spin
projection � assuming homogeneous coupling. Parameters are
N ¼ 4	 104, � ¼ 1 GHz, AH ¼ !z ¼ 100 �eV, and � ¼
�p ¼ �c ¼ 0:1 GHz. The rates calculated using the quantum

mechanical (for the subspace J ¼ ffiffiffiffiffiffiffiffiffi
N=2

p
, dashed line) and the

semiclassical (dotted line) descriptions show both qualitative and
quantitative agreement. The solid (red) curve shows the nuclear-
spin distribution for � ¼ 0:02� and T�1

2 ¼ 100 s�1. (c) The

dependence of the steady-state OF standard deviation �OF as a
function of � in the limit of homogeneous coupling; the solid
(dashed) line is obtained by taking T�1

2 ¼ 100 s�1 (T�1
2 ¼

0 s�1). (d) The absorption line shape (arb. units) for � ¼ 0:2�
(blue lines) and � ¼ 0:4� (green lines): in stark contrast to the
standard CPT profile (dotted lines), the dark resonance is dras-
tically broadened (solid lines). (e) �OF for �p ¼ �c ¼ 0:2�

(blue line) and �p ¼ �c ¼ 0:4� (green line) is reduced to the

level below that of a single nuclear-spin flip (red line). The black
line shows �OF in the absence of lasers.
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work. For nuclear states with �eff ¼ 0 the system is in two-
photon resonance and the electronic system is transparent
such that Trf�ttg ¼ 0: as a consequence, the nuclear-spin
diffusion vanishes and the system is trapped in a dark state.
Since the generalized OF in an electronic-nuclear dark
state is locked to a fixed value, its variance will be strongly
reduced (nuclear state narrowing) suppressing hyperfine-
induced electron spin decoherence. Strikingly, by narrow-
ing the ~Iz, the second order contribution to hyperfine-
induced electron spin decoherence is eliminated as well.
For all nuclear states satisfying �eff � 0, the excited elec-
tronic state population is small (Trf�ttg / �2

eff), ensuring

that the spin diffusion rate remains vanishingly small: we
refer to this subspace as the ‘‘trapping region.’’ In contrast,
nuclear states with �eff å 0 render the electron optically
active and the generalized OF experiences diffusion
(‘‘recycling region’’). Through successive spin-flip
events, the nuclear reservoir probes different spin configu-
rations with distinct h~Izi. Eventually, the diffusion allows
the nuclei to reach a configuration with �eff � 0, the
system becomes locked in the trapping region. Because
of the quasicontinuous nature of the ~Iz spectrum in the
limit N � 1 (see Sec. D of [21]), the dark-state condition
�eff ¼ 0 can be satisfied for a wide range of initial detun-
ings �!p.

To confirm these predictions derived from Eq. (1), we
consider, for simplicity, nuclear spin-1=2 systems. While
our analysis applies to a broad class of solid-state emitters
from various types of quantum dots (QD) to nitrogen-
vacancy (N-V) centers, we now focus on a single-elec-
tron-charged QD in Voigt geometry where the optically
excited state has an electron-singlet and a hole [17,22,23].
A numerical analysis is feasible in two limits.

For homogeneous coupling (ai ¼ 1=
ffiffiffiffi
N

p
) we calculate

the dependence of the steady-state OF standard deviation
�OF directly from the full master equation (see Sec. A of
[21]), which contains all orders of the hyperfine interaction
including processes that result in a (small) finite decay rate
out of the dark state [24] as well as a finite electron spin
decoherence rate T�1

2 . Figure 1(c) shows �OF for the case

� ¼ 0 and T�1
2 ¼ 100 s�1 (T�1

2 ¼ 0 s�1) as a function of

�, where we find that �OF decreases with decreasing �
until it reaches a minimum of �OF ’ 2AH=N (�OF ’
0:7AH=N) for � ’ 0:2�. This result can be understood
by recalling that the width of the transparency dip in
CPT scales as �2=�, implying that the range of OF values
yielding transparency can be narrowed simply by reducing
�. However, for �< 0:2�, we find that �OF increases
rapidly; for such small values of �, the coupled electron-
nuclei system spends a substantial amount of time outside
the transparency region due to finite decay out of the
dark state, leading to the observed increase in steady-
state value of �OF. Nevertheless, we find that even for
�p ¼ �c ¼ 0:02�, where �OF � 9AH=N, the nuclear-

spin distribution is strongly peaked around states j�0i
such that ~Izj�0i ¼ 0 [Fig. 1(b), solid red line].

In the weak excitation limit�p ¼ �c � �, the electron

degrees of freedom can be eliminated adiabatically from
Eq. (1), yielding a reduced master equation for the nuclear-
spin evolution. For � ¼ 0 we obtain

_� n ¼ TrSð _�Þ ¼ Dð�nuc�
nÞ; (3)

where �nuc ¼ �2½1� ð �eff

j�eff jÞ2��eff is the nuclear spin-flip

rate and j�effj2 ¼ �2
eff þ ðg~IzÞ2. �eff ¼ 2��2½�2 þ

ðg~IzÞ2� is an operator valued electron spin decay rate.
Since �nuc vanishes for all zero eigenstates of ~Iz, Eq. (3)
implies, in accordance with the considerations above, that
every state in the kernel of ~Iz—i.e., a state of vanishing
generalized OF—is a steady state of the dynamics.
To analyze the inhomogeneous coupling limit with a

quasicontinuous OF, we adopt a semiclassical approach
where nuclear spins are described at all times by a product
of Iiz eigenstates [25]. In this case, the master equation
Eq. (1) reduces to rate equations which can be simulated
using Monte Carlo techniques, and allows us to uncover
the spectroscopic signatures of the CPT OF cooling
scheme. Figure 1(d) shows the result of such simulations
as the probe field is scanned across the (bare) resonance
while keeping �!c ¼ 0, in the limit of a vanishing decay
rate out of the dark state. We use a toy model where the QD
has a total of 100 nuclei divided into 5 classes with differ-
ent ai (see Sec. B of [21]). To obtain the probe absorption
line shape as well as the OF variance, we assume that for
each probe field detuning we start out from a completely
mixed nuclear state �n and evolve the coupled system until
tfin ¼ 1012��1. We find that instead of exhibiting a narrow
transparency dip at (bare) two-photon resonance [as in the
absence of hyperfine coupling, Fig. 1(d), dashed curve), the
coupled electron-nuclei system displays a drastically
broadened transparency window with width significantly
larger than � [Fig. 1(d), green (� ¼ 0:4�) and blue (� ¼
0:2�) lines]. Concurrently, the OF distribution is narrowed
dramatically from its value in the absence of optical exci-
tation [Fig. 1(e), black line] such that �OF is smaller than
the change induced by flipping one nuclear spin of the most
weakly coupled class [Fig. 1(e), green and blue lines].
These simulations show the striking features that are con-
sequences of the optically induced nuclear-spin diffusion
which allows the coupled system to evolve into the
electronic-nuclear dark state �D ¼ jDihDj � �n

D, where
�n
D is a nuclear-spin density operator that yields �eff ¼ 0.
To estimate the time scale for reaching the dark state

[26], we consider the limit �2=� & AH=N; i.e., a typical
single nuclear spin flip takes the system out of the trans-
parency window. If we take the nuclear spin-flip rate in the
recycling region to be constant with rate 	�1

0 � �2�2=�,
then the random walk of the OF is unbiased, has a step size

�AH=N, and is restricted in its range to AH=
ffiffiffiffi
N

p
. Thus the

number of flips required to reach the trapping region is

hMi � ðAH=
ffiffiffi
N

p
AH=N

Þ2 � N (see Sec. C of [21]). The correspond-

ing time to reach the dark state is ht̂i ¼ hMi	0 � N2

AH�
2 . For

!z ’ AH this simplifies to ht̂i � N3=AH.
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Given the strong N dependence of ht̂i corresponding to
the time scale needed to establish �OF � AH=N, it is
important to consider nuclear-spin dynamics arising from
optical-excitation-independent nuclear-spin diffusion or
decay processes, as well as the electron T2. The ultimate
limit for the latter is due to spin-flip phonon emission with
a rate �10�7� for !z ’ AH [27]. Physical processes lead-
ing to nuclear-spin diffusion in the dark state include
(a) nuclear-spin diffusion mediated by dipole-dipole inter-
actions, (b) electric field fluctuations leading to spatial
shifts in the QD electron wave function, (c) quadrupolar
interaction with axis ∦Bz. If we denote the intrinsic
nuclear-spin diffusion rate that arises from any of these
mechanisms with 
n, the effective width of the trapping

region will be given by ~� ¼ ��1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
n=�

p
(see Sec. C of

[21]). We emphasize that earlier QD experiments have
demonstrated 
�1

n > 100 s [12,28], suggesting that intrin-
sic nuclear-spin time scales could be longer than ht̂i [29].

The steady-state �OF for a small trapping region is
dominated by the optical-excitation-induced fluctuations
in the OF in the recycling region. A strategy to reduce the
�OF below its steady-state value is to monitor the light
scattering rate Wscat of the coupled system. Since Wscat /
�2
eff in the neighborhood of the trapping region, a drastic

reduction in Wscat verifies that the nuclear spins are in the
desired state; turning the laser fields then off will ensure

that �OF will be given by the width ~�� AH=N of the
trapping region. This feedback is possible due to the fact
that the time scale for flipping a nuclear spin is longer by a
factor ��2 than that for a photon scattering event.

Even though we have analyzed nuclear-spin diffusion
associated with the ground-state hyperfine coupling, the
conclusions remain unchanged if the solid-state emitter has
hyperfine coupling leading to nuclear-spin diffusion in the
optically excited state [22]; in fact, such processes shorten
ht̂i. This would be the case, for example, in QDs with
vanishing heavy-light hole mixing leading to near-resonant
hole-mediated nuclear-spin flips in the excited state.

While prior experimental results on pulsed excitation of
an ensemble of QDs strongly suggest the feasibility of our
proposal in self-assembled QDs [28], we expect our find-
ings to be relevant for a range of solid-state emitters. Of
particular interest are N-V centers in diamond where CPT
has also been previously observed [30].
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The following supplementary material is divided into four sections. Each section provides background information
related to specific topics of the main text. The sections are not built upon each other and can be read independently.
Section A provides a detailed derivation of the master Eqs. (1) and (3) of the main text as well as a discussion of
potential limitations of the scheme due to state independent diffusion processes. The details of the semiclassical
Monte Carlo simulations of the coherent population trapping based Overhauser field cooling scheme can be found in
Section B. In Section C the description of the system dynamics in the context of Lévy flights is presented and relevant
system timescales are discussed. Finally, Section D contains a detailed analysis of the properties of the generalized
Overhauser field.

A. Derivation of the master equation

In the subsections 1-4 of this Section, we present the intermediate steps for the derivation of Eqs. (1), (2) and
(3) of the main text. A detailed justification for neglecting higher-order terms appearing after the Schrieffer-Wolff
transformation is given in subsection 5. The modification of the model considered in the main text in the presence of
multiple nuclear species/isotopes and nuclear T2 processes is analyzed in subsection 6.

1. Preliminaries

In order to derive nuclear diffusion rates in the CPT setting, we consider the master equation describing the
coupled electron and nuclear system, obtained after eliminating the radiation field reservoir using a Born-Markov
approximation:

ρ̇ =
Γ

2
(|↑〉 〈t| ρ |t〉 〈↑| − 1

2
{|t〉 〈t| , ρ}+)

+
Γ

2
(|↓〉 〈t| ρ |t〉 〈↓| − 1

2
{|t〉 〈t| , ρ}+)− i[H, ρ]

=
Γ

2
(1S ⊗ ρtt − {|t〉〈t|, ρ}+)− i[H, ρ], (A.1)

where ρtt = 〈t|ρ|t〉 acts on the Hilbert space of nuclear spins, 1S = |↑〉 〈↑|+ |↓〉 〈↓| and we defined {A,B}+ = AB+BA.
The Hamiltonian of the system consists of a diagonal part H0 and the laser and hyperfine Hamiltonians,

H = H0 +Hlaser +Hhyp, (A.2)

H0 = ωt |t〉 〈t| − ωzσz, (A.3)

Hlaser = Ωce
iωct |↓〉 〈t|+ Ωpe

iωpt |↑〉 〈t|+ h.c., (A.4)

Hhyp = g

(
I(1)
z σz +

1

2
(I

(1)
+ σ− + I

(1)
− σ+)

)
. (A.5)

Here, ωt and ωz denote the trion state and electron Zeeman energies, whereas ωc/p and Ωc/p are the coupling and probe

laser’s frequencies and Rabi energies, respectively. The nuclear quasi-spin operators are defined as I
(n)
α =

∑N
i=1 a

n
i I

i
α

(α = +,−, z); we note that in the main text, we used the simplified notation I
(1)
α = Iα since there we did not
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2

introduce collective operators with n 6= 1. For the analysis below, we (initially) neglect the nuclear Zeeman energy.
The hyperfine coupling coefficients ai are normalized such that

∑
a2
i = 1 (in this convention the hyperfine interaction

constant of the material is given by AH = g
∑
ai) and the electron operators σα are the usual spin 1/2 operators. We

assume that in the absence of optical excitation, the electron spin is well isolated from all reservoirs other than the
nuclear spins [1], and spin-flip co-tunneling or phonon emission rates are negligible within the timescales of interest.
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Figure 1: (a) Scheme of the electronic levels in the CPT setting. The dashed lines illustrate the hyperfine assisted decay
processes, which are responsible for the nuclear spin diffusion in an optically active system. (b) The confined electron spin of
the charged quantum dot interacts with a large nuclear spin bath (N ∼ 104 − 105) via hyperfine contact interaction. (c) In a
rotating frame that renders the Hamiltonian time-independent the spectrum of the diagonal part of H ′ splits into submanifolds,
labelled by the nuclear quantum number m (spin projection in z-direction), which consist of the three different electronic states
(and further degenerate states due to nuclear total spin and permutation quantum numbers). The weak coupling between the
different manifolds motivates a perturbative treatment.

The basis transformation

H ′ = eiξt(H− ξ)e−iξt, (A.6)

with

ξ =

[
ωt −

1

2
(∆ωc + ∆ωp)

]
|t〉 〈t| − [ωz + (∆ωc −∆ωp)] (I(0)

z + σz), (A.7)

renders the Hamiltonian time independent,

H ′ = ω̃zI
(0)
z +

1

2
(∆ωc + ∆ωp) |t〉 〈t| − δσz (A.8)

+Hlaser +Hhyp,

where Hlaser = Ωc |↓〉 〈t|+Ωp |↑〉 〈t|+h.c. and Hhyp ≡ Hhyp. The laser detunings are given as ∆ωp = −ωp+(ωt+ωz/2)
and ∆ωc = −ωc + (ωt − ωz/2). The effective nuclear energy in the rotating frame is ω̃z = ωz + ∆ωc −∆ωp ≈ ωz and
the two-photon detuning is denoted by δ = ∆ωp −∆ωc. The dissipative part of Eq. (A.1) - containing secular terms
exclusively - remains unchanged under the transformation.

In the limit of a large external field (ω̃z � g), the direct electron-nuclei flip-flop processes I
(1)
+ σ− + I

(1)
− σ+ are

strongly suppressed due to the large mismatch in the electronic and nuclear Zeeman splitting. In the following we
derive the second order effects of the energetically suppressed hyperfine flip-flop interaction in a systematic approach
using quasidegenerate perturbation theory [2, 3] (sometimes referred to as Schrieffer-Wolff transformation). We will
find that the higher order corrections to the flip-flop interaction account for an optically assisted nuclear diffusion
process [Fig. 1 (a)] and motivate the introduction of the novel concept of a generalized Overhauser field.

2. Quasidegenerate perturbation theory

The clear separation of energy scales in the Hamiltonian of Eq. (A.8) [ω̃z � g, δ, Ωc/p, ∆ωc/p; see Fig. 1 (c)] allows

us to partition the full Hamiltonian into a zero-order part H ′0 = ω̃zI
(0)
z and a small perturbation V = H ′ −H ′0. The

eigenvectors of H ′0 are grouped into well separated manifolds, labeled by the nuclear spin projection quantum number
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3

m [see Fig. 1 (c)]. According to this spectrum any operator O can be partitioned into a block diagonal OD operator
- containing terms that conserve m - and a block off-diagonal ON operator - containing terms that drive transitions
between different manifolds (m non-conserving terms). For the Hamiltonian this separation yields

H ′D = H ′0 + VD, (A.9)

H ′N = VN , (A.10)

where

VD = +
1

2
(∆ωc + ∆ωp) |t〉 〈t| − δσz + (Ωc |↓〉 〈t|+ Ωp |↑〉 〈t|+ h.c.) + gI(1)

z σz (A.11)

VN =
g

2

(
I

(1)
+ σ− + I

(1)
− σ+

)
. (A.12)

Note that the above choice of H ′0 is not unique. Other choices that for instance render VN purely block-off-diagonal
are equivalent, but complicate the fine-structure within the manifolds.

In the following we are going to construct a similarity transformation, generated by an anti-hermitian operator
S = −S†

H = e−SH ′eS (A.13)

that renders the transformed Hamiltonian block diagonal and thus decoupling the different manifolds from each other.
Since the above condition does not define S uniquely [4], we further demand SD = 0 (canonical choice). Expanding
the operators in orders of the perturbation

H =
∞∑

n=0

H [n], S =
∞∑

n=0

S[n], (A.14)

one can derive conditional equations for S order by order. Exploiting the fact that V 2
N is block diagonal (σ2

− = σ2
+ = 0)

one finds the simple recursive equations:

S[0] = 0,

[H ′0, S
[1]] = −VN ,

[H ′0, S
[2]] = −[VD, S

[1]],

[H ′0, S
[3]] = −[VD, S

[2]]− 1

3
[[VN , S

[1]], S[1]], (A.15)

...

The expansion of the transformed Hamiltonian yields

H [0] = H ′0,

H [1] = VD,

H [2] =
1

2
[VN , S

[1]],

H [3] =
1

2
[VN , S

[2]], (A.16)

...

Note that H [n] only depends on lower orders of the transformation matrix. Higher order expressions and a detailed
derivation are given in [3].

3. Second order corrections

We are going to expand our system’s master equation Eq. (A.1) to second order in the perturbation in order to
identify the dominant hyperfine processes in the electron-nuclear CPT setting. From Eqs. (A.15) we readily derive
the form of S[1],

S[1] = ε(σ+I
(1)
− − σ−I(1)

+ ), (A.17)
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where we defined the expansion parameter ε = g
2ω̃z

. S[1] generates the second order corrections to the Hamiltonian

[Eqs. (A.16)]:

H [2] = −1

2
εg(σz{I(1)

+ , I
(1)
− }+ − I(2)

z ). (A.18)

The full transformed Hamiltonian then reads,

H = H ′0 + VD +H [2],

= ω̃zI
(0)
z +

1

2
(∆ωc + ∆ωp) |t〉 〈t|+ (Ωc |↓〉 〈t|+ Ωp |↑〉 〈t|+ h.c.)

+ gσz(I
(1)
z −

1

2
ε{I(1)

+ , I
(1)
− }+ − δ/g) + εg

1

2
I(2)
z .

= ω̃zI
(0)
z +

1

2
(∆ωc + ∆ωp) |t〉 〈t|+Hlaser + gσz(Ĩ

(1)
z − δ/g) + εg

1

2
I(2)
z , (A.19)

where we have introduced the notion of the generalized Overhauser field (GOF) gĨ
(1)
z = g(I

(1)
z − 1

2ε{I
(1)
+ , I

(1)
− }+),

which contains all electron-nuclear interactions up to second order and can be interpreted in our context as an
effective two-photon detuning, which adds to the external laser detuning δ.

In a similar procedure the system Liouvillian K′(ρ) = Γ
2 (1S⊗ρtt−{|t〉〈t|, ρ}+) is transformed under S and expanded

in orders of the perturbation

K(ρ) =
∞∑

n=0

K[n](ρ). (A.20)

Realizing that the transformation leaves the excited electron state invariant e−S
[1] |t〉 = |t〉 (and thus the second term

of the Liouvillian ∝ {|t〉〈t|, ρ}+) we only have to transform the jump term 1S ⊗ ρtt. The Baker-Hausdorff formula
yields,

e−S
[1]

(1S ⊗ ρtt)eS
[1] ≈ 1S ⊗ ρtt + [1S ⊗ ρtt, S[1]] +

1

2
[[1S ⊗ ρtt, S[1]], S[1]], (A.21)

which is particularly simple to calculate since 1Sσα = σα. Grouped into orders of ε one finds

K[0](ρ) =
Γ

2
(1S ⊗ ρtt − {|t〉〈t|, ρ}+),

K[1](ρ) =− εΓ

2

(
σ−[ρtt, I

(1)
+ ] + σ+[I

(1)
− , ρtt]

)
,

K[2](ρ) =ε2
Γ

4
1S ⊗D1(ρtt) + ε2

Γ

2
σz ⊗D2(ρtt). (A.22)

Note that the above procedure is equivalent to a straightforward transformation of the electronic jump operators
| ↓〉〈t| and | ↑〉〈t| of the Liouvillian. The superoperators

D1(ρ) =I
(1)
+ ρI

(1)
− + I

(1)
− ρI

(1)
+ − 1

2
{I(1)

+ I
(1)
− + I

(1)
− I

(1)
+ , ρ}+,

D2(ρ) =I
(1)
− ρI

(1)
+ − I(1)

+ ρI
(1)
− + {I(2)

z , ρ}+, (A.23)

describe optically induced random nuclear spin diffusion processes caused by optically assisted electron-nuclear spin
flip events. Since this nuclear diffusion depends on the electron population in the excited state ∝ ρtt it will vanish for
electronic dark states, which are defined via the condition ρtt = 0. Note that second order terms in the transformed
Liouvillian arising from S[2] are non-secular and consistently neglected. K[1] and the second summand in K[2] do
not affect the nuclear evolution governed by ρ̇I = TrS(ρ̇), since TrS(σz) = TrS(σ±) = 0 (TrS denotes the trace over
all electronic degrees of freedom). For the electron evolution, which occurs on timescales ∝ Γ these terms merely
represent a small ε2-correction (K[1] acquires an additional factor ∝ ε since it is non-secular) and are consequently
neglected in the following. If we further assume resonance (∆ωc = ∆ωp = 0) and neglect the last term of Eq. (A.19)
- which accounts for a small state independent nuclear diffusion and will be discussed in Section A 5 - we arrive at

the master equation Eq. (1) of the main text (note that in the notation of the main text Iα ≡ I(1)
α ),

ρ̇ =
Γ

2
(1S ⊗ ρtt − {|t〉〈t|, ρ}+) + ε2

Γ

4
1S ⊗D1(ρtt) (A.24)

− i[Hlaser + H̃spin, ρ],
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where we further applied the trivial transformation into a frame rotating with ω̃zI
(0)
z . H̃spin = gσz(Ĩ

(1)
z −δ/g) contains

all electron nuclear interactions to leading order and can be interpreted as an effective two-photon detuning. If the

nuclear system is in an eigenstate |λ〉 of the GOF operator Ĩ
(1)
z with eigenvalue λ = δ/g the two photon detuning

vanishes and the product state |λ〉 ⊗ |D〉 (with |D〉 = 1√
Ω2
c+Ω2

p

(Ωc |↑〉 − Ωp |↓〉) being the electronic dark state) is a

steady state of the dynamics. If, in contrast, the nuclear system is in a state where λ 6= δ/g (i.e. the two-photon
resonance condition is violated) the electronic system is bright (ρtt 6= 0) inducing nuclear diffusion given by the term
∝ D1(ρtt).

4. Nuclear rate equation

In the weak excitation limit Ωp,Ωc � Γ, we can eliminate the state |t〉, yielding a master equation involving
the nuclear and electronic spins only. For simplicity we assume the external two-photon detuning δ = 0 as well as
Ωc = Ωp = Ω, which ensures that the relevant dark and bright electron spin states in the rotating frame are states

polarized in x̂-direction |D(B)〉 = (|↑〉 − (+) |↓〉)/
√

2. A generalization to a finite detuning δ and arbitrary Rabi
frequencies is straightforward, but offers no further insight. In the case of homogeneous nuclear coupling we then
obtain from Eq. (A.24) the reduced master equation

ρ̇ =Γeff(σx−ρσ
x
+ −

1

2
{σx+σx−, ρ}+)

+
Γeff

2
[σx, [σx, ρ]]− igĨ(1)

z [σz, ρ] (A.25)

+ ε21S ⊗D1(ΓeffρBB),

where σx± are the electron spin flip operators in x̂-basis (σx− |B〉 = |D〉, σx+ |D〉 = |B〉) and Γeff = Ω2

(Γ/2)2+(gĨ
(1)
z /2)2

Γ
2 is

an operator valued effective (electron) spin decay rate. The last line of Eq. (A.25) describes the nuclear spin diffusion
determined by the nuclear operator proportional to the bright state population ρBB = 〈B|ρ|B〉 [5].

In order to eliminate the electronic degrees of freedom from Eq. (A.25) we use the fact that on the timescales of the
electron evolution, the nuclear field can be considered as quasi-static and hence the electron settles quickly (on nuclear
timescales) to its interim steady state. We find that on this coarse grained timescale ρBB = 1

2 [1 − ( Γeff

|∆eff | )
2]TrS(ρ),

with TrS denoting the trace over electron spin and |∆eff |2 = Γ2
eff + (gĨ

(1)
z )2. Using this relation, the electron spin can

be eliminated from Eq. (A.25), yielding a nuclear rate equation

ρ̇n =TrS(ρ̇) = D(Γnucρ
n), (A.26)

where we defined the state dependent nuclear diffusion rate Γnuc = ε2[1− ( Γeff

|∆eff | )
2]Γeff . In concordance with the above

considerations Γnuc vanishes for all states in the kernel of Ĩ
(1)
z , i.e. states of zero GOF that fulfill the two-photon

resonance condition are steady states of the dynamics. For large detunings (Ĩ
(1)
z ∼ 1) the optically induced change of

Ĩ
(1)
z is of order d

dtTr(ρĨ
(1)
z ) ∼ ΓnucN

−1/2 ∼ ε2 Ω2

Γ which provides the fast diffusion driving the system into the dark
state.

5. Higher order corrections

We have seen in the foregoing section that nuclear states in the kernel of Ĩ
(1)
z − δ/g decouple completely from the

electron degrees of freedom and the evolution of these states comes to rest and the system is trapped. However, higher
order corrections - which we have neglected so far - can contribute to a finite, state-independent nuclear diffusion rate
out of the trapping region. In the following we identify and discuss these corrections.

First we consider the effect of the second order term εg 1
2I

(2)
z , which we neglected in Eq. (A.19) and which does not

commute with the GOF gĨ
(1)
z . Consequently GOF eigenstates evolve under its action. To estimate the corresponding
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nuclear diffusion rate we consider the equation of motion of the corresponding Heisenberg operator

d

dt
Ĩ(1)
z =− i[Ĩ(1)

z , εg
1

2
I(2)
z ], (A.27)

=− i1
4
ε2g(I

(3)
+ I

(1)
− − I(1)

+ I
(3)
− + I

(1)
− I

(3)
+ − I(3)

− I
(1)
+ )

=− i1
2
ε2g(I

(3)
+ I

(1)
− − I(1)

+ I
(3)
− ).

Note that, since the perturbation commutes with the zero order (i.e. standard OF) part of the GOF ([I
(1)
z , I

(2)
z ] = 0)

the effect is of higher order ∝ ε2. Furthermore the spin operators are normalized such that typical matrix elements

of I
(n)
+ I

(m)
− are of order ∼ N1−(n+m)/2. In fact, the number of larger matrix elements (at most by a factor N) is

exponentially small. Thus it can only reduce the trapping region (which is defined as the set of eigenvectors with

sufficiently small eigenvalues of Ĩ
(1)
z − δ/g, and which is shown to be sizeable in Section D) insignificantly. Therefore

we can roughly estimate the rate of change in the subspace of relevant states ψ
∣∣∣∣
d

dt
〈Ĩ(1)
z 〉ψ

∣∣∣∣ ∼
ε2

N
g. (A.28)

which is smaller than the optically induced nuclear diffusion rate by a factor AH/N
Ω2/Γ . Note however, that Eq. (A.28)

is a pessimistic estimate, since it does not take into account the Hamiltonian character of the perturbation εI
(2)
z :

every nuclear dark state (small-eigenvalue eigenstate ofĨ
(1)
z ) that is also an eigenstate of I

(2)
z maintains its dark

state character. Since I
(2)
z and I

(1)
z (of which Ĩ

(1)
z is a perturbation) commute, this subspace may be substantial. In

particular, in the limiting case of homogeneous coupling, Eq. (A.27) vanishes exactly. While Eq. (A.28) is slow enough
not to interfere with the measurement-based scheme, its influence on the steady-state scheme is subject of ongoing
work.

Next we consider higher order corrections in the perturbation theory by expanding the Hamiltonian to third order.
The generator of the third order correction S[2] can be calculated using Eqs. (A.15):

S[2] =εεδ(σ+I
(1)
− − σ−I(1)

+ )

+ εεc(I
(1)
− |↑〉 〈t| − h.c.) + εεp(I

(1)
+ |↓〉 〈t| − h.c.)

+ ε2
[
σ−I

(2)
+ − σ+I

(2)
− − 2(σ+I

(1)
z I

(1)
− − σ−I(1)

+ I(1)
z )
]
, (A.29)

with the expansion parameters εδ = δ
ω̃z

, εp/c =
Ωp/c
ω̃z
� 1. The third order Hamiltonian [Eqs. (A.16)] is then given by

H [3] =− ε2δ(σz{I(1)
+ , I

(1)
− }+ − I(2)

z )

+
1

4
ε2{I(1)

+ , I
(1)
− }+Hlaser

+
1

2
ε2I(2)

z (Ωc |↓〉 〈t| − Ωp |↑〉 〈t|+ h.c.)

+ ε2gσz(I
(1)
+ I(1)

z I
(1)
− + h.c.)

+
1

8
ε2g({I(2)

+ , I
(1)
− }+ + {I(1)

+ , I
(2)
− }+ − I(1)

z I(2)
z ), (A.30)

The first term is of the exact form as H [2] and can easily be incorporated in the above considerations of Section A 3 as
a small (ε) correction. The second and third term describe two different types of laser assisted nuclear diffusion. The
first type supports the scheme, since Hlaser only couples to the electronic bright state |B〉. Thus this diffusion comes
to rest whenever the electron is in the dark state |D〉. The second type of laser assisted nuclear diffusion couples to
the dark state and thus, in principle, represents a possible escape mechanism from trapping states. However, since -

as discussed above - the diffusion operator I
(2)
z commutes with the zero order part of the GOF the contribution of the

third term is yet of one order ε smaller than the process of Eq. (A.28) and thus safely negligible. The fourth and fifth
term of Eq. (A.30) originate in third order contributions of the hyperfine interaction. While the fourth term can be
incorporated in the definition of the GOF, the fifth term represents a state independent nuclear diffusion, effectively
of the same order as the one of Eq. (A.28).

All these processes are taken into account exactly in the homogeneous simulations [based on Eq. (A.1)] and account
for the small but finite standard deviation in the steady state.
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6. Inhomogeneous nuclear Zeeman terms

We have so far neglected the Zeeman energy of the nuclei, which is typically three orders of magnitude smaller

than ωz. A homogeneous nuclear Zeeman term ∝ I
(0)
z has no effect on the analysis carried out in the subsections 1-

5 since it commutes with the GOF gĨ
(1)
z . However, if different nuclear species with different gyromagnetic ratios

are involved, this is no longer the case since the correction ∝ I
(1)
+ I

(1)
− in Ĩ

(1)
z includes the exchange of nuclear spin

excitations between different nuclear species. Different Larmor frequencies associated with different species/isotopes
will in general lead to a modulation of the GOF. Here, we will show that in the limit of large differences in Larmor
frequencies, the dominant contribution to GOF stems from intra-species flip-flop terms; the fast time dependence of
the inter-species flip-flop terms in this limit ensures that their contribution averages out.

For the relevant nuclei the energy differences (between different species) are often so large (up to 10 MHz per Tesla)
that they cannot be neglected on the timescales of nuclear spin diffusion (see Table I).

Isotope 69Ga 71Ga 75As 113In 115In

Natural Abundance (%) 60.1 39.9 100 4.3 95.7

gyromagnetic ratio (107rads−1T−1) 6.44 8.18 4.60 5.90 5.88

Table I: Natural abundances and gyromagnetic ratios of typical isotopes. Source: WebElements
[http://www.webelements.com/]

We consider here the case that H also contains an inhomogeneous nuclear Zeeman term

Hnz =
∑

j

ωnz,jI
j
z . (A.31)

We assume a number of different nuclear species labeled by s and define nuclear operators referring to species s by

I
(n,s)
α ≡∑j∈s a

n
j I

j
α (where the sum runs only over the indices j of nuclei belonging to species s). Then the correction

term in the generalized Overhauser field splits into an intra-species part which commutes with Hnz and a second
(inter-species) part describing the exchange of spin excitations between different species:

{I(1)
+ , I

(1)
− }+ =

∑

s

{I(1,s)
+ , I

(1,s)
− }+ + 2

∑

s>s′

(
I

(1,s)
+ I

(1,s′)
− + I

(1,s)
− I

(1,s′)
+

)
. (A.32)

We show in the following that for sufficiently large magnetic fields the latter terms are off-resonant and thus suppressed

to leading order. Only the intra-species terms
∑
s{I

(1,s)
+ , I

(1,s)
− }+ survives in the GOF. To higher orders, the inter-

species terms provide small additional state-independent GOF-diffusion terms similar to the one generated by I
(2)
z

[see Eq. (A.27)].
Generalizing the considerations of Section A 3 we consider Hnz to be part of VD and modify the generator of the

Schrieffer-Wolff transformation such that the terms connecting different species in Eq. (A.32) are canceled. This is
achieved by adding

T = σz
∑

s>s′

εg

2(ωnz,s − ωnz,s′)
(
I

(1,s)
+ I

(1,s′)
− − I(1,s)

− I
(1,s′)
+

)
≡ σzX (A.33)

to S. This modification has the following effects: H = e−S−T (H ′ + Hnz)e
S+T = H ′ + Hnz − [S,H ′] − [T,H ′] −

[S,Hnz] − [T,Hnz] + 1
2 [S + T, [S + T,H ′ + Hnz]] + . . . , which leads to several new first and second order terms like

[S[1], Hnz], [T,H0 + VN + VD], [T + S[1], [T + S[1], Hnz]] etc. Most of these terms are off-resonant either by ωz or

ωnz,s − ωnz,s′ and the secular terms lead to I
(0,s)
z -conserving second order corrections, which either modify the GOF

or induce a small state-independent GOF-diffusion (similar to I
(2)
z in Eq. (A.27)). Since they are similar to and

smaller (by εωnz,s/g or εg/(ωnz,s − ωnz,s′), respectively) than terms already considered, we do not discuss them in
detail.

To determine the conditions under which it is allowed to neglect all non-secular terms, denote by ∆nz = min{|ωnz,s−
ωnz,s′ | : s 6= s′} the nuclear Zeeman inhomogeneity [6] and introduce εnz = gε/∆nz. Exemplarily we consider the
laser term arising from [T, VD], which represents one of the major perturbations. It reads

Ωp
2
| ↑〉〈t|X − Ωc

2
| ↓〉〈t|X + h.c. ∝ |D〉〈t|+ h.c. (A.34)
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It describes laser-assisted nuclear spin dynamics that changes the GOF and is only detuned by ∆nz. Thus we need

Ωεg

∆nz
� ∆nz ⇔ ∆2

nz �
Ωg2

2ω̃z
. (A.35)

With typically ∆nz ∼ 10−3ω̃z we need 10−6 � Ω
ω̃z

g2

ω̃2
z
. In terms of εnz we need Ωεnz � ∆nz. For typical values (all

energies in µeV) of g ∼ 1 and ∆nz ∼ 10−3ω̃z we could take ω̃z ∼ 100, which yields εnz ∼ 10−1 and thus would require
Ω ∼ 0.1. Thus if ∆nz is sufficiently large (gε,Ωεnz � ∆nz) these contributions are small and the non-secular terms
can be neglected. This can always be ensured by sufficiently strong magnetic field. Using the same arguments one
can show that under condition Eq. A.35 also the other terms arising from T can safely be neglected.

Similarly, we have to transform the jump operators in the Liouvillian. Here we consider only the first-order correction
to I [1] arising from | ↓〉〈t| → | ↓〉〈t| − [S[1] +T, | ↓〉〈t|]± . . . . The new terms such as [T, | ↓〉〈t|] = − 1

2X| ↓〉〈t| describe an
additional slow nuclear spin dynamics that occurs only in the optically excited state, thus enhancing nuclear diffusion
outside the trapping region and improving the scheme.

In realistic systems, there may be other processes affecting the nuclear spins which have to be taken into account
for a full description – in particular the dipolar interaction between nuclear spins and on-site quadrupolar terms;
these terms would lead to a non-zero T ∗2 time of the nuclear spin ensemble. In addition, there may be T2 processes
affecting the nuclei, arising from fluctuating local magnetic fields. While these processes will be discussed in detail in
future work, we provide here some simple estimates of how these processes relate quantitatively to other corrections
considered in previous sections.

We consider pure dephasing of nuclear spins with rate T−1
2

ρ̇ =
1

T2

∑

j

(IjzρI
j
z − ρ)

affecting all nuclei. Computing the contribution to d
dt Ĩ

(1)
z arising from this process we find in the subspace of relevant

states ψ

| d
dt
〈Ĩ(1)
z 〉ψ| ∼ ε

1

T2
, (A.36)

as the effective T2-induced diffusion rate of Ĩ
(1)
z . This contribution is of the same order as the leading higher-order

correction discussed in the preceding section if 1/T2 ∼ εN−3/2AH ∼ 103s−1. For the measurement based nuclear spin
cooling to yield σOF ≤ AH/N , the condition 1/T2 < AH/N

2 ∼ 103s−1 needs to be satisfied (see the discussion in
Sec. C).

B. Rate equation description of nuclear spin dynamics

In this Section, we present the details of the model used to obtain the semi-classical Monte Carlo simulation of the
quantum dot absorption rate and the Overhauser field standard deviation presented in Fig. 1d-e of the main text.

The semiclassical limit can be derived from the master Eq. (A.24) by replacing the collective spin decay by inde-
pendent decay of individual spins. This is accomplished by making the following substitutions in the master equation:

I+ρ
nI− =

∑

ij

aiajI
i
+ρ

nIj− →
∑

i

a2
i I
i
+ρ

nIi−,

I−ρ
nI+ =

∑

ij

aiajI
i
−ρ

nIj+ →
∑

i

a2
i I
i
−ρ

nIi+,

{I+I− + I−I+, ρ}+ = {
∑

ij

aiaj(I
i
+I

j
− + Ii−I

j
+), ρ}+ → {

∑

i

a2
i (I

i
+I

i
− + Ii−I

i
+), ρ}+.

The replacement of the collective spin operators by single spin operators is justified in the limit where coherences
between nuclear spin product states vanish on timescales short compared to their lifetime; this condition would be
satisfied in systems with large inhomogeneities - either in the nuclear spin splitting or in hyperfine coupling. Since
the spectrum, the density of states, and the nuclear spin dynamics I± resulting from Ĩz and Iz are equivalent, we

replace the generalized OF Ĩz by the OF Iz in the simulations. The proofs that justify this latter replacement will
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be given in the last section. We now coarse grain the nuclear motion with respect to the electron dynamics and from
the resulting master equation we obtain rate equations that describe the nuclear spin evolution.

In order to mimic the inhomogeneous character of the hyperfine coupling we introduce a shell model of the QD
with M different classes of nuclear spins; the nuclei in class (ν) have identical aν and their net spin polarization is
mν = 1

2 (N+
ν − N−ν ) = 〈∑iεν I

i
z〉, where N+

ν (N−ν ) denote the total number of up (down) spins in class (ν). The
derived rate equation for the joint probabilities P({mµ}) associated with the nuclear spin configuration {mµ} is given
by

∂P({mµ})
∂t

=

M∑

ν

P({m̄µ})N−ν ({m̄µ})Γν+({m̄µ})

+
M∑

ν

P({m̃µ})N+
ν ({m̃µ})Γν−({m̃µ}) (B.1)

−
M∑

ν

P({mµ})[N−ν Γν+({mµ}) +N+
ν Γν−({mµ})],

where Γν±({mµ}) = ( gaν4ωx
)2 Γ

2 ρtt({mµ}) are the rates at which nuclear spins of the νth class are flipped if the nuclear

spin polarizations in each class are given by {mµ}. {m̄µ} ({m̃µ}) denotes the nuclear spin configuration that differs
from the configuration {mµ} only in the νth class, with polarization mν − 1 (mν + 1). The factors N−ν (N+

ν ) account
for the number of nuclear spins in the configuration {m̄µ} ({m̃µ}) that could be flipped to reach {mµ}.

We simulate the evolution of the nuclear spins with a Monte Carlo method. We assume in our numerical simulations
that the QD contains 100 nuclear spins, grouped into five concentric shells (M = 5) with different hyperfine coupling
constants that are determined by the 3D Gaussian electronic envelope function. The coupling constants ai for these
shells are chosen to be 0.0934Γ, 0.0828Γ, 0.0678Γ, 0.0513Γ, 0.0358Γ and the corresponding total numbers of nuclear
spins in each shell are chosen to be 2, 8, 16, 28, 46. The coupling constants are chosen to ensure that the standard
deviation of the Overhauser field seen by the QD electron for nuclei in a completely mixed state satisfies σOF (ρ) = Γ

4 .
We do not keep track of the exact configuration within each class (ν) of nuclear spins and assume that any configuration
of spins leading to the same mµ is equally likely and that the nuclear spin distribution in each shell is independent of
the other shells.

As discussed in the main text, we keep ∆ωc = 0 and then scan the probe laser across the resonance. For each probe
laser detuning ∆ωp we assume that the initial nuclear state ρn is completely mixed and then we evolve the system
until tfin = 1012Γ−1. Figure 1d and 1e of the main text show the formation of an electronic-nuclear dark state and
the concurrent reduction in Overhauser field standard deviation σOF for a range of probe laser detunings ∆ωp . The
two-photon resonance condition δeff = gλ − δ = 0 can be satisfied for a large range of initial detunings because the
set of Overhauser fields resulting from all possible nuclear spin configurations of the toy model QD described above
is quasi-continuous. However, the density of states in the toy model is not a smooth function of the Overhauser field,
which explains the observed variations in the absorption strength and σOF within the extended transparency region.:
the Overhauser field required to fulfill δeff = 0 for some detunings ∆ωp is composed of a nuclear spin configuration
that requires a large polarization in one of the nuclear spin classes. It will take many nuclear spin flips to reach such
a state, since the initial state is taken to be Gaussian in all classes.

C. Lévy flight analysis

In this Section, we present details of the Lévy flight analysis used to obtain the time needed for the coupled electron-
nuclei system to reach the dark state (Eq. (4) of the main text) and the effective minimum width of the trapping

region δ̃ in the presence of intrinsic nuclear spin diffusion.
For the nuclear spin cooling scheme we analyze, the time needed to reach the dark state is of key interest: since

the optically-assisted nuclear spin flips take place at a rate that is smaller by a factor ε2 than the rate of photon
scattering events without nuclear spin flips, it is possible to monitor the sharp decrease in QD resonance fluorescence
to verify that the coupled system is in the trapping region on timescales short compared to average nuclear spin flip
time. Once the system is found to be in the trapping region, a feedback mechanism can be used to turn the laser
excitation off, ensuring that the desired/attained σOF is preserved.

Continuous-time random walks are used in a wide range of fields to describe stochastic processes that are charac-
terized by two probability distributions: one for the spatial jump length and another for the waiting time between
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two consecutive jumps. If one allows the jump length distribution to assume a Lévy-type distribution that is marked
by so-called “fat tails”, extremely long spatial jumps will occur. This is due to the fact that, asymptotically, Lévy
distributions decay as power laws rather than exponentially, which gives rise to larger probabilities for extreme events
that dominate the evolution of the system. These “fat tails” are also responsible for diverging variance and possibly
infinite mean. Compared to the Brownian motion, the described random walk will show superdiffusive behavior. On
the other hand, if the waiting time distribution obeys Lévy distribution, the system can become trapped for long
times between jumps, which leads to subdiffusion [10]. Lévy distributions have been used to describe a very wide
variety of phenomena ranging from human travel [11] to anomalous transport of photons[12, 13], and in particular, to
subrecoil laser cooling [8]. The problem of subrecoil laser cooling shares many features with the anomalous diffusion
process that appears in the cooling of nuclear spins in Overhauser field (OF) selective coherent population trapping
(CPT).

Here we analyze the anomalous diffusion of the nuclear OF due to optical excitation. The jump length distribution
of the continuous-time random walk that describes this physical process is not of Lévy type, but is given by the
distribution of the hyperfine coupling strength of the nuclei. The hyperfine interaction depends on the electronic
envelope wave function, which is assumed to be Gaussian in the QD. A typical jump will thus induce a change in the
OF by AH/N . However, the waiting time distribution P (t) between consecutive nuclear spin flips shows signatures
of Lévy statistics.

For fixed laser detunings ∆ωp and ∆ωc the absorption depends on the value that the nuclear OF assumes. In
particular, for δeff = gλ − δ = 0 with δ fixed, absorption vanishes due to the formation of a dark state. We define
the region around this dark state in the CPT dip to be the trapping region, while the remaining part is called the
recycling region. For all practical purposes, the waiting time distribution in the recycling region does not exhibit
Lévy statistics (see below). On the other hand, in the trapping region one finds an infinite average trapping time if
no optical-excitation-independent nuclear diffusion processes are present. The fact that P (t) in the trapping region
is a Lévy distribution is responsible for the overall subdiffusive behavior of the random walk of the nuclear spins.

The temporal evolution of the system shows switching between two regimes: diffusion in the recycling region and
locking in the trapping region. To describe these dynamics, we introduce the recycling time t̂ and the associated
probability distribution function P̂ (t̂). The recycling time is the time an initially trapped OF would diffuse in the
recycling region before returning to the the trap. In other words, it is a measure for the timescales of switching
between the diffusive and trapping regimes.

First, we will neglect optical-excitation independent nuclear spin diffusion and focus on the case where ∆ωp =
∆ωc = 0 and Ωp = Ωc. To simplify the estimation of the recycling and trapping (waiting) time, we consider a limiting
case where the width for the CPT transparency dip fulfills Ω2/Γ� AH/N ; i.e., a typical single nuclear spin flip will
take the system out of the transparency window. We remark that the condition Ω2/Γ � AH/N is not necessarily
optimal for nuclear spin cooling since it requires very small Ω, which in turn leads to a small nuclear spin flip rate
in the recycling region (see below) and longer than optimal return times. On the other hand, in this limit a single
nuclear spin flip takes the system out of the trapping region, simplifying the analysis.

We assume that the width of the recycling region is determined by AH/
√
N ≈ Γ/4; since the density of states of the

OF quickly drops for large polarizations, the OF cannot explore extreme polarizations. This observation is supported
by numerical simulations, justifying the assumption of hard walls at AH/

√
N ≈ Γ/4. For the assumed parameter

range, the light scattering rate is nearly constant outside the transparency dip and up to the hard walls that define
the recycling region. We therefore take the light scattering rate to be constant in the recycling region and equal to
Ω2/Γ in this simplified model. As mentioned above, the nuclear spin flip rate is suppressed by a factor ε2 compared
to the light scattering rate, which leads to the nuclear spin flip rate τ−1

0 ≈ ε2Ω2/Γ in the recycling region. In the
limit of many nuclear spin flips, the number of steps in the recycling region required to return to the trapping region

is thus given by the total range of OF values the system explores divided by the size of the trap: 〈M〉 = AH/
√
N

Ω2/Γ .

This expression is valid provided 〈M〉 � N , where N = (AH/
√
N

AH/N
)2 is the number of spin flips that allows the system

to diffuse to the hard walls, starting from an arbitrary polarization within the recycling region [14]. Since the time
for a single spin flip is taken to be independent of the Overhauser field, the average (recycling) time to return to the
trapping region is given by

〈t̂〉 = 〈M〉τ0 =
AH/

√
N

Ω2/Γ

Γ

Ω2

1

ε2
. (C.1)

Since we assumed 〈M〉 � N , this estimate is valid only in the limit Ω2/Γ� A/N3/2.
Given the measurement-feedback strategy for minimizing σOF that we described earlier, we are strictly speaking

interested in the time for an OF that is initially in the recycling region to reach the trapping region. In contrast,
〈t̂〉 gives the average return time from the recycling to the trapping region, starting from an OF that is initially in
the trap. Since the analysis for the recycling time we presented is valid in the limit of many nuclear spin flips in
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the recycling region before the system reaches the trap, it follows that the OF explores the whole recycling region
uniformly. In this case, the starting point of the OF becomes irrelevant in the sense that if the OF initially was in
the trap, events where the OF returned to the trap after only a few spin flips in the recycling region are excluded
from the analysis. As a consequence, the recycling (first return) time and the time for an OF that initially was in the
recycling region to reach the trap, are comparable.

In the experimentally interesting limit Ω2/Γ ≥ AH/N , the number of steps needed to reach the trapping region is
no longer given by Eq. (C.1). Since the step size is now comparable to the width of the trap, reaching the middle of the
recycling region (where the trapping region is) starting from an arbitrary point within the hard walls is sufficient for

trapping. The number of steps is then given by the whole interval divided by the step size squared: 〈M̃〉 = (AH/
√
N

AN/N
)2 '

N . Consequently, the time required to find the trap is given by 〈t̂〉 = 〈M̃〉τ0 = N Γ
Ω2

1
ε2 = N N

AH
1
ε2 = N2

AHε2
≈ N3

AH
,

where the last expression follows for ωz ≈ AH .
The unfavorable scaling of 〈t̂〉 with the number of nuclear spins, N , necessitates considering the effect of optical-

excitation-independent nuclear spin diffusion or decay processes. Such processes would lead to a non-vanishing rate of
nuclear spin flips that take the system out of the dark state. In the long term limit, this would establish a steady state
between diffusion in the recycling region and finite-time trapping in the transparency region. Clearly, the presence of
optical-excitation-independent nuclear spin diffusion processes limits the reduction in the standard deviation of the
OF. We denote the single nuclear spin diffusion rate of any such mechanism by γn. If we assume that Nγn < ε2Ω2/Γ,
we can write the steady-state standard deviation of the OF as

σOF ' δ̃
〈t〉

〈t〉+ 〈t̂〉 +
AH√
N

〈t̂〉
〈t〉+ 〈t̂〉 (C.2)

where the average time spent in the trapping region is 〈t〉 = (Nγn)−1 (assuming that a single spin-flip takes the

system out of the trap) and δ̃ is the effective width of the trap; the latter is determined as the detuning for which
the intrinsic scattering rate in the trap (Nγn) equals the expected optically induced nuclear spin flip rate in the CPT

dip given by ε2 Γ
Ω2 〈Ĩz〉2; i.e. δ̃ satisfies ε2 Γ

Ω2 δ̃
2 = Nγn, yielding δ̃ = ε−1Ω

√
Nγn/Γ. The dependence ∝ 〈Ĩz〉2 comes

from the coupling between the states |B〉 and |D〉 by Hhyp with the matrix element 〈B|Hhyp|D〉 ∝ 〈Ĩz〉. The rate of

this coupling is proportional to |〈B|Hhyp|D〉|2 ∝ 〈Ĩz〉2, which leads to P (t) ∝ t−3/2. This asymptotic decay of P (t)
is responsible for the infinite average trapping times [8] in the absence of optical-excitation independent nuclear spin
diffusion.

The smallest steady-state (measurement-free) σOF is obtained when the contribution from the trapping region (first
term) and from the recycling region (second term) to σOF are comparable. However, substantial OF narrowing in
this case is only possible provided 〈t̂〉 � 〈t〉. This condition is unlikely to be satisfied for self-assembled QDs if one
aims at σOF = AH/N , since 〈t̂〉 ∼ 10s for N = 104 and γn = 10−3s−1. On the other hand, a more modest narrowing
yielding σOF = 10AH/N (achieved by choosing Ω2/Γ = 10AH/N) would give 〈t̂〉 ∼ 1s � 〈t〉 ' 100(Nγn)−1.

As we have discussed in the main text, the use of feedback from the scattered light intensity could be used to turn
the laser that cause the optically induced nuclear spin diffusion off as soon as it is determined that the coupled system
is in the trapping region. When this procedure is used, the (conditional) σOF is only limited by the effective width of

the trapping region δ̃. To achieve OF narrowing in the single spin limit σOF ∼ δ̃ ∼ AH/N , it is necessary to ensure
γn < AH/N

3 and 1/T2 < AH/N
2.

D. Generalized Overhauser field

In this Section, we show that the spectrum and the density of states of the Generalized Overhauser Field (GOF)
does not differ significantly from that of the standard Overhauser field. This property is important for justifying the
assumptions leading to the semi-classical Monte Carlo simulations (see Fig. 1d-e of the main text), where we used the
standard Overhauser field to reproduce the diffusive dynamics of the GOF.

For the main part of the nuclear Hilbert space – namely the domain where the operator Ĩ
(1)
z −δ/g is large (recycling

region) – the ε-correction in the GOF represents a negligible perturbation to the hyperfine interaction. However, in the

domain of small eigenvalues of Ĩ
(1)
z −δ/g (we define this trapping region within a small interval L(δ, η) = (δ−η, δ+η)/g

centered around δ/g) this perturbative picture is not trivially justified.
Using Monte Carlo simulations we first show that the density of eigenstates of the homogeneous (ai = aj =

1/
√
N) and inhomogeneous operator I

(1)
z , respectively, is identical (up to small corrections) for our system parameters

(N = 104, Gaussian distribution of coupling strengths), see Fig. 2 (a). Therefore, the number of eigenstates for the
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inhomogeneous operator I
(1)
z with small eigenvalues is exponentially large in the number of spins (in the homogeneous

case every eigenvalue m/
√
N has degeneracy Bm =

(
N

N/2+m

)
). This implies that neglecting the ε-correction, trapping

regions close to the center of the spectrum |δ/g| . 1 constitute a substantial part of the Hilbert space and can be
reached in reasonable times by the nuclear random diffusion. For trapping regions |δ/g| & 1, i.e. very large laser
detunings, the size of the trapping region drops exponentially [Fig. 2 (a)] and cannot be explored by the nuclear
diffusion (see Fig. 1 (d) of the main text).
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Figure 2: (a) Comparison of the density of eigenstates d(|α|) of the homogeneous and inhomogeneous nuclear operator I
(1)
z .

The density of states is averaged over segments of size 1/
√
N . While in the homogeneous case the density of states can be

calculated exactly, in the inhomogeneous case it is evaluated using Monte Carlo simulations (b) The number of eigenvalues in

small intervals of size 1/
√
N of the GOF approximately equals the number of states for the standard OF. In the simulations

we assumed N = 104 and coupling coefficients ai arising from a Gaussian electron wave function.

Next we are going to show that the GOF fulfills the same property by deriving a relation between the spectrum

of the operators Ĩ
(1)
z and I

(1)
z . In the homogeneous case the ε-correction commutes with the unperturbed part

[I
(1)
z , {I(1)

+ , I
(1)
− }+] = 0, and a common eigenbasis is given by the well known Dicke states |J,m〉, where J denotes

the total spin and m the spin projection in ẑ-direction. The vast majority states within the kernel of I
(1)
z lie in J

subspaces around J =
√
N/2 (the degeneracy of each subspace J is given by DJ =

(
N

N/2−I
)
−
(

N
N/2−I−1

)
). Thus, up

to a negligible fraction, most states will be shifted in energy by a small amount of order ε. The same can be shown

for states with finite eigenvalue of I
(1)
z in the range ∼ (−1, 1). The positive operator of the correction 1

2ε{I
(1)
+ , I

(1)
− }+

shifts the whole spectrum in the region of interest by a small amount ∝ ε and thus preserves the required property of
large density of states in any trapping region L(δ, ε) close to the center of the spectrum.

In the inhomogeneous case this simple argument fails, since one cannot easily construct an eigenbasis of the GOF.

We are going to estimate the density of states in the following. For the inhomogeneous GOF operator Ĩ
(1)
z the number

of states within the trapping region L(δ, η) is given by N ε(L(δ, η)) =
∫
L(δ,η)

dE Tr(δ(E − I
(1)
z + 1

2ε{I
(1)
+ , I

(1)
− }+)).

Approximating the δ-functions by Lorentzians of width γ � η: δ(E − Ĩ(1)
z ) ≈ γ

(E−Ĩ(1)z )2+γ2
, and using the expansion

1
A−εB = 1

A

∑∞
n=0(εB 1

A )n with the definitions

A = γ2 + (E − I(1)
z )2, (D.1)

B = −1

2
{(E − I(1)

z ), {I(1)
+ , I

(1)
− }+}+ −

1

4
ε({I(1)

+ , I
(1)
− }+)2 =: Q+ εP, (D.2)

we find

N ε(L(δ, η)) =

∞∑

n=0

U (n) = N0(L(δ, η)) +

∞∑

n=1

U (n), (D.3)

U (n) = γεn
∫

L(δ,η)

dE Tr

(
1

A

[
B

1

A

]n)
. (D.4)

A pessimistic approximation shows that the sum
∑∞
n=1 U

(n) can be upper bounded by ∼ N0(L(δ, η)) for large trapping
regions η � ε, i.e. the number of eigenstates changes at most by a factor of order 1.
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Using the above definitions the quotient of the number of states in the perturbed and unperturbed case can be
written to first order in ε as

N ε(L(δ, η))

N0(L(δ, η))
=

∫
L(δ,η)

dE Tr( 1
A (1 + εQ 1

A ))
∫
L(δ,η)

dE Tr( 1
A )

=

∑
~n

∫
L(δ,η)

dE g(~n,E)f(~n,E)
∑
~n

∫
L(δ,η)

dE g(~n,E)
, (D.5)

where we defined

g(~n,E) = 〈~n| 1

A
|~n〉 , (D.6)

f(~n,E) = 1 + ε 〈~n|Q 1

A
|~n〉 , (D.7)

for a nuclear product state |~n〉. Expressions like the one of Eq.(D.5) can be efficiently evaluated using Monte Carlo
simulation with importance sampling [9]. This method uses a more efficient sampling according to the probability
distribution g(~n,E) (i.e. strongly weighted regions are favored in the sampling) instead of the sampling of random
configurations (~n,E) within the entire state space. In particular it can be shown that

∑
~n

∫
L(δ,η)

dE g(~n,E)f(~n,E)
∑
~n

∫
L(δ,η)

dE g(~n,E)
= lim
t→∞

1

t

t∑

i=1

f(~xi), (D.8)

where the vectors ~xi stand for particular configurations of the random variables (~n,E) which are distributed according
to g(~xi).

The algorithm realizing the above scheme contains the following steps: (0.) We start from a random sample
~x := (~n,E) (E ∈ L(δ, η)) and then (1.) create a new sample ~x′ by randomly changing one coordinate xi (the ratio
of spin flips and change of E is defined a priori). (2.) If g(~x′)/g(~x) > s - where s is an (in each step) randomly
created number ∈ (0, 1) - we add f(~x′) to a variable F , if not we discard the new state, return to ~x and add f(~x) to F .
Successive repetition of steps (1.) and (2.) lets the quantity F/t (t denotes the number of steps) converge to the desired
quotient in Eq. (D.5). The method ensures that regions of higher importance are explored more frequently than others
(according to g(~n,E)), increasing the performance of the algorithm. The simulations for N = 104 inhomogeneously
coupled spins suggest that even for η ∼ ε the number of states in both the perturbed and unperturbed case differ by
less than a few percent [see Fig. 2 (b)].

Furthermore, since [Ĩ
(1)
z , I

(1)
− ] = [I

(1)
z , I

(1)
− ] + O(ε) the diffusion rate of the generalized Overhauser field equals the

one in the unperturbed case up to an ε correction. This justifies the conclusion that the diffusive dynamics of the
GOF is well reproduced by that of the standard OF.
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Quantum information processing using localized ensembles of nuclear spins
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We describe a technique for quantum information processing based on localized ensembles of
nuclear spins. A qubit is identified as the presence or absence of a collective excitation of a mesoscopic
ensemble of nuclear spins surrounding a single quantum dot. All single and two-qubit operations
can be effected using hyperfine interactions and single-electron spin rotations, hence the proposed
scheme avoids gate errors arising from entanglement between spin and orbital degrees of freedom.
Ultra-long coherence times of nuclear spins suggest that this scheme could be particularly well suited
for applications where long lived memory is essential.

PACS numbers: 03.67.Lx, 71.70Jp, 73.21.La, 76.70.-r

Nuclear spin degrees of freedom have attracted consid-
erable attention as potential carriers of quantum infor-
mation due to their exceptionally long coherence times.
Early bulk NMR work [1] has substantially enriched our
understanding of the key features of quantum computa-
tion [2, 3]. The fundamental difficulties in scaling bulk
NMR to a large number of qubits motivated efforts to
use single, individually addressable nuclear spins in semi-
conductors as qubits [4], where computation is primarily
mediated by the hyperfine interaction between electron
and nuclear spin. While possibly scalable, such a scheme
is limited by the fact that the electron wave-function is
spread over many lattice sites, reducing the strength of
the hyperfine interaction. In addition, two-qubit oper-
ations in Ref. [4] rely upon exchange coupling, making
them susceptible to fast orbital decoherence mechanisms.

Recently, a method for robust storage of quantum in-
formation in localized ensembles of nuclear spins was sug-
gested [5, 6], where it was shown that the collective hy-
perfine coupling between nuclear and electron spin de-
grees of freedom provides a controllable mechanism for
coherent storage and manipulation of quantum states.
These nuclear spin ensembles correspond, for example, to
the lattice nuclei in a quantum dot. As a quantum mem-
ory, such nuclear ensembles are robust with respect to
variations in dot characteristics, rely upon proven fabri-
cation techniques, and provide high fidelity storage with-
out requiring a high-degree of nuclear spin polarization.

In this Letter, we describe a technique to efficiently
process quantum information stored in localized nuclear
spin ensembles. Specifically, these ensembles enable a ro-
bust, scalable implementation of quantum computation
protocols, unencumbered by the difficulties faced by sin-
gle spin impurity or bulk NMR approaches. The fun-
damental interaction that allows for spin manipulation
in our scheme is hyperfine coupling: as a result, the or-
bital and spin degrees of freedom remain unentangled
throughout the two-qubit gate operations, mitigating the
effects of orbital decoherence on gate fidelity. While col-

2DEG

Backgate

A A'

Gate layer

B' B
e- transport

(a)

Dot A
Reservoir e-

Dot A'

Dot B
Reservoir e-

Dot B'

photon

VA

(b)

FIG. 1: Quantum dot based approaches for nuclear ensemble-
based computation. (a) Electrically defined (lateral) quantum
dots connected by ballistic transport e.g. through a series of
quantum dots. Nearby rf-SETs (not shown) would provide
measurement. (b) Nanowhiskers [7] with several optically ac-
tive dots. Tasks between A and A’ are achieved via shuttling
of an electron from the reservoir dot via a potential difference,
VA. Long distances tasks are performed through photon-
based entanglement generation between A’ and B’. [19]

lective enhancement of hyperfine interaction allows for
fast quantum gates, the ultra-long nuclear spin coher-
ence times render the scheme particularly attractive for
memory intensive quantum information processing tasks.

The scheme proposed here can be realized using either
electrically [8] or optically [9] manipulated quantum dots
that are defined as in Fig. 1. The nuclear ensemble in
each dot is prepared using polarized electron spins [6, 10].
We illustrate our technique by considering the fully po-
larized case (when the nuclear state is |0〉 = |−I, . . . ,−I〉
for N spin-I nuclei), demonstrate how to perform single
qubit and two-qubit gates, and consider sources of error.

The Hamiltonian describing a single electron interact-
ing with the nuclear spins in a quantum dot is [11]

H = ~BγSŜz + ~B
∑

k

γ
(k)
I I(k)z + ~a~̂S · ~̂A. (1)

The first and second terms describe the coupling of the
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electron and the nuclear spins to an external magnetic

field, with effective gyromagnetic ratios γS , γ
(k)
I . The

last term is the electron coupling to collective nuclear

degrees of freedom, defined by Â±,z =
∑

k αk Î
(k)
±,z. The

αk’s are proportional to the probability density of the
electron at the location of the corresponding nuclei and
are normalized such that

∑
k αk = N ; a = A/N is the

average hyperfine interaction per nucleus. Both A and N
depend upon the specific material and dot construction;
typical numbers are A ∼ 10−100 ns−1 and N = 104−106

nuclei. Excitations out of the fully polarized state form
an orthonormal set of collective nuclear spin states |m〉 ∝
(Â+)m |0〉, where m is the number of excitations.

When an electron is confined in the dot, evolution over
times much shorter than a−1 is restricted to subspaces
spanned by {|m − 1〉 |↑〉 , |m〉 |↓〉}. Using Pauli matrices,
the Hamiltonian for each subspace with a fixed excitation

number m is H(m) = ~δmσ
(m)
z + ~Ωmσ

(m)
x , with

Ωm = a/2

√
〈m − 1| Â−Â+ |m − 1〉; (2a)

δm = a/4(〈m| Âz |m〉 + 〈m − 1| Âz |m − 1〉) (2b)

+[γS − (〈m| Kz |m〉 − 〈m − 1|Kz |m − 1〉)]B/2,

where Kz =
∑

γ
(k)
I I

(k)
z is a sum over nuclear spin op-

erators, weighted by individual nuclear spin gyromag-
netic ratios. When Overhauser shift and Zeeman energy
sum to zero (|δm| ≪ Ωm) and coherent flip-flop (Rabi)
oscillations occur at rate Ωm. The energy level struc-
ture of the coupled electron-nuclear system is shown in
Fig. 2 along with the coupling strengths for m ≤ 2: since
Ωm+1 = ηmΩm where ηm =

√
m + 1[1 − O(m/N)], it

is easy to note the analogy with the celebrated Jaynes-
Cummings (JC) model of quantum optics [12]. We use
the nonlinearity of such a JC-type two-level system cou-
pled to a nearly-bosonic mode to effect elementary quan-
tum gates.

Quantum information stored in the m = 0, 1 manifold
can be mapped reliably from nuclear states to electron
spin and back [6] via a generalized rotation :

Rxy
en(π/2, 0)(α |0〉 + β |1〉) |↓〉 = |0〉 (α |↓〉 + iβ |↑〉), (3)

where

Rxy
en(θ, φ) = eiφŜze−iθH/(~Ω1)e−iφŜz . (4)

The transfer of quantum information from the nuclear
ensemble to electron spin allows for fast single qubit
operations to be performed: after a |↓〉 electron is in-
jected into the dot, the quantum information is trans-
ferred to the electron spin, and then the operation is
performed on the electron. Finally, the quantum infor-
mation is mapped back to the nuclear ensemble. A z-
axis rotation can be accomplished by waiting in a static
magnetic field or through a laser-induced spin-dependent
AC Stark shift [16]. x-axis rotations can be done via

|0, ↓〉

|1, ↓〉

|2, ↓〉

|0, ↑〉

|1, ↑〉

XXXXzy Ω1

XXXXzy ηΩ1

9�������:

ΩESR

9�������:

ΩESR

•
•
•

•
•
•

FIG. 2: Level structure of the combined electron spin and nu-
clear dark state plus excited states. For N → ∞, the coupling
between the two excitation manifold is stronger by η →

√
2.

ESR [8, 13] (with ΩESR & 1 ns−1) or optical Raman spin
flips through a virtual trion state (with Ωopt,ESR & 10
ns−1) [9]. Measurement of the ensemble nuclear spin
state can be implemented by mapping the quantum in-
formation to electron spin, and carrying out an electron
spin measurement either by state selective ionization fol-
lowed by charge measurement with a rf-SET [14] or by
detecting fluorescence in a spin-dependent cycling tran-
sition [15, 16].

To perform a two-qubit gate between quantum dots A
and A’, a single electron can be used as to transfer quan-
tum information between the dots: the state of nuclear
spin qubit A is mapped onto the electron, which is then
moved to A’, where a controlled-phase (CP) gate between
the nuclear and the electronic qubit is applied using the
nonlinearity of the interaction. Following Ref. [17], a
two-qubit CP-gate (up to single qubit gates) is given by

Rxy
en(π/4, 0)Rxy

en(π/η, −π/2)Rxy
en(−π/4, 0). (5)

In the computational basis, this corresponds to



1 0 0 0
0 eiπ/η 0 0

0 0 e−iπ/η 0
0 0 0 −1


 . (6)

After this operation, the quantum information carried by
the electron spin is mapped back onto the nuclear spin
ensemble A. Applying a z-rotation of −π/η to qubit A
and one of π/η to qubit A’ yields a CP gate.

For distant dots, where electron spin transport be-
tween ensembles is difficult or impossible, it may be
easier to generate entanglement off-line, apply local pu-
rification protocols and then use it to effect non-local
gates, following [18]. Entanglement between distant elec-
tron spins can be generated optically, using spin-flip op-
tical Raman transitions [19], or electronically, such as
through adiabatic splitting of a spin singlet in a double
dot [20]. The electron-nuclear state mapping procedure
can then ensure that the distant nuclear spin ensembles
are entangled. Starting with the entangled nuclear state
1√
2

(|01〉 + |10〉) (between dots A’ and B’, cf. Fig. 1), we

can implement a CP gate on dots A and B (determinis-
tically) by performing local unitaries and measurements
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of AA’ and BB’ as follows: (i) perform a CNOTA→A′

then measure A’. (ii) Perform a CP gate |10〉 → − |10〉
at BB’ followed by a Hadamard gate and measurement
at B’. (iii) Local phase flips |0〉 → − |0〉 at A (B) if the
measurement outcomes at B’(A’) were “1” complete the
CP gate between A and B [21].

We next analyze various sources of errors due to finite
polarization, inhomogeneity, nuclear spin dynamics, and
electron spin decoherence. To understand the role of fi-
nite polarization, the specific cooling procedure must be
examined. When the nuclear ensemble starts as a ther-
mal mixture, cooling to dark states can be achieved by
coupling polarized electron spins to the nuclear ensem-
ble [10]. Regardless of the details of cooling, the final
density matrix will be a statistical mixture of dark states
|D(n, β)〉, where Â− |D(n, β)〉 = 0. n is the number of
spin excitations (n = 0 is the fully polarized state) and β
is the permutation group quantum number [22]. It was
recently shown [6] that dark states have the same symme-
try properties as the fully polarized state, and a manifold
of excited states can be defined from a given dark state,
|m(n, β)〉 ∝ (Â+)m |D(n, β)〉. Hence the above consider-
ations for perfectly polarized nuclei map directly to the
case when the nuclear ensembles start in any given dark
state, not just the fully polarized state.

In practice, the cooled nuclear ensemble density ma-
trix is a mixture of different dark states, i.e. ρ̂ =∑

n,β ρn,β|D(n, β)〉〈D(n, β)|. As each dark state has a
different δm(n, β), Ωm(n, β), interaction times and ap-
plied magnetic fields can only produce Rxy

en(θ, φ) with
the desired angle θ for some fraction of the given mix-
ture. The inhomogeneous mixture effects can be charac-
terized by examining the subgroups of dark states with
different detunings, which lead to errors in Rabi oscilla-
tions p ≃ (σδ/Ω1)

2, where σδ is the standard deviation
of possible δ1 values over the distribution ρn,β. In the
homogeneous case with spin-1/2 nuclei,

σδ ≃ a
√

N(1 − P 2) . (7)

Even at high (P ∼ 0.95) polarizations, the effect of dif-
ferent detunings can be substantial (p ∼ 0.03). This
provides the strongest limit to realization of Rxy

en [23].
The inhomogeneous nature of the hyperfine coupling

leads to further errors. In this case, the logical states
of the system (the m-excitation manifolds) are no longer
eigenstates of Ĵz = Âz + Ŝz and of Â2. As a consequence,
there is a nonzero probability that the system moves out
of the computational subspace during the gate opera-
tion. We estimate these leakage errors using the tech-
niques developed in Refs.[5, 6], and find that the result-
ing gate error pinhom decreases with increasing number
of nuclei: for N ∼ 105 at high polarizations (P > 0.95)
pinhom . 10−3 [24]. We note that a similar error emerges
due to the differences in Zeeman energy associated to dif-
ferent nuclear species. For materials like GaAs, with gy-
romagnetic ratios varying greatly from species to species,

this limits the effectiveness of gate operations at high
magnetic field, resulting in the errors in the range of
10−3 as indicated in Fig.3. Optical manipulation (e.g.
tuning the system into resonance via spin-dependent AC
optical Stark shifts) may mitigate this difficulty. Finally,
in between gate operations the errors associated with in-
homogeneous evolution may be eliminated by refocusing
sequences of NMR pulses.

The nuclear spin diffusion due to dipole-dipole interac-
tions with rate γDD ∼ 60ms−1 leads to a decay of the co-
herences which form the dark states [25]. Active correc-
tions can be performed with NMR pulse sequences that
average the dipole-dipole Hamiltonian, such as WaHuHa,
improving the error rate to τ2

whhγ3
DD [26, 27]. After cor-

rection dark state coherences could have lifetimes on the
order of 0.1-1s for moderate cycle times τwhh. Quadrupo-
lar terms due to inhomogeneous strain can cause ad-
ditional differential phase evolution of different nuclear
spins. However, this type of phase inhomogeneity leads
to an error second order in the interaction which is neg-
ligible (∼ 10−7 per cycle of computation).

The errors of manipulation of single electron spins in
quantum dots via microwave or optical fields have been
considered in detail elsewhere [8, 9, 13, 15], and only the
relevant results are quoted here. Electron spin decoher-
ence will most likely be limited by different Overhauser
shifts corresponding to different detunings, with error go-
ing as p ≃ (σδ/ΩESR)2; fast ESR (∼ 6ns−1) will mitigate
this effect; with optical fields, even faster effective Rabi-
oscillations are predicted (Ωopt,ESR ∼ 50ns−1) with er-
rors then limited by spontaneous emission to ∼ 10−3. As
for measurement, the fundamental limit will be set by
relaxation of the electron spin, which has a time scale
Γ−1 ∼ 0.1-10ms, based on recent measurements of the
spin relaxation time [14, 29].

Moving individual electron spins over short distances
incurs phase errors due to uncertainty in the local nuclear
field of the transport channel. The error induced by ran-
domly oriented nuclei during transit can be estimated by
the time-averaged hyperfine field the electron wavepacket
encounters over the whole process, A/

√
nLhl, where n is

the density of lattice nuclei, L is the length of the chan-
nel, and hl is the transverse area of the channel. For a
50nm wide, 10nm high channel, and a quantum dot sep-
aration of 1µm, the expected dephasing probability due
to thermal nuclei is ≃ 5 × 10−5 for a 3ns transfer time.

We consider three materials with demonstrated elec-
tronic and optical quantum dots (GaAs, N = 105; InAs,
N = 104.6; CdSe, N = 104). The expected error of a

two-qubit gate operation, defined as Tr[UperfectU
†
actual]/4,

where Uperfect is given by Eqn. 6, is plotted in Fig. 3. As
the error is dominated by detuning error, it is material
independent, and is a few percent at 95% polarizations.

To combat these errors, a series of measurements may
be made to determine the effective detuning of the sys-
tem better than the thermal mixture limit σδ. This can
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FIG. 3: For a cooled dark state density matrix (c.f. [6]),
expected error for a controlled-phase operation between elec-
tron spin and nuclear spin as a function of polarization (CdSe:
solid, InAs: dotted, GaAs: dashed; in the main figure, CdSe
and InAs are indistinguishable). Inset shows effects of nar-
rowing by a factor of 10 for different materials.

be done e.g. by a measurement made with the single elec-
tron in the quantum dot, in direct analogy to single ion
Ramsey interferometry in atomic clocks [30]; the distri-
bution is then narrowed, with σ̃δ ≃ σδ/

√
n, where n is the

number of measurements. An improvement in the uncer-
tainty of the mixture’s detuning of a factor of 10 yields
high fidelity operation, as shown in the inset to Fig. 3 [31].
Smaller dots produce better results at higher polariza-
tions due to their greater coupling strengths. The limits
for GaAs are due to the large species inhomogeneity and
the incommensurate requirement of sufficient magnetic
field to perform effective coherent averaging of dipole-
dipole interactions. Low species inhomogeneity allows for
higher magnetic field, faster WaHuHa-type correction se-
quences, and fewer errors in the transfer operation. This
would be the case for quantum dots defined in nanotubes
with isotopically enhanced 13C or in CdSe quantum dots.
Materials with low spin-orbit interaction will also reduce
electron spin dephasing.

In conclusion, we have detailed a scheme for quantum
information processing using dynamically defined qubits
composed of collective excitations of nuclear spins in a
quantum dot. For small dots with near-homogeneous
Zeeman splittings (e.g. CdSe, InAs) large but finite po-
larization (95%) is already sufficient to reach an error
rate in two-qubit operations of order a few percent.
Given the suppression of dipolar diffusion in lithograph-
ically isolated structures (e.g. vertical quantum dots,
nanowhiskers, self-assembled quantum dots) these po-
larizations may be within reach. Moderate polariza-
tions [32] have been already achieved, and techniques to
improve upon this have been considered [10]. Our calcu-
lations indicate that the dominant source of error may be
mitigated through narrowing the mixture of dark states.
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Quantum interface between light and nuclear spins in quantum dots
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The coherent coupling of flying photonic qubits to stationary matter-based qubits is an essential building
block for quantum-communication networks. We show how such a quantum interface can be realized between
a traveling-wave optical field and the polarized nuclear spins in a singly charged quantum dot strongly coupled
to a high-finesse optical cavity. By adiabatically eliminating the electron a direct effective coupling is achieved.
Depending on the laser field applied, interactions that enable either write-in or read-out are obtained.
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I. INTRODUCTION

The coherent conversion of quantum information between
mobile photonic qubits for communication and stationary
material qubits for storage and data processing is an impor-
tant building block of quantum networks. In atomic systems
several ideas to realize such a quantum interface have been
suggested and experimentally demonstrated in recent years
�see Ref. 1 for a review�. For semiconductor quantum dots
�QD� proposals for interfaces in analogy to the cavity-based
atomic schemes have been put forward2,3 and major prereq-
uisites such as strong coupling to a nanocavity4 have been
realized �see Ref. 5 for a review�. Here we will show how to
realize a QD-based quantum interface between the nuclear
spins in a QD and the optical field. The read-out we propose
maps the nuclear state to the output mode of the cavity di-
rectly while the write-in proceeds by deterministic creation
of entanglement between the nuclear spins and the cavity
output mode and subsequent teleportation. Our scheme has
several attractive features: the very long nuclear-spin life-
times make the nuclei attractive for storing quantum
information6 and the use of collective states makes it pos-
sible to map not just qubits but also multiphoton states. In
addition, typical electron-spin decoherence processes will be
suppressed: the major process—hyperfine interaction with
the lattice nuclear spins7—is harnessed to achieve the desired
coupling and the influence of other processes is weakened
since the electronic states can be adiabatically eliminated
from the dynamics. The price for this is a reduction in the
speed of the mapping process and the necessity to initialize
the nuclear spin ensemble in a highly polarized state. In view
of the high nuclear polarization of above 80% reported
recently8 the proposed protocol enables the high-fidelity
mapping between a �traveling� optical field and the nuclear
spin ensemble in a realistic setup.

The paper is organized as follows: first, we introduce the
system in Sec. II. In Sec. III we sketch the adiabatic elimi-
nation that yields the Hamiltonians that describe the effective
coupling between light and nuclear spins �for a detailed deri-
vation see Appendix A�. Next, we explain the interface pro-
tocol in Sec. IV and finally give an example for the imple-
mentation of the protocol in Sec. V.

II. SYSTEM

We consider a self-assembled QD charged with a single
conduction-band electron, whose spin-states �↑ � , �↓ � are split

in a magnetic field. For clarity we first consider a simplified
model, in which both electronic states are coupled by electric
dipole transitions to the same charged exciton �trion� state
�X� in a � configuration, cf. Fig. 1. Note that the selection
rules in QDs often make it necessary to consider more com-
plicated level schemes. After introducing our protocol using
this simplified model, we will present a setting to realize the
required coupling and discuss the effect of corrections to Eq.
�1� in Sec. V.

The QD is strongly coupled to a high-Q nanocavity.4 The
two transitions are, respectively, off-resonantly driven by the
cavity mode �frequency �c� and a laser of frequency �l, cf.
Fig. 1, described by the Hamiltonian

Hopt =
�c

2
a†�↓��X� +

�l

2
e+i�lt�↑��X� + H.c. + �ca

†a + �X�X��X�

+ �zS
z, �1�

where �=1 and �l ,�c are the Rabi frequencies of laser and
cavity fields, a† and a are the cavity photons, �X denotes the
trion energy, �z is the Zeeman splitting of the electronic
states, and Sz=1 /2��↑ ��↑ �− �↓ ��↓ ��. In Sec. V, we discuss
how to effectively realize such a three-level system in a
quantum dot. A detailed discussion of cavity decay
���l ,�c� will be considered later on.

As already mentioned, in most QDs the electron spin also
has a strong hyperfine interaction with N�104–106 lattice
nuclear spins.7 For s-type electrons it is dominated9 by the
Fermi contact term

Hhf =
A

2
�S+A− + H.c.� + ASzAz, �2�

where A is the hyperfine coupling constant, S� are the
electron-spin operators, and A�,z=� j� jIj

�,z are the collective

FIG. 1. �Color online� �a� Singly charged QD coupled to high-Q
optical cavity. �b� Level scheme of the QD. Optical and hyperfine
transitions.
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nuclear-spin operators �we consider spin-1/2 nuclei for sim-
plicity�. The individual coupling constants � j are propor-
tional to the electron-wave function at site j and normalized
to � j� j =1.

A prerequisite for using nuclear spins as a quantum
memory is to initialize them in a highly polarized state which
also satisfies A−��0�=0, i.e., is decoupled from the electron in
state �↓ � �dark state�. Recently, nuclear polarization P
= �Az� / �−1 /2� of P	80% has been reported8 �see also Refs.
10 and 11�. The dark state condition is the natural conse-
quence of using Hhf to polarize the nuclei12 but has not yet
been verified experimentally. It is useful to separate the large
expectation value of Az, which describes the effective mag-
netic field experienced by the electron spin due to the nuclei
and write Az= �Az��0

+
Az. Henceforth we include the first
term in Hopt by introducing �̃z=�z+A�Az��0

.
In the high-polarization regime 1− P�1 a very conve-

nient bosonic description for the nuclear spins becomes
available: all excitations out of the fully polarized state and,
in particular, the collective spin operator A+ are approxi-
mated by bosonic creation operators applied to the N-mode
vacuum state.13,14 Replacing A−→ �� j� j

2�1/2b and Az→ �− 1
2

+ 1
Nb†b�, Eq. �2� reads �small corrections omitted in these

replacements are discussed in Appendix B�

H̃hf =
gn

2
�b†S− + S+b� +

A

N
Sz�b†b −

N

2
	 , �3�

where gn=A
� j� j
2. The expression N1= �� j� j

2�−1 can be seen
as the effective number of nuclear spins to which the electron
couples. In the homogeneous case � j =const we have N1
=N. Neglecting very weakly coupled nuclei we have N1
�N and we will just use N in the following.

The bosonic description emphasizes the relation to quan-
tum optical schemes, gives access to the toolbox for Gauss-
ian states and operations and allows a more transparent treat-
ment of the corrections to the ideal Jaynes-Cummings-type
coupling of Eq. �3�; we will make use of this description
later on.

III. COUPLING CAVITY AND NUCLEAR SPINS

Our aim is to obtain from H=Hopt+Hhf a direct coupling
between nuclear spins and light. The Hamiltonian H de-
scribes a complicated coupled dynamics of cavity, nuclei,
and quantum dot. Instead of making use of the full Hamil-
tonian �and deriving the desired mapping, e.g., in the frame-
work of optimal control theory� we aim for a simpler, more
transparent approach. To this end, we adiabatically
eliminate15 the trion and the electronic degrees of freedom,
which leads to a Hamiltonian Hel that describes a direct cou-
pling between nuclear spins and light. As explained later, this
can be achieved if the couplings �the Rabi frequency of the
laser/cavity, the hyperfine coupling, respectively� are much
weaker than the detunings to the corresponding transition:

�� � �l,�c

n , �4a�


���̃z � �l,�c

n , �4b�

�̃z � gn

m . �4c�

Here, ��=�X−�l+ �̃z /2 is the detuning, n is the number of
cavity photons, and m is the number of nuclear excitations.
Note that typically �̃z�� such that condition �4a� becomes
redundant. In addition to Eqs. �4a�–�4c�, we choose the ad-
justable parameters such that all first-order and second-order
processes described by H are off-resonant but the �third-
order� process in which a photon is scattered from the laser
into the cavity while a nuclear spin is flipped down �and its
converse� is resonant. This leads to the desired effective
interaction.

The idea of adiabatic elimination is to perturbatively ap-
proximate a given Hamiltonian by removing a subspace from
the description that is populated only with a very low prob-
ability due to chosen initial conditions and detunings or fast
decay processes. If initially unpopulated states �in our case
the trion state �X� and the electronic spin-up state �↑ �� are
only weakly coupled to the initially occupied states, they
remain essentially unpopulated during the time evolution of
the system and can be eliminated from the description. The
higher-order transitions via the eliminated levels appear as
additional energy shifts and couplings in the effective Hamil-
tonian on the lower-dimensional subspace.

The starting point is the Hamiltonian H=Hopt+Hhf given
by Eqs. �1� and �2�. In order to get a time-independent
Hamiltonian, we go to a frame rotating with U†=exp
�−i�lt�a†a+ �X��X��

H� =
�c

2
�a†�↓��X� + H.c.� +

�l

2
��↑��X� + H.c.� + 
a†a + �̃zS

z

+
A

2
�A+S− + S+A−� + ASz
Az + ��X��X� �5�

with detunings �=�X−�l and 
=�c−�l.
Choosing the cavity and laser frequencies, �c and �l, far

detuned from the exciton transition and the splitting of the
electronic states �̃z much larger than the hyperfine coupling
gn, such that conditions �4a�–�4c� are fulfilled, we can adia-
batically eliminate the states �X� and �↑ �. A detailed deriva-
tion of the adiabatic elimination can be found in Appendix A.
It yields a Hamiltonian that describes an effective coupling
between light and nuclear spins

Hel =
�c�lA

8���̃z

�aA+ + H.c.� + �1a†a −
A

2

Az −

A2

4�̃z

A+A− + Tnl,

�6�

where the energy of the photons �1=
−
�c

2

4��
and the energy

of the nuclear spin excitations �− A
2N − A2

4N�̃z
. By Tnl we denote

the nonlinear terms Tnl=
A3

8�̃z
2 A+
AzA−+ A2

4�̃z
2 
a†aA+A−

+
�c

2


4��2 a†a†aa, which are small ��Tnl��
�c�lA

8���̃z
� in the situation

we consider �
��c ,gn / �̃z��l /���1� and neglected in
the following. In the bosonic description of the nuclear spins
that we introduced in Eq. �3� the Hamiltonian given by Eq.
�6� then reads
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Hbs = g�ab† + H.c.� + �1a†a + �2b†b �7�

with coupling strength g given by

g =
�c�lgn

8���̃z

. �8�

The energy of the nuclear-spin excitations can now be writ-

ten as �2=− A
2N −

gn
2

4�̃z
. For resonant exchange of excitations

between the two systems, we choose �1=�2. Then Hbs de-
scribes a beamsplitterlike coupling of the modes a and b.
Processes in which absorption �or emission� of a cavity pho-
ton is accompanied by a nuclear spin flip are resonant and we
have thus derived the desired effective interaction between
light and nuclear spins. Since 
�c�l / ����̃z��1 the effec-
tive coupling g is typically two to three orders of magnitude
smaller than the hyperfine coupling gn.

To illustrate the validity of the adiabatic elimination and
the approximations leading to Eq. �7�, we have simulated the
evolution of the two-photon Fock state �20 �the first subscript
denotes the number of photons and the second denotes the
number of nuclear-spin excitations� under the full Hamil-
tonian H� given by Eq. �5� and compared it to the evolution
under the Hamiltonian Hbs given by Eq. �7�. We assume full
nuclear spin-down polarization and the validity of the
bosonic description. In the simulation, we choose �l=�c,
�l /�=1 /10, �l

2 / ���̃z�=1 /100, and gn / �̃z=1 /50, such that
the conditions given by Eqs. �4a�–�4c� are fulfilled. Figure 2
shows, that H� is well approximated by Hbs, and that the
nonlinear terms Tnl can be neglected. Almost perfect Rabi
oscillations between the two-photon Fock state �20 and the
state with two nuclear-spin excitations �02 can be seen in
Fig. 2. For �01, the adiabatic elimination is an even better
approximation to the full Hamiltonian as the nonlinear terms
Tnl and the conditions �4a�–�4c� depend on the excitation
number.

In the process leading to the beamsplitter coupling, a pho-
ton is scattered from the cavity into the laser mode while a

nuclear-spin excitation is created �and vice versa�. If we in-
terchange the role of laser and cavity field �i.e., the laser
drives the �↓ �↔ �X� transition and the cavity couples to �↑ ��
then creation of a nuclear-spin excitation is accompanied by
scattering of a laser photon into the cavity, i.e., the effective
coupling becomes a†b†+ab. Tuning the energies such that
�1=−�2, the driving laser now facilitates the joint creation
�or annihilation� of a spin excitation and a cavity photon,
realizing a two-mode squeezing effective Hamiltonian

Hsq = g�a†b† + ab� + �1a†a + �2b†b . �9�

Here, the energy of the photons is �1=
�1+
�c

2

4��2 �, the energy

of the nuclear-spin excitations is �2=− A
2N −

gn
2

4�̃z
, and the non-

linear terms are now given by Tnl=
gn

2

4�̃z
2

A
2Nb†b†bb

+
gn

2

4�̃z
2 
a†ab†b. As before, they are much smaller than g and

can be neglected for low excitation number. To be able to
freely switch between Hbs and Hsq simply by turning on and
off the appropriate lasers, both the “driven” and the empty
mode should be supported by the cavity.

IV. QUANTUM INTERFACE

Now the obvious route to a quantum interface is via the
Hamiltonian Hbs: acting for a time t=� /g it maps a→ ib and
b→ ia thus realizing �up to a phase� a swap gate between
cavity and nuclear spins. This and related ideas are explored
in Ref. 16. There are two problems with this approach: com-
pared to the effective coupling, present-day cavities are
“bad” with cavity lifetime �cavity�1 /g, i.e., the cavity field
will decay before its state can be mapped to the nuclei.
Moreover, it is notoriously difficult to couple quantum infor-
mation into high-Q cavities, despite proposals17 that address
this issue. Both problems can be circumvented for our sys-
tem by two key ideas: �i� to include the field modes into
which the cavity decays in the description and �ii� to realize
write-in via quantum teleportation. Moreover, read-out can
be realized with similar techniques. In the following, we as-
sume that all the light leaving the cavity can be collected and
accessed optically. The combination of strong coupling and
high collection efficiency has not yet been demonstrated for
solid-state cavities, although there is remarkable progress to-
ward that goal.18

Let us first consider the more complicated part, write-in.
In the first step, the squeezing Hamiltonian Hsq �assisted by
cavity decay� generates a strongly entangled two-mode
squeezed state �TMSS� between the nuclear spins and the
traveling-wave output field of the cavity. Then quantum
teleportation19 is used to deterministically write the state of
another traveling-wave light field onto the nuclear mode.
Similarly, Hbs can be used for read-out, by writing the state
of the nuclei to the output field.

Let us now consider Hsq and quantitatively derive the en-
tangled state and discuss the quality of the interface it pro-
vides. The Langevin equation of cavity and nuclear operators
is �for t�0�

ȧ�t� = − igb�t�† −
�

2
a − 
�cin�t� ,

FIG. 2. �Color online� Evolution of the two-photon Fock state
�20 under the full Hamiltonian H� �solid lines� and Hamiltonian Hbs

��, dashed and dotted lines�, where the trion and the electronic
spin-up state have been eliminated.
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ḃ�t� = − iga�t�†, �10�

where we have specialized to the case �1=−�2, transformed
to an interaction picture with H0=�1�a†a−b†b�, and per-
formed the rotating-wave and Markov approximations in the
description of the cavity decay.20 Here, cin describes the
vacuum noise coupled into the cavity and satisfies
�cin�t� ,cin

† �t��=
�t− t��. Integrating Eqs. �10�, we get

a�t� = �1
−�t�a + �2�t�b† + 
��

0

t

�1
−�t − ��cin���d� ,

b�t� = �2�t�a† + �1
+�t�b + 
��t

�2�t − ��cin
† ���d� , �11�

where �1
��t�=e−�t/4�cosh��t��� / �4��sinh��t�, �2�t�

=−ig /�e−�t/4 sinh��t�, and �=
�� /4�2+g2; and
a ,b�a�0� ,b�0� in this equation. It may be remarked here
that the analogous equations with Hbs instead of Hsq lead to
almost identical solutions: now a�t� is coupled to b�t� instead
of b†�t� and the only other change to Eq. �11� is to replace �
by �̃=
�� /4�2−g2.

While Eq. �11� describes a nonunitary time evolution of
the open cavity-nuclei system, the overall dynamics of sys-
tem plus surrounding free field is unitary. It is also Gaussian
since all involved Hamiltonians are quadratic. Since all ini-
tial states are Gaussian as well the joint state of cavity, nu-
clei, and output field is a pure Gaussian state at any time.
This simplifies the analysis of the dynamics and, in particu-
lar, the entanglement properties significantly: for pure states,
the entanglement of one subsystem �e.g., the nuclei� with the
rest is given by the entropy of the reduced state of the sub-
system. Gaussian states are fully characterized by the first
and second moments of the field operators R1= �a+a†� /
2
and R2=−i�a−a†� /
2 via the covariance matrix �CM� �kl
= ��Rk ,Rl��−2�Rk��Rl� �where �,� denotes the anticommuta-
tor�. The CM of the reduced state of a subsystem �e.g.,
�nuc�t� for the CM of the nuclei at time t is given by the
submatrix of � that refers to covariances of system operators
only. For a single mode, the entropy of the reduced system
can be obtained from the determinant of the reduced CM and
with x�t��det �nuc�t� we get a simple expression for the en-
tropy �i.e., entanglement�

E�t� = x�t�log2 x�t� − �x�t� − 1log2�x�t� − 1 . �12�

Since the state at hand �including the output field� is pure and
Gaussian it is fully determined by x�t� up to local Gaussian
unitaries21: it is locally equivalent to a TMSS ���r��
= �cosh r�−1�n�tanh r�n�nn� with CM �in 2�2 block matrix
form�

�TMSS = �cosh�2r�12 sinh�2r��z

sinh�2r��z cosh�2r�12
	 .

The squeezing parameter r is determined by x�t�=cosh2�2r�.
From Eq. �11� we find that �nuc�t�=cosh�2r�t�12 for all t
�0, where cosh�r�t� is given by

cosh r = e−�t/4� �

2�
sinh�2�t� +

g2 +
�2

8

2�2 cosh�2�t� +
g2

2�2�
1/2

�13�

and quantifies how strongly the nuclei are entangled with
cavity and output field. After turning off the coupling g at
time toff the nuclei are stationary while the cavity decays to
the vacuum. Therefore, the final entanglement of nuclei and
output field at time t− toff�1 /� is given by Eq. �12� with
x�t�=cosh�2r�toff�2. Note that for ��g, 1 / t and keeping
only the leading terms in Eq. �13�, cosh�2r�t� simplifies to
3�1–8�g /��2e4g2/�t, i.e., two-mode squeezing r�t� grows lin-
early with time at rate � 4g2

� .
In order to perform the teleportation, a Bell measurement

has to be performed on the output mode of the cavity and the
signal state to be teleported. This is achieved by sending the
two states through a 50:50 beam splitter and measuring the
output quadratures.19 Hence the output mode of the cavity,
B0, needs to be known to properly match it with the signal
mode at the beam splitter. It can be expressed as a superpo-
sition of the bath operators c�x , t� as B0�t�
=�Rz0�x , t�c�x , t�dx. By definition, the mode B0 contains all
the photons emitted from the cavity, hence all other modes
Bk�0 �from some complete orthonormal set of modes con-
taining B0� are in the vacuum state. This implies
�Bk�t�Bl�t���
k0
l0, from which the mode function z0 can be
determined as

z0�x,t� = �2�t − x�/
�
R

��2�t − x��2dx . �14�

The procedure for write-in then is: let Hsq act for a time t1 to
create the TMSS ��r�t1� of the nuclei entangled with cavity
and output field. To obtain a state in which the nuclei are
only entangled to the output field, we switch the driving laser
off �g=0� and let the cavity decay for a time t2��cav, ob-
taining an �almost� pure TMSS of the nuclei and the output
mode, which is used for quantum teleportation. Teleportation
maps the state faithfully up to a random displacement d,
which depends on the measurement result. This can be un-
done with the help of Hbs �Ref. 16� to complete the write-in.

The read-out step follows identical lines, except that Hsq
is replaced by Hbs and no teleportation is necessary since the
state of the nuclei is directly mapped to the output mode of
the cavity; for more details see Ref. 16.

As mentioned, we assume that all light that leaves the
cavity can be collected and further processed. Losses could
be modeled by mixing the outgoing light with yet another
vacuum and tracing over the latter. Considering a fully de-
cayed cavity, the reduced state of nuclei and output mode is
now mixed but still entangled �unless the losses are f
=100%�. Whether or not the state still allows for better-than
classical teleportation depends on f and r. For example, for
r=1 even at losses of 40%, Ftel	0.7 �and 	0.5 even at 75%
loss�. Note, however, that our read-out scheme is much less
tolerant of losses.
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The fidelity with which a quantum state can be teleported
onto the nuclei using the protocol19 is a monotonic function
of the two-mode squeezing parameter r�toff�. A typical
benchmark22 is the average fidelity F with which an arbitrary
coherent state can be mapped. For F�2 /3 the quantum
channel given by teleportation has a positive quantum capac-
ity. If a TMSS is used for teleportation, F has a simple de-
pendence on the squeezing parameter23 and is given by
F�r�=1 / �1+e−2r�. Thus, if our system parameters g, �, and
the interaction time t= toff lead to cosh�2r�toff� we have an
interface that provides a write-in fidelity F�r�toff�, cf. Fig. 3.
The fidelity for other subsets of states �including, e.g., finite
dimensional subspaces� can be computed from the coherent
state fidelity.24 Already for r�toff��1 fidelities above 0.8 are
obtained. As seen from Fig. 3 this is achieved for gtoff�5
even for strong decay. After switching off the coupling we
have to wait for the cavity to decay. Since typically ��g this
does not noticeably prolong the protocol.

V. IMPLEMENTATION

Quantum dots generally have a richer level structure than
the � scheme depicted in Fig. 1. This and the applicable
selection rules imply that Hopt is not exactly realized. In this
section we take this into account and discuss a setting that
allows to realize the desired coupling.

We now consider the two spin states �⇓ � , �⇑ � of the trion
in addition to the two electronic-spin states. We focus on a
setup where these states are Zeeman split by an external
magnetic field in growth/z direction �Faraday geometry�. The
electronic state �↑ � is coupled to �⇑ � �with angular momen-
tum +3 /2� by �+ circularly polarized light �and �↓ � to �⇓ �
with �−-polarized light�. We can stimulate these transitions
by a �−-polarized cavity field and a �+-polarized classical
laser field, respectively, but this will not lead to a � scheme,
cf. Fig. 4�a�. The cleanest way to obtain the desired coupling
is to mix the trion states with a resonant microwave field.
The electronic eigenstates are unchanged �being far detuned
from the microwave frequency� and are now both coupled to
the new trion eigenstates �−�=1 /
2��⇑ �− �⇓ �� and �+�
=1 /
2��⇑ �+ �⇓ ��, see Fig. 4�b� in a double � system.

There are other ways to couple both ground states to the
same excited state, e.g., taking advantage of weakened selec-
tion rules �due to heavy-hole/light-hole mixing or an in-plane
magnetic field� or using linearly polarized light �also in an
in-plane magnetic field, i.e., Voigt geometry�. They avoid the
need of an additional microwave field at the expense of ad-

ditional couplings �which have to be kept off-resonant� and
are explored further in Ref. 16.

The Hamiltonian of the system is now given by

H =
�c

2
a†�↓�� ⇓ � +

�l

2
ei�lt�↑�� ⇑ � + �mwei�mwt� ⇓ �� ⇑ �

+ H.c. + �ca
†a + �⇑� ⇑ �� ⇑ � + �⇓� ⇓ �� ⇓ � + �̃zS

z + Hhf,

�15�

where �⇑ ,�⇓=�X��zh /2 include the hole Zeeman splitting
�zh=�mw and Hhf is given by Eq. �2�. In a frame rotating
with

U† = exp�− i��mw + �l�t�� ⇑ �� ⇑ � + a†a� −�i�lt� ⇓ �� ⇓ ��

the Hamiltonian reads

H =
�c

2
2
�a†�↓��+ � − a†�↓��− �� +

�l

2
2
��↑��+ � + �↑��− ��

+ 
�a†a + �+�+ ��+ � + �−�− ��− � + �̃zS
z + Hhf, �16�

where 
�=�c−�l−�mw and ��=�⇓−�l��mw. We adia-
batically eliminate �� � and �↑ � as explained in Sec. III and
Appendix A. This yields

Hel = g��aA+ + H.c.� + �1�a
†a −

A

2

Az −

A2

4�̃z

A+A− + Tnl� ,

�17�

which is of exactly the same form as the Hamiltonian of our
toy model given by Eq. �6�, and differs only by the replace-
ments ��−1→ 1

2 ��+�
−1−�−�

−1� in the coupling, ��−1→ 1
2 ��+�

−1

+�−�
−1� in the nuclear energy and ��−2→ 1

2 ��+�
−2+�−�

−2� in
the nonlinear terms. As before, the nonlinear terms Tnl� are
small and are neglected in the following. Using the bosonic
description, we then obtain again a beam splitter Hamil-
tonian Eq. �7�, where the coupling is now given by

g� =
�c�lgn

16�̃z
� 1

�+�
−

1

�−�
	 �18�

with ��� =��+
�̃z

2 . Compared to Eq. �8� the effective cou-
pling g is reduced by a factor ����+�

−1−�−�
−1�, i.e.,

�2�mw /�� for �mw���.

FIG. 3. �Color online� Average fidelity for the mapping of co-
herent states to the nuclei via teleportation �after complete decay of
the cavity� plotted as a function of the interaction time toff for dif-
ferent values of g /�=1, 10, and 100 �solid, dash-dotted, and
dashed�. All fidelities converge to 1 as gt→�.

FIG. 4. �Color online� Level scheme of the QD �a� electronic
and trion states split in an external magnetic field in growth direc-
tion. They are coupled by a �−-polarized laser and a �+-polarized
cavity field with frequencies �l and �c, respectively. �b� Additional
to the setting in �a�, a microwave field resonant with the splitting of
the trion states in the magnetic field ��⇑−�⇓=�mw� mixes the trion
states. Laser and cavity couple both electronic states to the trion
states �+� and �−�.
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To illustrate that Hel, in the bosonic description, which we
denote by Hbs, provides a good approximation to H and al-
lows to implement a good quantum interface, we consider a
maximally entangled state �k�k�R�k�c of cavity and some ref-
erence system R and then use the interface to map the state
of the cavity to the nuclei. If a maximally entangled state of
R and nuclei is obtained, it shows that the interface is perfect
for the whole subspace considered. The fidelity of the state
1R � U�t��k=1

2 �k�R�k�c�0�n with the maximally entangled state
�k�k�R�0�c�k�n fully quantifies the quality of the interface. In
Fig. 5 we plot this fidelity for the evolutions U�t� generated
by the two Hamiltonians H and Hel of Eqs. �16� and �17� to
show that a high-fidelity mapping is possible with the chosen
parameters and that the simple Hamiltonian Hel well de-
scribes the relevant dynamics. Since U�� /g�aU�� /g�†= ib
some care must be taken concerning the phases of the num-
ber state basis vectors in the nuclear spin mode
��k�c� �i�k�k�n and different phases at t=3� /g. For the nu-
merical simulation, we chose the parameters as follows: the
number of nuclei N=104, the hyperfine coupling constant
A=100 �eV, the laser and cavity Rabi frequency �c=�l
=6 �eV, the detuning of the trion �X−�l=700 �eV, the
microwave Rabi frequency �mw=50 �eV and the effective
Zeeman splitting �̃z=50 �eV. This corresponds to �4 T
using an electron g factor of 0.48 �external and Overhauser
field are counter aligned� and the corresponding hole Zee-
man splitting �mw�700 �eV. With these parameters, a
value of g�5�10−5 �eV is obtained, leading to times of
�10 microseconds for an interface operation.

Throughout the discussion we have neglected the internal
nuclear dynamics and corrections to the bosonic description.
Nuclear dynamics is caused by direct dipole-dipole interac-

tion and electron-mediated interaction.7,25,26 In Ref. 16 we
consider these processes in detail and show that they are
negligible: the coupling of the bosonic mode b to bath modes
bk is by a factor 10−2 smaller than the coupling g in Hbs given
by Eq. �18�.

The bosonic description of the nuclear spin system can be
introduced in a formally exact way.13 However, to obtain the
simple Jaynes-Cummings-type Hamiltonian �7� instead of
Eq. �6� we have made several approximations. As discussed
in more detail in Appendix B, these can lead to two types of
errors, �i� an inhomogeneous broadening of �2 and �ii� leak-
age from the mode b due to inhomogeneity. High polariza-
tion reduces both effects. The broadening of �2 can be fur-
ther reduced by an accurate determination of the Overhauser
shift Az. Reduced Overhauser variance has already been seen
experimentally.27–29 Leakage is suppressed by the energy dif-
ference of excitations in the mode b and the other modes not
directly coupled to the electron14 �cf. also the Appendix B�.

Finally, sufficiently small electron and cavity decoherence
must be ensured. In particular, we assume the strong cou-
pling limit of cavity QED and neglect spontaneous emission
for the whole duration of our protocol, which requires that
��l /���2�spont1 /g�1, where �spont comprises spontaneous
emission of the quantum dot into noncavity modes. With the
parameters chosen above this requires �spont�1 �s−1.
Electron-spin relaxation is sufficiently slow in QDs at large
Zeeman splitting ��1 ms� compared to our interaction. The
effect of electron-spin dephasing processes is suppressed by
elimination of the electron: they lead to an inhomogeneous
broadening of g and �i which is small as long as the energy
scale of the dephasing is small compared to the detuning �̃z.

VI. CONCLUSION

We have shown how to realize a quantum interface be-
tween the polarized nuclear-spin ensemble in a singly
charged quantum dot and a traveling optical field by engi-
neering beam splitter and two-mode squeezer Hamiltonians
coupling the collective nuclear-spin excitation and the mode
of the open cavity. This indicates how to optically measure
and coherently manipulate the nuclear-spin state and opens a
path to include nuclear-spin memories in quantum informa-
tion and communication applications. Moreover, together
with a photo detector for the output mode of the cavity, the
quantum-dot-cavity system provides a means to monitor
nuclear-spin dynamics on a microsecond time scale and
would allow to precisely study the effect of internal nuclear-
spin dynamics and the corrections to the bosonic description
used here.
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APPENDIX A: ADIABATIC ELIMINATION

In this section, we give a detailed derivation of the adia-
batic elimination that yields the Hamiltonian that describes
the effective interaction between light and nuclei, given by

FIG. 5. �Color online� Performance of the quantum interface for
the maximally entangled input state �in��k=1

2 �k�R�k�c �subscript c
indicates the cavity�. The red solid curve shows the fidelity Fbs of
�in evolved under Hbs with the ideal target state ��map���k=1

2 �
−1�lk�i�k�k�R�k�n �subscript n indicates the nuclei� for gt��l� , �l
+1��, where l takes into account the phases acquired during map-

ping, see text. The blue solid curve shows the fidelity F̃bs with

��̃map���k=1
2 �−1�lk�k�R�k�c for gt�� 2l+1

2 � , 2l+3
2 �. Dashed curves de-

pict the same fidelities for evolution under H� �denoted by

FH� / F̃H��. �Parameters chosen as in the text.�
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Eq. �6�. The starting point is the Hamiltonian given by Eq.
�5�.

Choosing the cavity and laser frequencies, �c and �l, far
detuned from the exciton transition and the splitting of the
electronic states �̃z much larger than the hyperfine coupling
gn, such that conditions �4a�–�4c� are fulfilled, we can adia-
batically eliminate the states �X� and �↑ �: denote by Q
= �X��X�+ �↑ ��↑ � and P�1−Q= �↓ ��↓ � the projectors on the
eliminated subspace and its complement, respectively. Then
the Schrödinger equation in the two subspaces reads

EP��� = PH��P + Q���� , �A1a�

EQ��� = QH��P + Q���� . �A1b�

Our goal is to derive an approximation of the Hamiltonian in
the P subspace which we denote by Hel. From Eq. �A1b� we
obtain

Q��� =
1

E − QH�Q
QH�P��� . �A2�

Inserting Eq. �A2� into Eq. �A1a�, we arrive at the �still ex-
act� equation

EP��� = �PH�P + PH�Q
1

E − QH�Q
QH�P	P��� �A3�

for the wave function in the electron spin-down subspace
with the unknown E appearing both on the right-hand side
�rhs� and the left-hand side of Eq. �A3�.

Now we use that �i� the range of �unperturbed� energies in
the P subspace is small compared to the energy difference
between the P and Q subspaces and �ii� the coupling term
PH�Q is small compared to this difference, i.e.,

� 1

E − QH�Q
QH�P� � 1. �A4�

Then the second part on the rhs of Eq. �A3� is small and E
can be approximated by E0, an eigenvalue of PH�P
=−�

�̃z

2 + A
2 
Az−
a†a��↓ ��↓ �, which is here given by

E0�−�̃z /2. Since for our purposes the energy of the nuclear
excitations ��gn

2 / �4�̃z� and cavity photons �
� are chosen
equal and are ��̃z, and � A

2 
Az� is of order A
2N and ��̃z,

condition �i� is fulfilled. Condition �ii� given by Eq. �A4� is
satisfied if the conditions of Eq. �4a� hold. This yields the
effective Hamiltonian in the electron-spin down subspace

Hel = �PH�P − PH�Q
1

�̃z + QH�Q
QH�P	P . �A5�

To simplify the second term in Hel �the denominator is an
operator containing a ,a† ,A− ,A+�, we split it into two parts:
�̃z+QH�Q=B1+B2, where

B1 = �̃z�↑��↑� + �� + �̃z/2��X��X� �A6�

contains the energetically large part and is easy to invert and

B2 =
�l

2
��↑��X� + H.c.� + 
a†aQ +

A

2
A+A−�↑��↑� . �A7�

contains the Rabi frequency of the laser field �l that couples
the spin-up state and the trion and the energies of photons
and nuclear spins. From the conditions in Eq. �4a� follows
that the cavity field is weak and the energies of photons and
nuclear spins are small compared to the energy scale given
by �� and �̃z, therefore

� 1

B1

B2
1


B1
� � 1 �A8�

and we can approximate the denominator of Eq. �A3� by

1

B1 + B2
�

1

B1
−

1

B1
B2

1

B1
. �A9�

Thus, inserting Eq. �A9� in Eq. �A3� and assuming the con-
ditions given by Eqs. �4a�–�4c� to be fulfilled, we can write
the Hamiltonian in the electron spin-down subspace as

Hel = PH�P − PH�Q� 1

B1
−

1

B1
B2

1

B1
	QH�P �A10�

with PH�Q=
�c

2 a†�↓ ��X�+AA+�↓ ��↑ �, which yields

Hel =
�c�lA

8���̃z

�aA+ + H.c.� + �1a†a −
A

2

Az −

A2

4�̃z

A+A− + Tnl,

�A11�

where the energy of the photons �1=
−
�c

2

4��
and the energy

of the nuclear-spin excitations �− A
2N − A2

4N�̃z
. By Tnl we de-

note the nonlinear terms Tnl=
A3

8�̃z
2 A+
AzA−+ A2

4�̃z
2 
a†aA+A−

+
�c

2


4��2 a†a†aa, which are small ��Tnl��
�c�lA

8���̃z
� in the situation

we consider �
��c ,gn / �̃z��l /���1�.

APPENDIX B: BOSONIC DESCRIPTION
OF NUCLEAR SPINS

The description of collective spin excitations in a large,
highly polarized system of N spins30 � j

�,z as bosonic excita-
tions out of the vacuum states goes back at least to the in-
troduction of the Holstein-Primakoff transformation.31 If the
collective spin operators involved are A�,z�J�,z=� j� j

�,z

and the system is initialized in the symmetric fully polarized
state �↓↓ . . .↓� then the symmetric space spanned by the
Dicke states32 �J=N /2,m� is never left under the action of
A�,z and up to a n-dependent correction the matrix elements
of J− in the basis �N /2,n−N /2� coincide with the matrix
elements of the bosonic annihilation operator b in the Fock
basis �n�. In fact we have

�J,n − J�J−�J,n� − J� = 
2J
1 −
n − 1

2J

n
n,n�−1. �B1�

As long as n�2J �in the whole subspace significantly popu-
lated throughout the evolution� the factor
�n


1−n / �2J�P�J,n−J��1 and the association
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J+ → 
2Jb , �B2a�

�J,n − J� → �n� , �B2b�

Jz → − J1 + b†b �B2c�

is accurate to o�nmax / �2J�. To obtain a more accurate de-
scription, we can even express the factor �n


1− n−1
2J in Eq,

�B1� in bosonic terms, i.e., as 
1−b†b / �2J� leading to an
exact mapping between the spin and bosonic operators.

The intuition we are following is that this association still
is useful if we are dealing with �i� not fully polarized systems
�i.e., 2JN� and �ii� the collective spin operators appearing
in the dynamics are inhomogeneous, i.e., A�,z=� j� j� j

�,z.
Let us first discuss the two issues separately. If the system

is homogeneous and JN /2 but known, e.g., by measuring
Jz and J2, then by Eq. �B1� compared to the fully polarized
case only the parameter 2J has to be adapted and the bosonic
description is still good as long as nmax�2J.

If J is not precisely known, we get an inhomogeneous
broadening of the coupling constants appearing in front of
A� �due to the scaling factor 
2J in Eq. �B2a� and of the
constant in Eq. �B2c�.

If A�,z are inhomogeneous, the three operators no longer
form a closed algebra and the dynamics cannot be restricted
to the symmetric subspace even if starting from the fully
polarized state. However, it is still possible to associate A− to
an annihilation operator A−→ �� j� j

2�1/2�1+ f�b where the cor-
rection factor 1+ f is close to one for highly polarized sys-
tems ��f��1− P� and depends on the excitation number not
only of the mode b but also of other bosonic modes, associ-
ated with collective spin operators different from A�. These
can be introduced, e.g., by choosing a complete orthonormal
set of coupling vectors ��� �k�� with ��0���� and defining a
complete set �Ak

�=� j� j
�k�� j

� ,k=0, . . . ,N−1� of collective
spin operators. We refer to the modes bk�0 as “bath modes.”

Generalizing the single-mode case discussed before, an
exact mapping Ak

−→ �1+ fk�bk and Az→− 1
2 + 1

N�kbk
†bk+Cz

with operators fk ,Cz describing corrections to the ideal case
can be obtained. It was shown in Ref. 13 that the corrections
fk ,Cz are of order 1− P for high polarization. Thus the map-
ping used in our analysis of the quantum interface is correct
to zeroth order in 1− P.

Corrections to that description can be obtained by includ-
ing the corrections 1− fk and Cz. The analysis is simplified by
the fact that coupling between the mode b and the bath
modes is weak �first order in the small parameter 1− P� and
we are interested only in the mode b. Thus by the
replacements13

A− → �� � j
2�1/2�1 − f�b , �B3a�

Ak
− → bk, �B3b�

Az → −
1

2
−

1

N
�
k=0

N−1

bk
†bk + Cz �B3c�

with quadratic Hermitian operators f =�kk�F̃kk�bk
†bk� and Cz

=�k,k�Ckk�bk
†bk we obtain a first-order description of the dy-

namics of the mode b �and the electron and photons coupled
to it�. Here C=U diag�� j −1 /N�U† and F
= �� j� j

2�U diag�� j
2�U† and U transforms from the canonical

basis to ��� �k��. The matrix F̃ is obtained from F by multiply-
ing F00 by 1/2 and Fk0 ,F0k by 2/3. The operators f ,D have
been chosen such that the commutation relations of A� are
preserved to first order. And while Ak

� ,k	0 are not as accu-
rately preserved, this affects the dynamics of A�,z only to
second order.13

From Eq. �6� we see that there are three main effects of
the corrections: �i� inhomogeneous broadening of �̃z and gn
�and consequently �2 and g� due to the finite variance in P;
�ii� inhomogeneous broadening of g due to the variance in
the correction factor 1− f; and �iii� losses of excitations from
the b mode to baths modes due to inhomogeneity.

Since �̃z�gn, the broadening due to the variance in the
Overhauser field is ��̃z and thus has only a small effect.
Similarly, the broadening of g affects the form of the output
mode z0 �cf. Eq. �14� but since it appears there only via the
parameter �=
�� /4�2�g2 the effect is negligible since
g��. However, the effective energy of the nuclear excita-
tions, �2=gn

2 / �4�̃z�, can be more strongly affected: e.g., a
standard deviation of 10% in P translates to a 10% variation
in �2. It must be assured that this variation is small compared
to g so that the resonance condition is maintained.

Concerning leakage, the strongest term is the one arising
from Az and it is not necessarily small compared to g. How-
ever, as was pointed out in Ref. 14 the mode b is detuned
from the others due to the “ac Stark shift” arising from the
off-resonant interaction with the electron �the term
�A2 / �4�̃z�A+A−. As long as this energy shift is large com-
pared to leakage, losses are suppressed and the mode b is
only coupled dispersively to the bath �via the inhomoge-
neous broadening�. To work in that regime, �̃z must not be
too large, i.e., external and Overhauser field should partially

compensate each other while still keeping �l�
���̃z.
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Abstract. In this paper, we show how to realize a quantum interface between
optical fields and the polarized nuclear spins in a singly charged quantum
dot, which is strongly coupled to a high-finesse optical cavity. Effective
direct coupling between cavity and nuclear spins is obtained by adiabatically
eliminating the (far detuned) excitonic and electronic states.

The requirements for mapping qubit and continuous variable states of cavity
or traveling-wave fields to the collective nuclear spin are investigated: for cavity
fields, we consider adiabatic passage processes to transfer the states. It is seen
that a significant improvement in cavity lifetimes beyond present-day technology
would be required for a quantum interface. We then turn to a scheme that couples
the nuclei to the output field of the cavity and does not require a long-lived cavity.
We show that the lifetimes reported in the literature and the recently achieved
nuclear polarization of ∼ 90% allow both high-fidelity read-out and write-in of
quantum information between the nuclear spins and the output field.

We discuss the performance of the scheme and provide a convenient
description of the dipolar dynamics of the nuclei for highly polarized spins,
demonstrating that this process does not affect the performance of our protocol.

1 Author to whom any correspondence should be addressed.
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1. Introduction

An important milestone on the path to quantum computation and quantum communication
networks is the coupling of ‘stationary’ qubits for storage and data processing (usually assumed
to be realized by material systems such as atoms or electrons) and mobile ‘flying’ qubits for
communication (typically photons) [1, 2]. Detection and subsequent storage of information
are inapplicable to quantum information as an unknown quantum state cannot be determined
faithfully by a measurement. Hence, the development of ‘light–matter interfaces’ that allow
the coherent write-in and read-out of quantum information has been the subject of intense
theoretical research [3]–[5]. Two paths have been identified to make light efficiently couple
to a single atomic quantum system: the use of a high-finesse cavity coupled to a single
atom or the use of an optically thick ensemble of atoms, in whose collective state the
quantum information is to be stored. Both have resulted in the experimental demonstration
of such interfaces [6]–[10]. Even without strong coupling, a quantum interface can be
realized by combining the probabilistic creation of entanglement between atoms and light with
teleportation. This approach has been demonstrated with trapped ions [11].
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For qubits realized by electron spins in quantum dots (QDs) [12, 13] such interfaces
are yet to be realized, although in particular for self-assembled QDs [14], which have many
atom-like properties, several proposals exist to map photonic states to an electron in a
QD [13, 15] in analogy to the atomic schemes. Strong coherent coupling between a single
quantum system and a single mode of high-Q micro- and nano-cavities has been demonstrated
experimentally [16]–[19], raising the prospect of coupling light to the QD’s electronic state by
adapting protocols such as that in [3].

Despite their good isolation from many environmental degrees of freedom, the electron-
spin coherence time in today’s QDs is limited, mainly due to strong hyperfine coupling to
lattice nuclear spins. Moreover, the capacity of such an interface is one qubit only, making
the interfacing difficult for many-photon states of the light field as used in continuous variable
quantum information processing. In contrast, the ensemble of lattice nuclear spins could provide
a high-dimensional and long-lived quantum memory [20].

We show in the following how to couple an optical field directly to the nuclear spin
ensemble, thus interfacing light to an exceptionally long-lived mesoscopic system that enables
the storage and retrieval of higher-dimensional states and is amenable to coherent manipulation
via the electron spin [21]. The system we consider is a charged QD strongly coupled to a
high-finesse optical cavity by a detuned Raman process, introduced in section 2. In section 3,
we show that by adiabatically eliminating the trion and the electron spin, different effective
couplings (that can be tuned on- and off-resonant) between light and nuclear spins are achieved.
In sections 4 and 5, we demonstrate that the state of the cavity field can be directly mapped to
the nuclear spins using the methods of Landau–Zener transitions [22, 23] and stimulated Raman
adiabatic passage (STIRAP) [24], respectively, where the latter yields a reduction in the time
required for write-in. However, the drawback of this approach is that it requires very long cavity
lifetimes. To address this problem, we discuss at length in section 6 a scheme that is robust
against cavity decay: the read-out maps the nuclear state to the output mode of the cavity, while
the write-in proceeds by deterministic creation of entanglement between the nuclear spins and
the cavity output-mode and subsequent teleportation [25]. A similar scheme was first proposed
by us in [35]. Here, we describe a modified setting, which is significantly simpler to realize2

and discuss its dynamics in considerably more detail, including the full-time evolution of the
system, the fidelity of both write-in and read-out processes, and the intermediate entanglement
properties of the involved systems. Moreover, we show that apart from mapping light states
to the nuclear spins, the interaction we describe can be used to generate an arbitrary Gaussian
state. In section 7, we discuss different aspects concerning the experimental realization and the
approximations used in our scheme such as the internal nuclear dynamics, dominated by dipolar
interactions, which we model numerically, and corrections to the first-order bosonic description.

2. The system

We consider a self-assembled III–V QD with a single conduction-band electron strongly
coupled to a high-Q nano-cavity (see figure 1(a)). At zero magnetic field, the two
electronic ground states | ± 1/2〉 (s-type conduction band states) are degenerate and the only
dipole allowed transitions are to the trion states | ± 3/2〉 with spin +3/2 and spin −3/2

2 In contrast to [35], no microwave field is needed to split the trion states.
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(a) (b)

Figure 1. (a) A singly charged QD coupled to a high-Q optical cavity. (b) Level
scheme of the QD. Optical and hyperfine driven transitions.

(heavy-hole valence band state) with σ± polarized light. An external magnetic field Bz in
the z-direction, perpendicular to the growth (y-) direction, Zeeman splits the two electronic
states and the trion states and leads to eigenstates |±〉 = (1/

√
2)(|1/2〉 ± i| − 1/2〉) and

|T±〉 = (1/
√

2)(|3/2〉 ± i| − 3/2〉). The states |+〉 ⇔ |T+〉 and |−〉 ⇔ |T−〉 can be coupled (see
figure 1(b)) by horizontally polarized light, and |+〉 ⇔ |T−〉 and |−〉 ⇔ |T+〉 can be coupled by
vertically polarized light:

Hopt =
�c

2
(a†

|−〉〈T+| + a†
|+〉〈T−| + h.c.)+

�l

2
(e+iωlt(|+〉〈T+| + |−〉〈T−|)+ h.c.)

+ωc a†a +ωT+|T+〉〈T+| +ωT−
|T−〉〈T−| +ωeSz. (1)

Here, h̄ = 1, Sz is the electron spin operator, a† and a are creation and annihilation operators
of the single mode cavity field, ωc and ωl denote the cavity and the laser frequency (which
are vertically/horizontally polarized, respectively) and �c and �l are the Rabi frequencies
of the cavity and the laser field, respectively. The energies of the trion states |T+〉, |T−〉 are
ωT + = ωT +ωh/2 and ωT −

= ωT −ωh/2, where ωT is the energy of the trion (without magnetic
field), ωh is the energy of the hole Zeeman splitting and ωe = ge µb By denotes the Zeeman
splitting of the electronic states. The first term of the Hamiltonian given by equation (1)
describes the coupling to the cavity field and the second term the coupling to a classical
laser field in the rotating wave approximation. We assume both cavity decay and spontaneous
emission rate of the QD to be much smaller than �c and omit both processes in equation (1).
Besides the coupling to optical fields, the electron spin in a QD also has a strong hyperfine
interaction with the lattice nuclear spins, which is for s-type electrons dominated by the Fermi
contact term

Hhf =
A

2
(A+S− + S+ A−)+ ASz Az, (2)

where S±,z are the electron spin operators and A±,z
=
∑

j α j I ±,z
j are the collective nuclear spin

operators (in a typical GaAs QD, the number of Ga and As nuclei lies between N ∼ 104–106).
The individual coupling constants α j are proportional to the electron wavefunction at site j
(and the magnetic dipole moment of the j th nucleus) [26] and are normalized to

∑
j α j = 1.

The requirement for using nuclear spins as a quantum memory is to initialize them in a well-
defined, highly polarized state. By this we mean that 〈Az

〉 is close to its minimum value 〈Az
〉min
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(≈ −1/2 for spin-1/2 nuclei) and define the polarization as P = 〈Az
〉/〈Az

〉min. Due to their small
magnetic moments, nuclear spins are almost fully mixed even at dilution-fridge temperatures
and fields of several Teslas. Over the past years, significant progress in dynamical polarization
experiments [27]–[30] has been reported with nuclear polarization up to 60%; recently, nuclear
polarization >80% has been achieved [31].

A convenient and intuitive description of the highly polarized nuclei with homogeneous
coupling to the electron is provided by the Holstein Primakoff transformation [32], by which
collective nuclear spin operators A±,z can be mapped to the bosonic operators b, b†, associating
A−

→ (1/
√

N )
√

1 − (b†b/N ) b and Az
→ (1/N )(b†b − (N/2)). Assuming high polarization,

the electron spin couples to a bosonic ‘spin wave’ described by A−
= (1/

√
N )b and Az

=

(1/N )(b†b − N/2) by a Jaynes–Cummings (JC)-like interaction

Hhf =
gn

2
(b†S− + S+b)+

gn
√

N
Sz

(
b†b −

N

2

)
, (3)

with gn = A/
√

N . The initial state of the nuclear spins is represented by a collection of
bosonic modes, with b in the vacuum state. One can generalize this description to the case of

inhomogeneous coupling to the electron (gn = A
√∑

i α
2
i ) and obtain an identical description

in the 0th order in 〈b†b/N 〉 = (1 − P)/2 [33]. Corrections to this description arising from
inhomogeneous coupling and not fully polarized nuclear spins will be discussed briefly in
section 7.2 and a detailed discussion can be found in [34]. It should be noted that the scheme we
present does not require the bosonic description and could also be discussed directly in terms
of the collective spin operators. The Fock basis would be replaced by (A+)n| ↓ . . . ↓〉 and errors
due to the inhomogeneity would have to be treated along the lines of [20, 35]. The bosonic
picture, however, allows a much more transparent treatment of the corrections to the ideal case,
emphasizes the relation to quantum optical schemes and gives access to the Gaussian toolbox
of entanglement criteria and transformations.

3. Effective coupling between nuclei and cavity

Our aim is to obtain from H = Hopt + Hhf a direct coupling between nuclear spins and light.
The Hamiltonian H describes a complicated coupled dynamics of cavity, nuclei and QD.
Instead of making use of the full Hamiltonian (and deriving the desired mapping, e.g. in the
framework of optimal control theory), we aim for a simpler, more transparent approach. Closely
following [35], we adiabatically eliminate [36] the trion and the electronic spin degree of
freedom, which leads to a Hamiltonian Hel that describes a direct coupling between nuclear
spins and light. As explained later, this can be achieved if the couplings (the Rabi frequency of
the laser/cavity, the hyperfine coupling, respectively) are much weaker than the detunings to the
corresponding transition:

1′

T±
��l, �c

√
n, (4a)√

1′

T±
ω̃e ��l, �c

√
n, (4b)

ω̃e � gn

√
m. (4c)

Here, ω̃e = ωe − (A/2), 1′

T±
= ωT −ωl ±ωh/2 + ω̃e/2 =1′

±ωh/2 + ω̃e/2 with 1′
= ωT −ωl,

n is the number of cavity photons and m the number of nuclear excitations. Note that typically
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ω̃e <1
′

T±
such that condition (4a) becomes redundant. In addition to (4a)–(4c), we choose the

adjustable parameters such that all first-order and second-order processes described by H are
off-resonant, but the (third-order) process in which a photon is scattered from the laser into
the cavity while a nuclear spin is flipped down (and its converse) is resonant. This leads to the
desired effective interaction.

The idea of adiabatic elimination is to perturbatively approximate a given Hamiltonian by
removing a subspace from the description that is populated only with a very low probability due
to chosen initial conditions and detunings or fast decay processes. If initially unpopulated states
(in our case the trion state |X〉 and the electronic spin-up state | ↑〉) are only weakly coupled
to the initially occupied states, they remain essentially unpopulated during the time evolution
of the system and can be eliminated from the description. The higher order transitions via the
eliminated levels appear as additional energy shifts and couplings in the effective Hamiltonian
on the lower-dimensional subspace.

The starting point is the Hamiltonian H = Hopt + Hhf given by equations (1) and (2).
In order to obtain a time-independent Hamiltonian, we proceed to a frame rotating with
U †

= exp[−iωlt (a†a + |T+〉〈T+| + |T−〉〈T−|)] and obtain

H ′
=
�c

2
(a†

|−〉〈T+| + a†
|+〉〈T−| + h.c.)+

�l

2
(|+〉〈T+| + |−〉〈T−|)+ h.c.)

+δ a†a +1T+|T+〉〈T+| +1T−
|T−〉〈T−| +ωeSz + Hhf, (5)

where 1T ±
= ωT ±

−ωl and δ = ωc −ωl.
Choosing the cavity and laser frequencies,ωc andωl, far detuned from the exciton transition

and the splitting of the electronic states ω̃e much larger than the hyperfine coupling gn, such
that conditions (4a)–(4c) are fulfilled, we can adiabatically eliminate the states |T±〉 and |+〉. A
detailed derivation of the adiabatic elimination can be found in [35]. It yields a Hamiltonian that
describes an effective coupling between light and nuclear spins

Hel =
�c�l A

81′

T+
ω̃e
(a A+ + h.c.)+

�c�l A

81′

T−
ω̃e
(a A− + h.c.)+ω1a†a −

A

2
δAz

−
A2

4ω̃e
A+ A− + Tnl, (6)

where the energy of the photons ω1 = δ− (�2
c/41

′

T +
)+ (�2

l /41
′2
T −
)δ and the energy of the

nuclear spin excitations ∼ − (A/2N )− (A2/4N ω̃e). Tnl denotes the nonlinear terms

Tnl =
A3

8ω̃2
e

A+δAz A− +
A2

4ω̃2
e

δa†a A+ A− +
�2

cδ

41′2
T+

a†a†aa, (7)

which are small (‖Tnl‖ ��c�l A/81′ω̃e) in the situation we consider (δ ��c, gn/ω̃z ∼

�l/1
′

T+,T−
� 1) and neglected in the following. We also neglect the nuclear Zeeman term, which

is of the order of 10−3 smaller than the Zeeman energy of the electron. In the bosonic description
of the nuclear spins that we introduced in equation (3), the Hamiltonian given by equation (6)
reads

Heff = g1(ab† + h.c.)+ g2(ab + h.c.)+ω1a†a +ω2b†b, (8)

with coupling strengths g1 and g2 given by

g1 =
�c�lgn

81′

T+
ω̃e
, g2 =

�c�lgn

81′

T−
ω̃e
. (9)

The energy of the nuclear spin excitations can now be written as ω2 = −(A/2N )− (g2
n/4ω̃e).

The first term in the Hamiltonian is a beamsplitter-type interaction ∼ (ab† + h.c.), whereas the
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second term is a two-mode squeezing (TMS)-type interaction ∼ (ab + h.c.). Both interactions
can be made dominant by choosing the resonance condition to be either ω1 = ω2 or ω1 = −ω2.
This will be discussed in detail in the following and illustrated numerically.

First, we validate the adiabatic elimination by a numerical simulation that compares the
evolution of states920 (where the first subscript indicates the number of photons and the second
the number of nuclear excitations) (under the condition ω1 = ω2, see figure 2) and 900 (under
the condition ω1 = −ω2, see figure 3) under the full Hamiltonian given by equation (5) to the
evolution under the eliminated Hamiltonian given by equation (8). The solid lines show the
evolution under the full Hamiltonian H ′ and the dashed lines the evolution under the eliminated
Hamiltonian Heff, and we find that H ′ is well approximated by Heff and that the nonlinear terms
Tnl can indeed be neglected.

For the simulation, we choose the parameters as follows: we assume a hole g-factor gh =

−0.31 and an electron g-factor ge = 0.48 [37]; the number of nuclei N = 104, the hyperfine
coupling constant A = 100µeV, the laser and cavity Rabi frequency �c =�l = 15µeV, the
detuning of the trion 1′

= 1000µeV, the effective Zeeman splitting of the electronic states
ω̃e = 13.9µ eV (the magnetic field in the x-direction is 4 T) and the Zeeman splitting of the
hole ωh = −71.8µeV. With these parameters, the conditions given by equations (4a)–(4c) are
fulfilled and values g1 = 2.1 × 10−3 µeV and g2 = 1.9 × 10−3 µeV are obtained. We assume full
nuclear (spin-down) polarization and use the bosonic description.

As already mentioned, two distinct resonance conditions are chosen in figures 2 and 3,
leading to different dynamics of the system.

For resonant exchange of excitations between the two systems, we choose ω1 = ω2, where
the tuning can be done by changing δ = ωc −ωl. Then Heff describes a beamsplitter-like
coupling of the modes a and b and the effective interaction is described by

Hbs = g1(ab† + h.c.)+ω1a†a +ω2b†b. (10)

Processes in which absorption (or emission) of a cavity photon is accompanied by a nuclear
spin excitation are resonant, whereas the squeezing interaction given by g2(a†b† + ab) is off-
resonant. This can be seen going to a frame rotating with ω1: g2 is rotating with 2ω1 and as
2ω1 � g2, the squeezing type interaction is off-resonant.

Tuning the energies such that ω1 = −ω2, the creation of a nuclear spin excitation is
accompanied by scattering of a laser photon into the cavity, i.e. the effective coupling becomes
g2(a†b† + ab) and the beamsplitter-type interaction g1(ab† + a†b) is off-resonant. The driving
laser now facilitates the joint creation (or annihilation) of a spin excitation and a cavity photon,
realizing a TMS Hamiltonian

Hsq = g2(a
†b† + ab)+ω1a†a +ω2b†b. (11)

The plots in figures 2 and 3 illustrate that the dynamics of the system can indeed be
approximated by equations (10) and (11). To simulate the beamsplitter-type coupling given
by equation (10), we choose ω1 = ω2 and let the two-photon Fock state ψ20 evolve under
the Hamiltonian given by equation (8) (see dashed lines in figure 3). Almost perfect Rabi
oscillations can be seen between the two-photon Fock state ψ20 and the state with two nuclear
spin excitations ψ02, showing that g2(a†b† + h.c.) in equation (8) can indeed be neglected. To
simulate the squeezing-type interaction, we choose ω1 = −ω2 and study the evolution of the
state ψ00 under the Hamiltonian given by equation (8) (see dashed blue lines in figure 3).
It can be seen that the state ψ00 evolves into the states ψ11, ψ22 and ψ33 with coupling
strengths g2

√
n, depending on the number of excitations n. We have thus shown that in this
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Figure 2. Evolution of the two-photon Fock state ψ20 under the full Hamiltonian
H ′ (solid lines) and the eliminated Hamiltonian Heff (dashed lines) tuning
the energies such that ω1 = ω2 (beamsplitter-type interaction). Populations in the
states ψ00, ψ10, ψ01, ψ12, ψ21 and ψ33 are plotted here but not mentioned in
the legend as they are small.

Figure 3. Evolution of the state ψ00 under the full Hamiltonian H ′ (solid lines)
and the eliminated Hamiltonian Heff (dashed blue lines) tuning the energies such
that ω1 = −ω2 (squeezing interaction). The dotted black lines show the evolution
under exact TMS (up to n = 3).

case, the beamsplitter-type interaction can indeed be neglected. For simplicity, we restricted
the number of photons and nuclear excitations to three in our simulation, such that states
ψ44 and higher excitation states do not occur and the evolution of the states ψ22 and ψ33

does only correspond to its evolution in a space with higher excitation numbers at very short
times. This can be seen by comparing the evolution to the exact TMS that generates the state√

1 − tanh2 (g2t)
∑

∞

n=0 tanhn (g2t)|nn〉 for which the populations up to n = 3 are plotted in
figure 3 (dotted black lines).
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4. Landau–Zener transitions

To map the state of the cavity to the nuclear spins, we take advantage of a formal analogy
between the linear two-mode interaction given by equation (10) in the Heisenberg picture
and the Landau–Zener problem [22, 23]. In the conventional Landau–Zener problem, initially
uncoupled Hamiltonian eigenstates of a two-level system interact at an avoided crossing. This
interaction is achieved by slowly changing an external parameter such that the level separation
is a linear function of time. If the system starts in the ground state, the probability of finding it
in the excited state is given by the Landau–Zener formula [22, 23].

Here, we invoke this idea in the Heisenberg picture to achieve a mapping of the photon
annihilation operator a to the collective nuclear spin operator in the bosonic approximation b,
i.e. a → b (the bosonic operators a and b are initially uncoupled). In the following, we show
that our system can be transformed to a system that corresponds to the standard Landau–Zener
problem.

In the Heisenberg picture, the linear two-mode interaction between the cavity mode and
the nuclear spins in the QD, given by equation (10), is described by a set of coupled differential
equations for the mode operators:

d

dt

(
a(t)
b(t)

)
= −i

(
ω1 g1

g1 ω2

)(
a(t)
b(t)

)
. (12)

The available control parameters used to effect the change of ω1 −ω2 are the laser Rabi
frequency �l and the laser frequency ωl. We consider a linear time dependence of

ω1 −ω2 = βt (13)

for simplicity while the coupling g1 is constant.
Let a

((u
v

))
denote the operator ua−∞ + vb−∞ (a normalized linear combination of the

purely photonic a−∞ and purely nuclear b−∞) and let at

((u
v

))
≡ a

((u1

v1

))
denote its image under

time evolution; then the two operator equations of (12) can be combined into

d

dt
at

((
u

v

))
= −iat

[(
ω1 g1

g1 ω2

)(
u

v

)]
,

which can be written completely in terms of the mode function:

d

dt

(
ut

vt

)
= −i

(
ω1 g1

g1 ω2

)(
ut

vt

)
. (14)

This is the same kind of coupled differential equation as that encountered in the Landau–Zener
problem [22, 23]. Following the calculation done in [22, 23], we find that

|v(t = ∞)|2 = K 2U1(∞)U ∗

1 (∞)= 1 − ε2, (15)

where ε ≡ e−πγ z and

lim
t→∞

U1(t)= −K

√
2π

0(iγz + 1)
e−(1/4)πγz eiβt2

(
√
βt)iγz , (16)

with γz = g2
1/β and the constant K =

√
γz exp (−γzπ/4) (for a detailed discussion, see

appendix B). We thus find that the cavity mode operator a is mapped to

a+∞ =

√
1 − ε2 b−∞ + ε a−∞, (17)
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a dominantly nuclear operator for small enough β so that ε is small, which effectively means
that, for large enough times, ω1 −ω2 ≡ βt .

4.1. Quality of the mapping for Fock and coherent states

In the following sections, we will consider the quality of the mapping within the model given by
equations (1) and (3); other imperfections will be discussed in section 7. To evaluate the quality
of the mapping, we return to the Schrödinger picture. The mapping of an n-photon Fock state of
the cavity to the nuclei leads to a mixture of Fock states with photon numbers 6 n. The fidelity
with which an n-photon Fock state is mapped is given by

FF(n)= 〈n|trc

([
a†

∞
√

n!

]n

|0〉〈0|

[
a∞
√

n!

]n)
|n〉 = (1 − ε2)n, (18)

where the cavity mode is traced out. In a next step, we want to know which fidelities can be
achieved for superpositions of number states, e.g. for coherent states.

Coherent states are representatives of the family of Gaussian states, which play an
important role in quantum optics and quantum information processing. A Gaussian state is fully
characterized by its first and second moments (γ, d), where γ is the state’s covariance matrix
and d its displacement (see appendix A). Since the dynamics generated by equation (18) is
Gaussian, the mapping can be fully characterized in terms of covariance matrices. The mapping
of a Gaussian state of light onto the nuclear spins corresponds to

(γc, dc)c
map
−→ ((1 − ε2)γc + ε2γns,

√
1 − ε2dc + εdns)ns′, (19)

where (γc, dc)c and (γns, dns)ns describe the states of cavity and nuclear spins, respectively, prior
to the mapping, and (γns′, dns′)ns′ describes the state of the nuclei after the mapping. For a
coherent state mapped to the nuclei, this corresponds to the map

(1, α)c
map
−→ (1,

√
1 − ε2α)ns′ . (20)

The fidelity of the mapping is given by [38]

Fc = |〈α |

√
1 − ε2α 〉|

2
= exp

[
−|

(
1 −

√
1 − ε2

)
α|

2
]
. (21)

The minimal goal of a quantum interface is to achieve a better fidelity than can be achieved by
classical means. As proved in [39, 40], the classical benchmark fidelity of coherent states dis-
tributed in phase space according to p(α)=

λ

π
exp (−λ|α|

2) is given by Fmax = (1 + λ)/(2 + λ).
Averaging Fc over all possible coherent input states with a Gaussian distribution, the fidelity
reads

F̄c =

∫
d2α p(α)Fc =

λ

1 − ε2/2 −
√

1 − ε2 + λ
. (22)

For a flat distribution with λ→ 0, large photon numbers that lead to high losses are dominant
and therefore F̄c → 0.

A way to improve the average fidelity is to amplify the coherent state at either the
write-in or the read-out stage, thus compensating for losses due to the imperfect mapping.
Optimal phase-insensitive amplification would map (γ, d)−→

(
κ2γ + (κ2

− 1)1, κd
)

[41].

Choosing κ such that κ
!
= 1/

√
1 − ε2, amplification and subsequent mapping can be written as

(1, α)c
amp.
−→

(
κ 1,

1
√

1 − ε2
α

)
c

map
−→

(
κ(1 − ε2)+ ε2)1, α

)
ns′
. (23)
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Figure 4. The (solid) red line indicates the fidelity of the mapping of an amplified
coherent state of light to the nuclear spins versus the losses of the mapping ε. The
fidelity is, even for large losses, higher than the fidelity Fcl that can be achieved
by classical means, indicated by the (dotted) black line.

The fidelity of the mapping of the amplified state ρm , calculated using the relations for
transition amplitudes of Gaussian states in [42], is given by

Fco = 〈α|ρm(α)|α〉 = det
(γc + γns′

2

)−1/2

e−(dns′−dc)
T(γc+γns′ )(dns′−dc)

= det

(
κ(2 − ε2)+ ε2

2
1

)−1/2

=
1

1 + ε2
. (24)

A plot of Fco is shown in figure 4. The fidelity of the mapping of the amplified coherent
state is always higher than the classical benchmark fidelity Fcl =

1
2 for a flat distribution, i.e. the

quantum interface shows high performance even for large losses ε.

4.2. Storage of an entangled state

So far, we have shown that it is possible to transfer Fock and coherent states of light to the
nuclear spin memory. However, the ultimate test for a quantum memory is whether it is capable
of faithfully storing part of an entangled quantum system. As an example of entangled light
states, we consider a two-mode squeezed state where one of its light modes, M1, is coupled
to the cavity and mapped onto the nuclear spins of the QD (see figure 5(a)). To see how well
the entanglement is preserved, we compute the entanglement between the nuclear spins and
the light mode M2 using Gaussian entanglement of formation (gEoF) [43]. We found it to
be a monotonically decreasing function of the mapping error ε ∈ [0,1]. As can be seen from
figure 5(b), the nuclear spins of the QD are entangled with the light mode M2. This allows
remote access to the memory via teleportation, required for e.g. quantum repeaters.

4.3. Mapping time

A lower bound for the timescale of the mapping can be easily found considering the Hamiltonian
Hbs, where the parameters are chosen such thatω1 = ω2 and set to zero in a rotating frame: acting
for a time t = π/g1 (which is of the order of 6µs) it maps a → b and b → a, thus realizing a
swap gate between cavity and nuclear spins3. The adiabatic procedure takes longer: to estimate
a timescale, we consider the three conditions that need to be fulfilled: (i) ε < ε0, i.e. the mapping

3 This setting, however, would, in contrast to the adiabatic methods discussed in this and the following sections,
be sensitive to exact time control because letting Hbs act for too long would reverse the mapping.
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(a) (b)

Figure 5. (a) One part (M1) of a two-mode squeezed state, arising from a
spontaneous parametric downconversion source, is coupled to the cavity and
mapped to the nuclear spins of the QD. Thereby, the other part (M2) gets
entangled with the nuclear spins. (b) Plot of the Gaussian entanglement of
formation (gEoF) for squeezing parameter r = 1 versus mapping error ε. The
entanglement of the nuclear spins with part of a two-mode squeezed state (M2)
is a decreasing function of increasing mapping error ε.

error has to be smaller than some (small) value ε0, which can be fixed depending on the fidelity
that one wants to achieve (the fidelity depends only on ε). This condition can be written as
β > π/ln(1/ε0)g2

1 . (ii) In the beginning and at the end of the process, |ω1 −ω2| � g1, i.e. the
energy splitting between the levels has to be much larger than the coupling. As |ω1 −ω2| = βt ,
this condition leads to β � g1/t0. (iii) 〈Em(t)|(d/dt)Hbs|En(t)〉 � |Em − En|

2 for t ∈ [−t0, t0]
to make sure that the process is adiabatic. At t = 0, this condition reads β � 4g2

1 .
Depending on how ε is chosen, either condition (i) or (iii) is stronger. To map coherent

states with average fidelity F > 0.9, we find ε < 1/3 and with conditions (ii) and (iii) (here,
condition (ii) is stronger than (i)) we estimate the time t0 ≈ 20π/g1 ≈ 120µs.

5. STIRAP

Mapping the state of the cavity to the nuclear spins is also possible considering a system where
only the trion states are adiabatically eliminated and elimination of the electronic states is not
required to achieve the desired interaction. We show that, with this system, the process of
storing a state of light to the nuclear spins can be achieved by the well-known technique of
STIRAP [24], which has been studied for multilevel systems [44] and has been demonstrated
in several experiments [24]. This scheme allows us to coherently transfer population between
two suitable quantum states via a so-called counterintuitive sequence of coherent light pulses
that drive transitions of a lambda or a multilevel system. It has some advantages over the
Landau–Zener method as the choice of control parameters is easier and less constraints have
to be fulfilled as we do not eliminate the electronic states, which allows for faster mapping
times compared to the Landau–Zener method.

Note that the main source of error, the decay of the cavity, is not considered here. Up to
now, the experimentally achieved cavity decay rate γ of a photonic crystal microcavity that
couples to a QD is of the order of γ ≈ 1010 1

s [45]. However, we do propose this scheme here,
as cavity decay rates might improve and the scheme might also be used in a different setup.

For the system proposed in section 2, the STIRAP method is not as straightforward as for
the setup we investigated in [35, section V]. The reason for this is that, after the elimination
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of the trion states in the system used so far, there are two different couplings: ga−(S+a† + h.c.)
and ga+(S−a† + h.c.), with ga± =�c�l/41T ±

, where the first one has to be made off-resonant:
ga− � ga+, which means that ωh sets an upper limit to the coupling ga+ (as the condition for
the adiabatic elimination is 1T ±

��c, �l). Therefore, we study the STIRAP scheme for the
system investigated in [35], where only the coupling ∝ (S−a† + h.c.) is present.

In [35], we study a singly charged QD where the electronic states are Zeeman split by an
external magnetic field in the growth/z-direction (Faraday geometry). The electronic state | ↑〉

is coupled to the trion state | ⇑〉 (with angular momentum +3/2) by σ + circularly polarized
light and the electronic state | ↓〉 is coupled to the trion state | ⇓〉 (with angular momentum
−3/2) with σ−-polarized light. These transitions can be stimulated by a σ +-polarized cavity
field and a σ−-polarized classical laser field, respectively. The trion states are mixed with a
resonant microwave field, whereas the electronic eigenstates are unchanged as they are far
detuned from the microwave frequency and are now both coupled to the new trion eigenstates
|T⇑〉 = 1/

√
2(| ⇑〉 − | ⇓〉) and |T⇓〉 = 1/

√
2(| ⇑〉 + | ⇓〉), and form a double 3 system (see [35]

for a figure).
In a frame rotating with the laser frequency, the Hamiltonian reads

H =
�c
√

2
(a†

| ↓〉〈T⇑| − a†
| ↓〉〈T⇓| + h.c.)+

�l
√

2
(| ↑〉〈T⇑| + | ↑〉〈T⇓| + h.c.)

+δ′a†a +1+|T⇑〉〈T⇑| +1−|T⇓〉〈T⇓| + ω̃eSz + Hhf, (25)

where δ′
= ωc −ωl −ωmw and 1± = ω⇓ −ωl ±�mw. Now, we derive the Hamiltonian where

only the trion has been eliminated. If

1± ��l, �c
√

m (26)

holds, the trion can be adiabatically eliminated. This leads to the Hamiltonian

Hel = ga

(
S+a + h.c.

)
+ gn

(
S+b + h.c.

)
+

A

2N
Szb†b + δ′a†a + ω̃eSz

+

(
�2

c

21−

+
�2

c

21+

)
a†a| ↓〉〈↓ | +

(
�2

l

21−

+
�2

l

21+

)
| ↑〉〈↑ |, (27)

where the coupling

ga =
�c�l

2

(
1

1+
−

1

1−

)
. (28)

We thus arrive, in addition to Hhf, at an effective JC-like coupling of the two electronic spin
states to the cavity mode governed by

ga(S
+a + h.c.), (29)

i.e. the absorption of a cavity photon proceeds along with an upward flip of the electron spin
(and the emission of a photon into the laser mode) and vice versa.

Next we present the STIRAP scheme: the couplings of the electronic states | ↑〉 and
| ↓〉 are given by the optical fields (ga) and the hyperfine coupling (gn). The Hamiltonian
describing the system is given by equation (27). It is block diagonal H ′

=
⊕

m Hm , where m
denotes the initial photon number. The (2m + 1)-dimensional Hamiltonian Hm , describing the
evolution of the ‘m-excitation subspace’ can be written in the Fock basis {|m,↓, 0〉, |m − 1,
↑, 0〉, |m − 1,↓, 1〉, . . .}, where the first number m − k represents the Fock state of the cavity,
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(a) (b)

Figure 6. (a) Schematic view of the time dependence of the coupling ga and
the constant hyperfine coupling gn. (b) Schematic view of the level scheme of
the system with initially two photons. The hyperfine coupling gn is ‘always on’,
whereas ga(t) is an increasing function for which ga(T )� gn.

↓ / ↑ denotes the electron spin down/up state and k is the excitation number of the nuclear spins.
In this basis, Hm reads

Hm =



1G0 ga
√

m 0 0 0 . . .

ga
√

m 1E0 gn

√
1 0 0 . . .

0 gn

√
1 1G1 ga

√
m − 1 0 . . .

0 0 ga

√
m − 1 1E1 gn

√
2 . . .

0 0 0 gn

√
2 1G2 . . .

...
...

...
...

...
. . .


, (30)

with 1Gk =
(
δ′ + (�2

c/21−)+ (�2
c/21+)

)
(m − k)− (A/2N )k − (ω̃e/2) and 1El =

(�2
l /21−)+ (�2

l /21+)+ δ′(m − l − 1)+ (A/2N )l + (ω̃e/2) for k ∈ {0, 1, 2 . . .m} and
l ∈ {0, 1, 2 . . .m − 1}. In the following, we will denote the states with electron spin down as
‘ground states’, |Gk〉 = |m − k,↓, k〉 and the ‘excited states’ by |El〉 = |m − l − 1,↑, l〉. The
optical fields couple states Gk and El with k = l, whereas states with k = l + 1 are coupled by
the hyperfine coupling (see figure 6(b)).

We will show in the following that by slowly increasing the laser Rabi frequency and
thus changing ga(t) such that ga(T )� gn, at the final time T (see figure 6(a)), an initial state
|ψ,↓, 0〉 with no nuclear spin excitations in the QD, and a state |ψ〉 in the cavity, evolves under
the adiabatic change of H ′ to a state where the cavity is empty and its state has been mapped to
the nuclear spins:

|ψ ↓ 0〉t=0 → |0 ↓ ψ〉t→T (31)

for T → ∞. A prerequisite for the mapping is that the ground states of the Hamiltonian are
all degenerate within each ‘m-excitation’-subspace so that we can keep track of the phases
of the individual eigenstates. This can be done by choosing the parameters such that 1Gk

does not depend on k, which is fulfilled for δ′ + (�2
c/21−)+ (�2

c/21+)= −A/2N so that
1Gk = −(A/2N )m − (ω̃e/2).4 Hence, the phases φm =1Gm t of the individual eigenstates that
the system acquires during the time evolution (for perfect adiabaticity) are known and can be
corrected, e.g., by applying a magnetic field −|B|ẑ for a time t = (A/(2N ))/gKµK |B| after the

4 It can be proven by induction that text Hm has an eigenvalue EGm =1Gm ∀ m, i.e. that det (Hm − EGm1)= 0
for all m ∈ {0, 1 . . .∞} (where m is the initial photon number).
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Figure 7. Plot of the fidelity of a variety of states versus time during the adiabatic
evolution. |1〉, |2〉 and |3〉 denote the one-, five- and ten-photon Fock states,
respectively. |α〉 denotes the coherent state with average photon number 5. The
total evolution time is chosen to be T = 5 × 10−4 s.

state transfer to the nuclei. Here gK andµK denote the nuclear g-factor and the nuclear magnetic
moment, respectively.

5.1. Numerical integration of the Schrödinger equation

To study the quality of the mapping of a state of the cavity to the nuclear spins, we numerically
integrate the Schrödinger equation given by

i
∂

∂t
|ψ(t)〉 = H ′(t)|ψ(t)〉, (32)

where H ′ is the Hamiltonian given by equation (27). The simulation computes |ψ(t + Dt)〉 =

e−iH ′(t)Dt
|ψ(t)〉 in T/Dt steps from t = 0 to t = T . We assume that the change of ga(t) is

quadratic in time, ensuring an initially slow and a finally fast increase of ga(t) and ga(T )�

gn(T ), ga = 10 gn(t2/T 2). Parameters are chosen as follows: we assume a hole g-factor gh = 2.2
and an electron g-factor ge = 0.48; the number of nuclei N = 104, the hyperfine coupling
constant A = 10µeV, the laser and cavity Rabi frequency �c =�l = 13µeV, the detuning of
the trion ω⇓ −ωl = 103µeV, the effective Zeeman splitting ω̃e = 0µeV and the microwave
Rabi frequency �mw = 50µeV. The fidelity of the mapping we are interested in is given by the
overlap of the numerically evolved state ρ(t)= |ψsi〉〈ψsi| and the ideal output |ψid〉

F = 〈ψid|ρ(t)|ψid〉. (33)

To achieve a fidelity close to one, the total evolution time is chosen to be T = 5 × 10−4 s.5

Figure 7 shows the fidelity plotted versus time for different kinds of states that will be discussed
in the following, illustrating the different aspects of mapping.

5 Note that this time is not directly comparable to the time for the Landau–Zener process in section 4 as here, a
different setup is considered.
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The one-photon Fock state |1〉 is mapped in T = 5 × 10−4 s with a fidelity of F ≈ 0.99 to
the nuclear spins. To see that not only population but also relative phases are properly mapped,
we have simulated an approximately coherent state |α〉 = exp

(
−|α|

2/2
)∑20

k=0(α
k/

√
k!)|k〉 with

average photon number |α|
2
= 5 and find a mapping fidelity of F ≈ 0.96. Here the known

phases φm have been compensated.

5.2. Error processes

The main error processes that lead to imperfections of the fidelity are the ‘always-on’ character
of the hyperfine coupling, the non-adiabaticity due to finite times, non-perfect polarization of
the nuclei and the decay of the cavity. These processes will be studied in the following.

The fact that the hyperfine coupling is ‘always-on’ leads to an ‘error’ that is intrinsic to
our system. In contrast to conventional STIRAP that uses overlapping light pulses, we propose
to adiabatically increase the coupling ga(t) so that ga(T )� gn and therefore the mapping is
imperfect as gn is constant and cannot be ‘switched off’. Treating the coupling gn as a small
perturbation in first-order perturbation theory at t = T , the fidelity is found to be

F =
|〈 ξ 0

| ξ 〉|
2

〈 ξ | ξ 〉
=

1

1 + m g2
n/ga(T )

2 ≈ 1 − m

(
gn

ga(T )

)2

, (34)

where |ξ 0
〉 is the ideal output state for which gn = 0 (at t = T ) and |ξ〉 = |ξ 0

〉 + |ξ 1
〉 + · · · is the

unnormalized eigenstate of Hm .
Another error arises from the non-adiabaticity due to finite times of realistic processes. For

a quantitative estimate of the time T that is needed for an adiabatic passage to occur, we use the
well-known adiabatic theorem [46] and numerically compute the minimum time T fulfilling

|〈Em
l (t)|(d/dt)(H ′

−
⊕

m EGm 1)|φm
0 (t)〉|

|El|
2

6 δa, ∀ t ∈ [ 0, T ]. (35)

The left-hand side of (35) corresponds to the probability to find the system in an excited
state |Em

l 〉 different from |φm
0 〉 (the (purely nuclear) eigenstates to the eigenvalue E = 0 of

H ′
−
⊕

m EGm 1) and the fidelity decreases with δa. For 1/100< δa < 1/10, the minimum time
fulfilling equation (35) for the mapping of one photon is in the range of 1µs> T > 0.11µs.

To obtain an accurate description of the errors arising from non-adiabaticity, we use a
perturbative approach to treat non-adiabatic corrections and compute the phases arising from
non-adiabaticity [47]. As the Hamiltonian H ′

=
⊕

m Hm is block-diagonal, states with different
initial photon numbers m do not couple so that we can treat every ‘m-photon’ subspace
separately. Moreover, we can use non-degenerate perturbation theory as the ground states |Gk〉

that are degenerate within each subspace are not coupled: 〈Gk′|(d/dt)H |Gk〉. Supposing to be
at t = 0 in one of the ground states |φGk (0)〉 of H ′

m = Hm − EGm 1 slowly varying in time, the
first-order correction of the energy eigenvalue E0 = 0 of H is given by

E1
m =

∑
l 6=k

| 〈φEl |(d/dt)H ′

m|φGk 〉 |
2

E3
l

. (36)

The phases φ1
m =

∫ T
0 (E

1
m/h̄) dt that the system acquires can be found by numerical integration

of E1
m . For T = 5 × 10−4 s and initial photon number m = 1, φ1

m = −1.4 × 10−5, and for m = 2,
φ1

m = 0.004, respectively. Thus, as expected, the errors arising from non-adiabaticity are small
for sufficiently long times T .
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As full polarization of the nuclear spins is hard to achieve, we are also interested in the
effect of non-perfect polarization on the mapping fidelity. When the number of polarized spins
is reduced from N → P N , where P = 〈Az

〉/〈Az
〉min (as defined in section 2), P ∈ [−1, 1] gives

the polarization of the spin ensemble [21]. The nuclear spin part of H ′ now reads

Hpol = P
A

2
| ↓〉〈↓ | +

gn

2

√
P(S−b† + h.c.). (37)

The structure of the Hamiltonian does not change, so the only change is a small variation of
the parameters. Thus, the effect on the mapping fidelity is negligibly small. In practice, non-
maximal polarization proceeds along with a nonzero variance of P (and the associated Over-
hauser field), which can have an influence on the mapping procedure. The main consequence
is a small dephasing term, which arises from polarization-dependent corrections to Hel (equa-
tion (27)) in particular, from additional polarization-dependent Stark shifts. Hence, the mapping
of Fock states is not affected, but for general superpositions the interface is degraded. The
dephasing time can be estimated as t ≈ (1/ga)(1+/−/σoh), where σoh is the standard deviation
of the Overhauser field. Since the mapping time T is ∼ 1/ga, increasing 1+/− and decreasing
σoh can ensure that T/t � 1, making the dephasing over the whole mapping process small.

A further (smaller) effect of P 6≈ 1 is that the assumption that the collective nuclear
spin operators A+, A− can be well approximated by the bosonic operators b†, b for a small
number of flipped spins is no longer that straightforward, as the exact expression for A+

→
√

N
√

1 − (b†b/N )b† has to be taken into account. Further corrections to the JC Hamiltonian in
particular due to inhomogeneous coupling to the nuclear spins are discussed briefly in section 7
and in [34].

6. Quantum interface in the bad cavity limit

In previous sections, we have shown that a quantum interface can be achieved via direct mapping
of the cavity field to the nuclear spins of the QD. But we have also seen that the cavity lifetimes
required for high-fidelity storage are much larger than what is today’s state of the art, i.e. as
g1,2 � 1/τcavity, we are, compared to the effective coupling, in the ‘bad cavity limit’. A second
problem with this approach is that the quantum information we want to map to the nuclei has
to be coupled to a high-Q cavity. This is notoriously difficult although theoretical proposals
exist [3] that should avoid reflection completely. Both problems can be circumvented employing
ideas similar to [48, 49] by using the TMS Hamiltonian Hsq (see (11)) (note that we now return to
the system proposed in section 2 for the rest of the paper). As discussed in [35] and elaborated
in more detail below, it is possible to create entanglement between nuclei and the traveling-
wave output field of the cavity. Then, quantum teleportation can be used to write the state of
another traveling-wave light field onto the nuclei (figure 8)6. This approach gives an active role
to cavity decay in the interface and can tolerate a bad effective cavity as long as strong coupling
is achieved in equation (5). Moreover, it does not require coupling the quantum information to
the cavity. Similarly, Hbs (equation (10)) enables read-out, by writing the state of the nuclei to
the output field of the cavity. The entanglement between nuclear spins and output field can also
be used to entangle nuclear spins in two distant cavities by interfering the output light of the
cavities at a beamsplitter (figure 9).

6 This maps the state up to a random (but known) displacement. It can be undone using Hbs, where the cavity is
pumped with strong coherent light for a short time [50].
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Figure 8. Quantum teleportation can be used to write the state of a traveling-
wave light field onto the nuclei.

Figure 9. Nuclear spins of QDs in two distant cavities can be entangled by
interfering the traveling wave output fields of the two cavities at a beamsplitter
and measuring.

6.1. Entangling nuclei with the output field

The Hamiltonian of the nuclear spin–cavity system tuned to the squeezing interaction (11) and
coupled to the environment is given by

H = g2(a
†b† + ab)+ ia

∫ √
γ

2π
c†
ω dω + h.c.+

∫
ωc†

ωcω dω, (38)

where cω are the annihilation operators of the bath and γ the cavity decay constant. We have
specialized (11) to the case ω1 = −ω2 and transformed it to an interaction picture7 with H0 =

ω1(a†a − b†b)+ω1

∫
c†
ωcω dω and performed the rotating-wave and Markov approximations in

the description of the cavity decay [51]. The quantum Langevin equations of cavity and nuclear
operators read

ȧ(t)= −ig2 b†(t)−
γ

2
a(t)−

√
γ cin(t), (39a)

ḃ(t)= −ig2 a†(t). (39b)

Here, cin describes the vacuum noise coupled to the cavity and satisfies [cin(t), c†
in(t

′)] =

δ(t − t ′). The solutions of equations (39a) and (39b) are given (for t > 0) by

a(t)= p−(t)a(0)+ q(t)b†(0)+
√
γ

∫ t

0
p−(t − τ)cin(τ )dτ, (40a)

b(t)= q(t)a†(0)+ p+(t)b(0)+
√
γ

∫ t

0
q(t − τ)c†

in(τ )dτ, (40b)

7 As was already the case in equation (11), all optical operators are also taken in a frame rotating with the laser
frequency ωl.
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where

p± = e−(1/4)tγ
[
cosh (νt)±

γ

4ν
sinh (νt)

]
, (41)

q = −i
g2

ν
e−(1/4)γ t sinh νt, (42)

with

ν =

√(γ
4

)2
+ g2

2. (43)

While equations (40a) and (40b) describe a non-unitary time evolution of the open
cavity–nuclei system, the overall dynamics of the system plus surrounding free field given
by the Hamiltonian in equation (38) is unitary. Moreover, it is Gaussian (see appendix A),
since all involved Hamiltonians are quadratic. Since all initial states are Gaussian (vacuum),
the joint state of cavity, nuclei, and output fields is a pure Gaussian state at all times as well.
This simplifies the analysis of the dynamics and in particular the entanglement properties
significantly: the covariance matrix (defined by equation (A.4) in appendix A) of the system
allows us to determine the entanglement of one part of the system with another one. In particular,
we are interested in the entanglement properties of the nuclei with the output field.

The covariance matrix 0ns–c–o of the pure Gaussian state of nuclear spins, cavity and
output field and thus the covariance matrix 0ns–o of the reduced nuclei–output field system can
be found by analyzing the covariance matrix of the cavity–nuclei system 0ns–c.

The elements 〈X〉 of the covariance matrix 0ns–c can be calculated by solving the Lindblad
equation evaluated for the expectation values 〈X〉

d

dt
〈X〉 = i〈[Hsq, X ]〉 +

γ

2

(
〈2a† Xa〉 − 〈Xa†a〉 − 〈a†a X〉

)
. (44)

We thus find the covariance matrix of the cavity–nuclei system to be

0ns–c =


m 0 0 k
0 m k 0
0 k n 0
k 0 0 n

 , (45)

where

m = e−γ t/2
[γ
ν

sinh (2νt) +

(
g2

2

ν2
+
γ 2

8ν2

)
cosh (2νt)+

g2
2

ν2

]
− 1, (46a)

n = 1 + 32
g2

2

ν2
e−γ t/2 sinh (νt)2, (46b)

k = e−γ t/2
[g2γ

2ν2
sinh (νt)2 +

g2

ν
sinh (2νt)

]
. (46c)

According to Williamson [52], there exists a symplectic transformation S (cf appendix A) such
that 0D = S0ns–cST

= diag(λs
1, λ

s
1, λ

s
2, λ

s
2), where {λs

1, λ
s
2} are the symplectic eigenvalues of

0ns–c. This allows us to calculate the covariance matrix of the pure nuclei–cavity–output field
system

0ns–c–o = S′0D′(S′−1)T, (47)

New Journal of Physics 12 (2010) 043026 (http://www.njp.org/)

Using the Nuclear Spins for QIP

144



20

with 0D′ in 2 × 2 block-matrix form

0D′ =


cosh (2r1)12 sinh (2r1)σz

cosh (2r2)12 sinh (2r2)σz

sinh (2r1)σz cosh (2r1)12

sinh (2r2)σz cosh (2r2)12

 , (48)

where cosh r1 = λs
1 and cosh r2 = λs

2 and

S′
=

(
S

14×4

)
.

One of the symplectic eigenvalues {λs
1, λ

s
2} is 1, indicating a pure—and therefore unentangled—

mode in the system. This implies that there is a single ‘output mode’ in the out-field of the cavity
to which the cavity–nuclear system is entangled and we can thus trace out the unentangled
output mode.

The procedure for entangling the nuclei with the output field (write-in) is: let Hsq act for
time t1 to create a two-mode squeezed state ψ(g2, t1): nuclei entangled with cavity and output
field. To obtain a state in which the nuclei are only entangled to the output field, we switch the
driving laser off (g2 = 0) and let the cavity decay for a time t2 � τcav, obtaining an almost pure
two-mode squeezed state of nuclei and the output mode. We define the coupling as

gt =
{
g2, t < t1 0, t > t1. (49)

For the parameters used in section 3, g2 ∼ 1.9 × 10−3 µeV. The entanglement of the different
subsystems can be quantified: we compute the gEoF [43] of the reduced covariance matrix of the
nuclei–output field system to quantify the entanglement of the nuclei with the output field (see
figure 10). For a Gaussian state ρ(γ,d), the gEoF EG(ρ(γ,d)) is defined as the minimal amount
of average entanglement in a decomposition of ρ(γ,d) into Gaussian states, i.e. EG(ρ(γ,d))=

min{
∫
γ ′,d ′ dp(γ ′, d ′)E(ρ(γ ′,d ′)) : ρ(γ,d) =

∫
γ ′,d ′ dp(γ ′, d ′)ρ(γ ′,d ′)} [43]. Thus EG(ρ(γ,d)) measures

how costly it is (in terms of entanglement) to prepare ρ(γ,d) by mixing Gaussian states and gives
an upper bound to the entanglement of formation (EoF). In the present case, it coincides with
the logarithmic negativity [53]. The entanglement of the pure cavity–nuclei–output mode system
can be quantified using the entanglement entropy SE [54]. We plot the SE of the nuclei–cavity
system with the output mode (see figure 11(a)) and of the nuclei with the cavity–output mode
system (see figure 11(b)). The entanglement is plotted versus g2t for different ratios of the cavity
decay constants and the coupling γ /g2.

6.2. Write-in: teleportation channel

The entangled state between nuclei and the cavity output field allows us to map a state of a
traveling light field to the nuclei using teleportation (see figure 8) [25].

To realize the teleportation, a Bell measurement has to be performed on the output mode of
the cavity and the signal state to be teleported. This is achieved by sending the two states through
a 50 : 50 beamsplitter and measuring the output quadratures [25]. To be able to do this, we need
to know B0, the output mode of the cavity. In the following, we derive an exact expression for
this mode.

We fix a time t and denote by B(y, t), y ∈ N a complete set of bath modes outside the
cavity. B(y, t) can be expressed as a superposition of bath operators c(x, t)

B(y, t)=

∫
z(y, x, t)c(x, t) dx, (50)
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Figure 10. Plot of the gEoF of the nuclei with the output field versus t for
different values of γ /g. At g2t1 = 7, the coupling is switched off. The curve
saturates when all excitations have leaked out of the cavity.

(a) (b)

Figure 11. (a) Plot of the entanglement entropy SE of the nuclei+cavity system
with the output field versus t for different values of γ /g. At g2t1 = 7, the
coupling is switched off. (b) Plot of the SE of the nuclei with the cavity+output
field versus g2t for different values of γ /g2.

where we introduce a complete set of orthonormal mode functions z(y, x, t). The bath operators
c(x, t) are known from the input–output relations [51]

c(x, t)=

√
γ

2
a(t − x)χ[0,t](x), (51)

where a(t) is given by equation (40a) and

χ[0,t](x)=

{
1, 06 x 6 t,

0, x < 0, x > t.
(52)

To calculate B(y, t), we thus need to determine z(y, x, t). This can be done by calculating
the variance 〈c†(x, t), c(x ′, t)〉 = 〈c†(x, t)c(x ′, t)〉 − 〈c†(x, t)〉〈c(x ′, t)〉 following two different
pathways: With equation (51), we find

〈c†(x, t), c(x ′, t)〉 =
γ

4
q(t − x ′)q(t − x)∗, (53)
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where q(t) is given by equation (42). Another way to express c(x, t) follows from (50):

c(x, t)=

∑
y

z(y, x, t)∗B(y, t). (54)

As shown in section 6.1 there exists only one output mode which we label y = 0. This mode
contains all the output photons. Therefore 〈B(y, t)† B(y′, t)〉 = K δy0δy′0 and the variance using
(54) reads

〈c†(x, t), c(x ′, t)〉 = K z(0, x, t)z(0, x ′, t)∗. (55)

Comparing (53) to (55), we find

z(0, x, t)=
q(t − x)∗√∫
|q(t − x)|2 dx

(56)

and K = (γ /4)
√∫

|q(t − x)|2 dx and we have thus fully determined B(0, t) (see figure 14).
Note that the bath modes are given in a frame rotating with ω1 +ωl to which we transformed in
section 2 (ωl) and section 6 (ω1).

Therefore a state of a traveling light field can be teleported to the nuclear spins up
to a random displacement that arises from the teleportation protocol [25, 55]. The random
displacement can be undone, letting the beamsplitter interaction Hbs (given by equation (10))
act for a short time, while pumping the cavity with intense coherent light as suggested
in [50].

Next, we want to consider the quality of the teleportation. Whereas before (see figures 10
and 11) the time evolution of the system for a fixed switch-off time g2t1 = 7 was considered, we
now consider the ‘final’ entangled state of nuclei and output field depending on g2t1, where the
cavity has decayed to the vacuum state, while the nuclei are (still) stationary.

The fidelity with which a quantum state can be teleported onto the nuclei is a monotonic
function of the TMS parameter

r1 =
1
2 arccosh(m(t = t1)) (57)

with m defined in equation (46a). A typical benchmark [39] is the average fidelity with which
an arbitrary coherent state can be mapped. This fidelity has a simple dependence on the TMS
parameter r1 of the state used for teleportation and is given by [56]

Ftel =
1

1 + e−2r1
. (58)

We plot the teleportation fidelity dependent on the switch-off time t1 (see figure 12).
Already for r1(t1)∼ 1, fidelities above 0.8 are obtained. After switching off the coupling

we have to wait for the cavity to decay, which typically happens on a nanosecond timescale and
does not noticeably prolong the protocol.

6.3. Read-out

The beamsplitter Hamiltonian Hbs (given by equation (10)) enables read-out of the state of the
nuclei by writing it to the output field of the cavity. The quantum Langevin equations of cavity
and nuclear operators lead to almost identical solutions as for Hsq (see equations (40a) and
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Figure 12. Plot of the teleportation fidelity versus g2t1 for different values of
γ /g2.

(40b)): of course, now a(t) is coupled to b(t) instead of b†(t) but the only other change to
equations (40a) and (40b) is to replace ν by

ν̃ =

√
(γ /4)2 − g2

1. (59)

This has the effect that all terms in equations (40a) and (40b) show exponential decay with
t . The decay of the slowest terms ∼ e−2g1

2/γ t sets the timescale for read-out. To calculate the
read-out fidelity, we need to know the state of the output field at time t = T . We assume that the
state we want to read-out is a coherent state with displacement αns at time t = 0 fully described
by its covariance matrix γb(0)= 1 and its displacement db(0)= 〈b〉 = αns (while cavity and
output field are in the vacuum state at t = 0). As the norm of the displacement ‖d(t)‖ of the
nuclei–cavity–output system

d(t)=

 da(t)

db(t)

dB0(t)

=

 〈a(t)〉

〈b(t)〉

〈B0(t)〉

 (60)

does not change under the beamsplitter transformation, the displacement of the output mode B0

is given by

|dB0(t)| =

√
‖d(0)‖2 − da(t)2 − db(t)2

=

√
1 − (|q(t)|2 + |p+(t)|2)|αns|, (61)

where q(t) and p+(t) are defined by equations (40a) and (40b) with ν replaced by ν̃.
At finite times, the nuclear excitations and the cavity have not fully decayed, which leads

to a loss of amplitude of the mapped state. The loss is very small for sufficiently large T . To
assure high fidelity even for states with a large photon number, we can amplify the output field
as in section 4.1. Then the state of the output field is (γB0, dB0)= (κ1, αns) with κ as defined in
section 4.1. This leads to a read-out fidelity (see figure 13) given by

Fread = |〈 1, αns| κ1, αns 〉|
2
= 1 − (|q|

2 + |p+|
2),

where we have used relations for the transition amplitudes (as in section 4.1) given by [42].

New Journal of Physics 12 (2010) 043026 (http://www.njp.org/)

Using the Nuclear Spins for QIP

148



24

Figure 13. Plot of the read-out fidelity versus g1t for different values of γ /g1

6.4. Output mode

In figure 14, we plot the output mode of the cavity given by equation (50) for write-in and
read-out, respectively, and for several choices of the parameters g1,2 and γ . We are considering
here only the idealized case of a one-sided and one-dimensional cavity. In general, the actual
geometry of the cavity at hand has to be taken into account to determine B0. In the following,
we briefly discuss the shape of the mode function. It provides some insight into the dynamics
of the mapping process, since due to (51) the weight of c(x, T ) in B(0, t) reflects the state of
the cavity mode at time t − x in the past.

Write-in: Let us consider the two extreme cases of very strong and very weak cavity decay.
In the former case (γ � g2), the cavity mode can be eliminated, i.e. the nuclear spins couple
directly and with constant strength ∼ g2

2/γ to the output field: z0 is a step function, which is 0
for g2 = 0 and constant otherwise. This is reflected in figure 14, where for γ = 100g2 most of
the excitations decay directly to the output mode such that z0 takes a ‘large’ value at the time the
squeezing is switched on and then increases only slowly in time. After switching the squeezing
interaction off, the cavity quickly decays to the vacuum. For γ � g2, instead, TMS builds up in
the nuclei–cavity system as long as the squeezing interaction is on (3µs in figure 14) and, after
g2 is switched off, the cavity decays to its standard exponential output mode. The intermediate
cases in figure 14(a) show the shifting weight between ‘initial step function’ and subsequent
exponential decay.

Read-out: In the case of the beamsplitter interaction, the same cases can be distinguished.
For large γ /g1, the cavity can be eliminated and the nuclear spins are mapped directly to the
exponential output mode of a cavity decaying with an effective rate g2

1/γ . For smaller γ , the
output mode reflects the damped free evolution of the nuclei–cavity system, which in this case
includes oscillations (excitations are mapped back and forth between nuclei and cavity at rate
g1) in absolute value and phase.

6.5. Linear optics with the nuclear spin mode

The interaction we have described can be used not only to map states to the nuclear spin
ensemble but also for state generation and transformation. In fact, from a nuclear spin mode
in the vacuum state, all single mode Gaussian states can be prepared. To see this, we have to
show how any desired 2 × 2 correlation matrix 0 and displacement d ∈ C can be obtained.

New Journal of Physics 12 (2010) 043026 (http://www.njp.org/)

Schwager et al., New J. Phys. 2010: “Interfacing nuclear spins in quantum dots...”

149

http://dx.doi.org/10.1088/1367-2630/12/4/043026


25

(a) (b)

Figure 14. The output mode in one dimension: plot of z0 versus position x , where
x = 0 is the position of the cavity. (a) Write-in: the squeezing interaction is ‘on’
for 3µs and then switched off. (b) Read-out: for γ � g2 the excitations have not
fully decayed to the output mode after t = 12µs. The read-out fidelity given by
equation (62) corresponds to the probability that the excitations in the nuclear
spins have decayed into the output mode of the cavity. For γ /g1 = 1 and 10, the
read-out fidelity is Fread > 0.98 after t ≈ 16–20µs. For γ /g1 = 100, however, it
takes ≈ 200µs to achieve Fread > 0.98. Note that for input and output modes to
have similar shapes (e.g. for a network), it is best to consider the case where
γ /g1 � 1.

As we already remarked in a discussion of the write-in via teleportation, the beamsplitter
Hamiltonian Hbs can be used to realize displacements of the nuclear mode. Driving the cavity
mode with a strong laser to a coherent state with amplitude α (and the same phase as d)
and switching on Hbs for a time t = |β|/(g1|α|) provides, in the limit of large α, a good
approximation to the displacement operation by β [50].

Concerning the CM, we assume that every CM of a pure Gaussian state is of the form
0 = O DOT, where D is a positive diagonal matrix with determinant one and O is orthogonal
and symplectic. O can be seen as the effect of time evolution under some quadratic Hamiltonian
acting on the single-mode squeezed state with CM D. In the single mode case, any O represents
a phase shift and is obtained by letting the nuclear system evolve ‘freely’ (without laser
coupling, i.e. a polarized electron interacts off-resonantly with the nuclei) according to the
Hamiltonian ∝ b†b for some time. Thus, the state with CM 0 can be generated in a two-step
process: first generate the state with 0 = D and then apply O .

Whereas in the preceding paragraphs we could show how to realize operations that can act
on any input state, no such possibility seems to exist for squeezing in our context. Instead we
show how to obtain the pure single-mode squeezed state with CM D from the vacuum state.
Letting Hsq act on the vacuum results in a two-mode squeezed state with squeezing parameter
r2. Performing a homodyne measurement (of the X quadrature) on the optical part of this state
projects the nuclear system into a squeezed state with squeezing r1 = ln[cosh(2r2)]/2 [57]; thus
given enough TMS, any CM D can be produced.

One can go even further and simulate evolution according to any quadratic Hamiltonian on
the nuclear–optical system: according to Krauss et al [58], the Hamiltonian given by equation
(8) with the interaction part g1ab† + g2a†b† + h.c. enables simulation of any Hamiltonian
quadratic in a, b, a†, b†.
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7. Remarks on internal nuclear dynamics and approximations

With regard to the realization of the proposed protocol and the applicability of the
approximations leading to the Hamiltonians (10) and (11), there are three aspects to consider:
spontaneous emission of the QD, the internal nuclear dynamics and errors in the bosonic
description. We assume the strong coupling limit of cavity-QED and neglect spontaneous
emission of the QD. The other two aspects will be studied in the following. Note that the results
on the internal nuclear dynamics are corroborated by an independent work by Kurucz et al [59].
They introduce the bosonic description to analyze the performance of a nuclear spin quantum
memory and show that the performance of the memory is enhanced due to a detuning between
excitations in the mode b versus those in other modes bk 6=0 and that secular dipolar terms do not
affect the memory.

7.1. Internal nuclear dynamics

Up to now, we have focused exclusively on the hyperfine interaction and neglected ‘internal’
nuclear dynamics, dominated by dipolar and quadrupolar interactions. Moreover, the hyperfine
coupling leads to a dipolar interaction between nuclei mediated by the electron. We study the
dipolar interaction between nuclear spins, which is significantly weaker than gn, g1 and g2: the
energy scale for dipolar interaction between two nuclei has been estimated to be ∼10−5 µeV for
GaAs [26]. However, since for 104–106 nuclei there are many of these terms, they might play a
role at the 10–50µs timescales considered.

7.1.1. Dipolar interaction. The Hamiltonian of the direct dipolar interaction between N nuclei
is given by [60]

Hdd = −
µ0

4π

1

2

N∑
i=1

N∑
j 6=i=1

µiµ j

Ii I j

1

r 3
i j

(
3(Ii ri j)(I j ri j)

r 2
i j

− IiIj

)
, (62)

where ri j is the vector connecting spins i and j and µi = (µi/Ii)Ii is the magnetic moment of
the nuclear spin operator Ii . Hdd can be written as

Hdd =

N∑
i=1

N∑
j 6=i=1

γ̃i j [Ai j I z
i I z

j + Bi j I +
i I −

j + (Ci j I +
i I +

j + Di j I z
i I −

j + h.c.)], (63)

where Ai j = 1 − 3 cos2 θi j , Bi j = −
1
2(1 − 3 cos2 θi j), Ci j = −

3
4 sin2 θi j e−2iφi j , Di j = −

3
2 sin θi j

cos θi j eiφi j and γ̃i j = µ0µiµ j/4πr 3
i j . In GaAs, the nearest-neighbor dipolar interaction strength

is around γ̃ = 10−5 µeV [26]. We want to calculate the strength of the dipolar interaction
between the main bosonic mode (which is defined as the mode that is coupled to the electron
spin) and other bath modes (here, we no longer assume homogeneous coupling of the nuclei to
the electron). We therefore write the Hamiltonian in terms of collective nuclear spin operators,
use, in a next step, the bosonic approximation and, finally, separate the relevant terms (the ones
that couple the main bosonic mode to bath modes) and calculate the coupling strength of the
main mode to the bath modes.

For highly polarized nuclear spins, the first term of Hdd can be written as
N∑

i=1

N∑
j 6=i=1

γ̃i j Ai j I z
i I z

j ≈
1

2

N∑
i=1

N∑
j 6=i=1

γ̃i j Ai j

(
1

2
− I +

i I −

i − I +
j I −

j

)
, (64)
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where we write I z
i = −

1
2 + I +

i I −

i and neglect the second-order term I +
i I −

i I +
j I −

j , which requires
two excitations to be nonzero; thus, in the highly polarized case, the contribution from these
terms is by a factor of p = (1 − P)/2 smaller than the terms we keep. The last term is (for
spin-1/2 nuclei)

N∑
i=1

N∑
j 6=i=1

γ̃i j Di j I z
i I −

j ≈ −
1

2

N∑
i=1

N∑
j 6=i=1

γ̃i j Di j I −

j , (65)

neglecting higher order terms. In extension to the definition of the collective operators A±

in section 2, which we now label A±

0 , we introduce a complete set of collective operators
A−

k =
∑

i α
(k)
i I −

i with k = 0, . . . , N − 1 with an orthogonal set of coefficients α(k)i for which∑
i α

k
i = 1 for every collective mode k. Defining a unitary matrix U with columns α(k) =

(1/
√∑

i α
(k)2
i )(α

(k)
1 , . . . , α

(k)
N )

T, we can write

(I −

1 , . . . , I −

N )
T

= UA−, (66)

where

A−
= diag

 1√∑
iα
(0)
i

2
, . . . ,

1√∑
iα
(N−1)
i

2

 (A−

0 , . . . , A−

N−1)
T.

Writing Hdd in terms of the collective operators A−,+
k and neglecting higher order terms,

Hdd = A+U †SUA− + (A−U † MUA−
−

1
2 DUA− + h.c.). (67)

Here, Mi j = γ̃i jCi j for i 6= j , Mi j = 0 for i = j , Si j = γ̃i j Bi j for i 6= j and Si i =
∑N

l=1 γ̃il Ail

for i = j . D is a vector with entries D j =
∑N

i 6= j=1 γ̃i j Di j . Next, we write Hdd in terms of
bosonic operators, using the bosonic approximation introduced in section 2, and map A−

→

b = (b0, . . . , bN−1)
T. This allows us to separate relevant terms of Hdd, which couple the main

bosonic mode b0 to other (bath) modes bk . Isolating the terms containing b0, we find

b0

[∑
k 6=0

(U †2MU )0kbk + (U †SU )0kb†
k −

1

2
DkU0k

]
+ h.c.+ (U †SU )00b†

0b0

+(U †2MU )00b0b0 + h.c., (68)

where the notation (U †SU )0 l denotes the element (0, l) of the matrix U †SU . The first term
describes the passive coupling of the main mode b0 to other modes bk and acquires a
factor of two, as the terms that describe the active coupling in equation (68) can be written
bl(U † MU )lkbk + bk(U † MU )klbl = bl(U †2MU )lkbk as (U † MU )kl = (U † MU )lk: the entries of U
are real so that (U †)T = U and M = MT, i.e. Mi j = −γ̃i j

3
4 sin2 θi j e−2iφi j = M j i as φ j i = π +φi j .

The second term in equation (68) describes the passive coupling of b0 to the modes b†
k and the

third term displaces the main mode. The last two terms describe a constant energy shift (∼ b†
0b0)

and a squeezing term (∼ b0b0 + h.c.), respectively.
The terms that couple the main mode b0 to bath modes can be written as

b0

(∑
k 6=0

(U †2MU )0kbk + (U †SU )0kb†
k −

1

2
DkU0k

)
+ h.c.

= b0

(
c1b̃1 + c2b̃†

2 −
1

2

∑
k 6=0

DkU0k

)
+ h.c., (69)
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(a) (b) (c)

Figure 15. (a) Cosine-shaped wavefunction of the electron on a two-dimensional
square grid with the nuclear spins located at the vertex points; (b) plot of
the ratios d1 = γ̃ (1M0)/g2 and d2 = γ̃ (1S0)/g2 for a cosine- and a Gaussian-
shaped wavefunction. For N = 104, both ratios d1 and d2 are of the order of
10−4; together with (c), we see that the dipolar interaction is negligible. (c) Plot
of the ratios d3 = γ̃ (U †SU )00/g2 and d4 = γ̃ (U †2MU )00/g2 for a cosine- and a
Gaussian-shaped wavefunction. For N = 104, d3 is of the order of 10−2 and d4 is
zero due to the symmetry of the electron wavefunction.

where the linear combinations of bosonic modes bk and b†
k can be transformed to bosonic modes

b̃1 and b̃†
2. The coupling strength of b0 to the first term in equation (69) is given by

[c1b̃1, (c1b̃1)
†] = |c1|

2
=

∑
k 6=0

|(U †2MU )0k|
2

= (U †4M M†U )00 − |(U †2MU )00|
2
= (1M0)

2, (70)

and |c2|
2
= (1S0)

2 for the second term.1M0 and1S0 depend only on the electron wavefunction
and the lattice geometry. To numerically calculate 1M0 and 1S0 and the effect of the last
two terms in equation (68), we consider the case where the nuclei lie in a two-dimensional
square plane with length R =

√
Nr0 of each side on a grid with equal spacings r0(= 0.24 nm in

GaAs [26]) (see figure 15(a)). Consequently, θi j = π/2, which simplifies many expressions in
Hdd. These assumptions can be made as the height of the QD is small compared to its diameter,
so that the variation of θ that is dependent on the height of the QD is small, θi j ≈ π/2.

To illustrate our results, we consider two simple choices for the electron wavefunction such
that α(0)l = 1/

∑
l f1/2(rl) f1/2(rl) with rl = (xl, yl),

f1(rl)= cos
(π

2

xl

R

)2
· cos

(π
2

yl

R

)2
(71)

and

f2(rl)= exp(−
√

2r 2
l /R2). (72)

To show that the direct dipolar interaction is a weak effect compared to the optical–nuclear
coupling g, we calculate the ratios

d1 =
γ̃ (1M0)

g2
=
γ̃ (1M0)
�c�lgn

81′

T−
ω̃e

=
81′

T−
ω̃e

�c�l

γ̃

A

(1M0)√∑N
i=1 α

(0)2
i

(73)
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and d2 = γ̃ 1S0/g2. For the parameters used for the simulation in section 3,
(81′

T−
ω̃e/�c�l)(γ̃ /A)≈ 4 × 10−5 with γ̃ for GaAs [26]. A plot of d1 and d2 is shown in

figure 15(b). d1 and d2 are both of the order of 10−4–10−5 for N > 1000 nuclear spins
and increase slowly with N . The last two terms in equation (68), (U †SU )00(b)

†
0b0 and

(U †2MU )00b0b0 are small and zero, respectively, as can be seen in figure 15(c). The ratio of
d3 = γ̃ (U †SU )00/g2 is of the order of 10−3–10−2 for N > 1000 nuclear spins and the ratio
d4 = γ̃ (U †2MU )00/g2 is zero due to the symmetry of the electron wavefunction in this setting.
Shifting the electron wavefunction such that it is no longer symmetric with respect to the
coordinate origin, d4 is of the order of 10−4. We assume that the nuclei lie in a plane, so there
is no displacement of b0 as Di j = 0 for θi j =

π

2 . Therefore, we have shown that direct dipolar
coupling is an effect that does not affect our protocol.

The hyperfine coupling between electron spin and nuclear spin leads to a mediated dipolar
interaction between nuclear spins [61]. In the bosonic description, the electron couples solely to
the b0 mode; thus, the mediated coupling leads only to an energy shift

g2
n

4ω̃e
b†

0b0 (74)

that depends on the Zeeman splitting ω̃e and the number of nuclear excitations. This was already
present in equation (8) and is not affecting the protocol; in fact it can help as Kurucz et al [62]
have shown.

For spin-1/2 systems, as considered here, the quadrupolar interaction is not present. For
large spin I (e.g. 3/2 or 9/2) nuclei present in GaAs, there is a significant quadrupolar term.
Depending on the strain, up to gq . 10−2 µeV have been measured [63]. Therefore, for I > 1/2,
dots with small strain have to be considered. The quadrupolar interaction [60] can be treated on
a similar footing as the dipolar coupling in section 7.1.1.

7.2. Errors in the bosonic picture

We have relied on a simple bosonic description of the collective nuclear excitations and
neglected all corrections to that simplified picture. For homogeneous coupling (α j =const) this
is the well-known Holstein–Primakoff approximation [32] and for systems cooled to a dark
state [64] at moderate polarization (〈Az

〉 of the order of −1/2) spin, replacing the collective
spin operators by bosonic operators is accurate to o(1/N ). The generic inhomogeneous
case is discussed in detail in [34]. In that case, the Hamiltonian (3) can be seen as a
zeroth-order approximation in a small parameter ∼ q(1 − P), where q > 1/2 and q = 1/2
for a homogeneous wavefunction. The first-order correction analyzed in [34] contains two
contributions: (i) a polarization-dependent scaling of the coupling strength gn, which has a
negligible effect on the adiabatic transfer that we consider and (ii) an effective coupling of
b to bath modes due to the inhomogeneity of the Az term. This correction can be computed
similarly to the one in the preceding subsections by rewriting Az in terms of bosonic operators.
The coupling strength of the leading term is found to be ∼A/N = gn/

√
N and is thus much

weaker than g1/2. Since g1/2 also characterizes the energy splitting between different excitation-
manifolds in the JC system, this term is further suppressed by energy considerations.

8. Summary and conclusions

We have shown how to realize a quantum interface between the polarized nuclear spin ensemble
in a singly charged QD and a traveling optical field. The coupling is mediated by the electron
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spin and the mode of a high-Q optical cavity to which the QD is strongly coupled. Our proposal
exploits the strong hyperfine and cavity coupling of the electron to eliminate the electronic
degree of freedom and obtain an effective coupling between cavity and nuclei. First, we have
studied several possibilities to directly map the state of the cavity to the nuclei and discussed
error processes and drawbacks of these schemes. Then, we have presented a more sophisticated
interface that is robust to cavity decay. Read-out is achieved via cavity decay, while write-in is
based on the generation of two-mode squeezed states of nuclei and output field and teleportation.
For typical values of hyperfine interaction and cavity lifetimes, several ebits of entanglement can
be generated before internal nuclear dynamics becomes non-negligible. All proposed schemes
take advantage of the bosonic character of the nuclear system at high polarization, which implies
that all the relevant dynamics of nuclei, cavity and output field are described by quadratic
interactions. This allows the analytical solution of the dynamics and a detailed analysis of
the entanglement generated. We show that apart from mapping a light state to the nuclei, the
couplings described enable the preparation of arbitrary Gaussian states of the nuclear mode.

For highly polarized nuclear spin systems, the bosonic description provides a very conve-
nient framework for the discussion of (dipolar and quadrupolar) ‘internal’ nuclear dynamics. It
is seen that these processes do not appreciably affect the performance of the interface.

Our results give further evidence that nuclear spins in QDs can be a useful system for
quantum information processing. In view of the recent impressive experimental progress in
both dynamical nuclear polarization of QDs and QD cavity-QED, their use for QIP protocols
may not be too far off.
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Appendix A. Gaussian states and operations

Gaussian states and operations play a central role in quantum information with continuous
variable systems [65]. To make this work self-contained, we briefly summarize here the main
properties of Gaussian states and operations with particular regard to their entanglement.

Gaussian states are a family of states occurring very frequently in quantum optics,
e.g. in the form of coherent, squeezed and thermal states. Despite being defined on an
infinite-dimensional Hilbert space (F+(R2N ), the symmetric Fock space over R2N ), they are
characterized by a finite number of real parameters, namely the first and second moments of N
pairs of canonically conjugate observables (Q1, P1, . . . , QN , PN )≡ ER.

One way to define them is that their characteristic function, i.e. the expectation values
χ(ξ)= tr(Wξρ) of the displacement operators Wξ = exp(iξT ER), ξ ∈ R2N , is a Gaussian
function [66]:

χ(ρ)= exp(−iξTd − 1/4ξTγ ξ). (A.1)

The displacement vector d ∈ R2N and the 2N × 2N real positive covariance matrix (CM) γ are
given by the expectations and (co)variances of the Rk:

dk = tr[ρRk], (A.2a)

γkl = 〈Ri R j + R j Ri〉 − 2〈Ri〉〈R j〉. (A.2b)
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All d ∈ R2N are admissible displacement vectors and any real positive matrix γ is a valid CM
if it satisfies γ > iσN when the symplectic matrix σN is

σN = ⊕
N
l=1σ1 with σ1 =

(
0 −1
1 0

)
. (A.3)

The last condition summarizes all the uncertainty relations for the canonical operators R j .
These operators are related to the creation and annihilation operators a†

j and a j by the relations

Q j = (a j + a†
j )/

√
2 and Pj = −i(a j − a†

j )/
√

2.
An example of a one-mode Gaussian state is a coherent state |α〉, with covariance matrix

γ = 1 and displacement d = (Re|α|, Im|α|)/
√

2.
Entanglement: All information about the entanglement properties of Gaussian states is

encoded in the CM. Given a CM, there are efficient criteria to decide whether a Gaussian state
is entangled or not.

To apply these criteria, it is useful to write the CM of bipartite N × M Gaussian states in
the following form:

γ =

(
A C

CT B

)
, (A.4)

where the 2N × 2N (2M × 2M) matrix A (B) refers to the covariances of the quadrature
operators associated with the first (second) system and C contains the covariances between
the two systems. A (B) are the CM of the reduced state in the first (second) system only.

In the case of a two-mode system, the criteria [67, 68] are necessary and sufficient for sep-
arability: a state with CM γ is entangled if and only if det γ + 1 − det A − det B + 2 det C 6> 0.
In this case, entanglement is necessarily accompanied by a non-positive partial transpose
(npt) [69]. For more modes, entangled states with positive partial transpose exist [70] and more
general criteria for deciding entanglement have to be used [71, 72].

For pure states, the analysis of entanglement properties becomes particularly easy since
all such states can be transformed to a simple standard form, namely a collection of two-mode
squeezed states (TMSS) and vacuum states, by local unitaries [73]; hence the entanglement of
such a state is fully characterized by the vector of TMS parameters. This also shows that for a
1 × M system in a pure state, one can always identify a single mode such that only it (and not
the M − 1 other modes) is entangled with the first system.

For many Gaussian states, it is also possible to make quantitative statements about the
entanglement, i.e. to compute certain entanglement measures. For pure N × M states, the
entropy of entanglement can be computed from the symplectic eigenvalues of the reduced CM
A (or, equivalently, B). These are given by the modulus of the eigenvalues of σN A [53]. All
symplectic eigenvalues λ> 1 correspond to a TMSS with squeezing parameter arccosh(λ)/2
in the standard form of the state at hand and contribute λ2 log2λ

2
− (λ− 1)2 log2(λ

2
− 1) to

the entanglement entropy of the system. For mixed states, it is possible to compute the
negativity [53] for any N × M system from the symplectic eigenvalues of the CM of the partially
transposed state (which is related to the CM obtained by replacing all momenta Pj in the second
system by −Pj ). Every symplectic eigenvalue λ < 1 contributes −log2λ to the negativity.

For 1 × 1 Gaussian states with det A = det B (so-called symmetric states), the EoF can be
computed [74], and for more general states, a Gaussian version of EoF is available [43]. Even
if the states are not certain to be Gaussian, several of the Gaussian quantities can serve as lower
bounds for the actual amount of entanglement [75].
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Gaussian operations: Operations that preserve the Gaussian character of the states they act
on are called Gaussian operations [57]. Like the Gaussian states they are only a small family (in
the set of all operations) but play a prominent role in quantum optics, since they comprise many
of the most readily implemented state transformations and dynamics. With Gaussian operations
and Gaussian states, many of the standard protocols of quantum information processing such
as entanglement generation, quantum cryptography, quantum error correction and quantum
teleportation can be realized [65].

Of particular interest for us are the Gaussian unitaries, i.e. unitary evolutions generated
by Hamiltonians that are at most quadratic in the creation and annihilation operators. Unitary
displacements Wξ are generated by the linear Hamiltonian ξT ER. All other Gaussian unitaries
can be composed of three kinds [76], named according to their optical incarnations. The phase
shifter (H = a†a) corresponds to the free evolution of a harmonic system. The beamsplitter
(H = ab† + a†b) couples two modes. Both generators do not change the total photon number
and are therefore examples of passive transformations. The remaining type of Gaussian unitary
is active: the (single-mode) squeezer is generated by the squeezing Hamiltonian H = a2 + (a†)2,
which, when acting on the vacuum state, decreases the variance in one quadrature (Q) by a
factor f < 1 and increases the other one by 1/ f . Combining these building blocks in the proper
way, all other unitaries generated by quadratic Hamiltonians, e.g. the TMS transformation
(H = ab + a†b†), can be obtained.

Both active and passive transformations map field operators to a linear combination of
field operators (disregarding displacements caused by linear parts in the Hamiltonians, which
can always be undone by a further displacement), i.e. for all Gaussian unitaries we have in the
Heisenberg picture

U ERU †
= S ER ≡ ER′. (A.5)

Here S is a symplectic map on R2N , i.e. S preserves the symplectic matrix σN , ensuring that
Ri and Ri

′ satisfy the same commutation relations. US denotes the unitary corresponding to the
symplectic transformation S. Passive operations correspond to symplectic transformations that
are also orthogonal.

In the Schrödinger picture, US transforms the Gaussian state with CM γ and displacement
d such that (γ, d) 7→ (Sγ ST, Sd). The TMS transformations

T (r)=

(
cosh (r)1 sinh (r)σx

sinh (r)σx cosh (r)1

)
(A.6)

used in section 4.1 are an important example of active symplectic transformation.
Besides Gaussian unitaries, Gaussian measurements are another important and readily

available tool. Gaussian measurements are generalized measurements represented by a positive-
operator-valued measure {|γ, d〉〈γ, d| γ, d, d ∈ R2N

} that is formed by all the projectors
obtained from a pure Gaussian state |γ, 0〉〈γ, 0|γ, 0 by displacements. The most important
example is a limiting case of the above: the quadrature measurements (von Neumann
measurements, which project on the (improper, infinitely squeezed) eigenstates of e.g. Q). In
quantum optics, these are well approximated by homodyne detection. For example, the ‘Bell- or
EPR-measurement’ that is part of the teleportation protocol is a measurement of the commuting
quadrature operators Q1 + Q2 and P1 − P2.
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Appendix B. Landau–Zener transitions

In a rotating frame with U = exp [− i
2

∫
(ω1 −ω2)σz + (ω1 +ω2)1 dt] the Heisenberg equations,

given by equation (12), read

u̇′
= −ig exp

(
i
∫
(ω1 −ω2)dt

)
v′, (B.1)

v̇′
= −ig exp

(
−i
∫
(ω1 −ω2)dt

)
u′. (B.2)

The initial boundary conditions of the coupled differential equations (B.1) and (B.2) are now
chosen such that the photon operator a at time t → −∞ is mapped to the nuclear spin operator
b at t → ∞

u′

−∞
= 1, |v′

−∞
| = 0. (B.3)

Eliminating u′ in equations (B.1) and (B.2) leads to the single equation

v̈′ + iβt v̇′ + g2v′
= 0, (B.4)

where ġ = 0. Together with the substitution v′
= e−(i/2)

∫
(ω1−ω2)dtU1, equation (B.4) reduces to

the so-called Weber equation:

Ü 1 +

(
g2

− i
β

2
+
β2

4
t2

)
U1 = 0. (B.5)

Solving (B.5) as proposed by Landau and Zener and considering the asymptotic behavior of the
solution at t → ∞, it is found to be

lim
t→∞

U1(t)= −K

√
2π

0(iγz + 1)
e−(1/4)πγz eiβt2

(
√
βt)iγz , (B.6)

where γz = g2
1/β and the constant K =

√
γz exp(−γzπ/4). The probability that the photonic

operator a is mapped to the collective nuclear spin operator b is given by equation (15).
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[7] Julsgaard B, Sherson J, Cirac I, Fiurášek J and Polzik E S 2004 Experimental demonstration of quantum

memory for light Nature 432 482
[8] Wilk T, Webster S C, Kuhn A and Rempe G 2007 Single-atom single-photon quantum interface Science 317

488–90
[9] Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Remote preparation of an atomic quantum

memory Phys. Rev. Lett. 98 050504

New Journal of Physics 12 (2010) 043026 (http://www.njp.org/)

Using the Nuclear Spins for QIP

158



34

[10] Choi K S, Deng H, Laurat J and Kimble H J 2008 Mapping photonic entanglement into and out of a quantum
memory Nature 452 67

[11] Blinov B B, Moehring D L, Duan L-M and Monroe C 2004 Observation of entanglement between a single
trapped atom and a single photon Nature 428 153

[12] Loss D and DiVincenzo D P 1998 Quantum computation with quantum dots Phys. Rev. A 57 120
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[20] Taylor J M, Imamoğlu A and Lukin M D 2003 Controlling a mesoscopic spin environment by quantum bit
manipulation Phys. Rev. Lett. 91 246802

[21] Taylor J M, Giedke G, Christ H, Paredes B, Cirac J I, Zoller P, Lukin M D and Imamoğlu A 2004 Quantum
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The realization of a scalable quantum information processor has emerged over the past decade 
as one of the central challenges at the interface of fundamental science and engineering. 
Here we propose and analyse an architecture for a scalable, solid-state quantum information 
processor capable of operating at room temperature. our approach is based on recent 
experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we 
demonstrate that the multiple challenges associated with operation at ambient temperature, 
individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and 
low decoherence rates can be simultaneously achieved under realistic, experimentally relevant 
conditions. The architecture uses a novel approach to quantum information transfer and 
includes a hierarchy of control at successive length scales. moreover, it alleviates the stringent 
constraints currently limiting the realization of scalable quantum processors and will provide 
fundamental insights into the physics of non-equilibrium many-body quantum systems. 
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The majority of realistic approaches to quantum information 
processing impose stringent requirements on the qubit envi-
ronment, ranging from ultra-high vacuum to ultra-low tem-

perature1–3. Such requirements, designed to isolate the qubit from 
external noise, often represent major experimental hurdles and may 
eventually limit the potential technological impact of a quantum 
information processor. For these reasons, developing a realistic 
framework for a feasible solid-state quantum processor capable of 
operating at room temperature is of both fundamental and practi-
cal importance. Nitrogen-vacancy (NV) colour centres in diamond 
stand out among other promising qubit implementations4–7 in that 
their electronic spins can be individually polarized, manipulated 
and optically detected under room-temperature conditions. Each 
NV centre constitutes an individual two-qubit quantum register as 
it also contains a localized nuclear spin. The nuclear spin, which has 
an extremely long coherence time, can serve as a memory qubit, 
storing quantum information, while the electronic spin can be used 
to initialize, read-out, and mediate coupling between nuclear spins 
of adjacent registers. Magnetic dipole interactions allow for coher-
ent coupling between NV centres spatially separated by tens of 
nanometers. Although, in principle, a perfect array of NV centres 
would enable scalable quantum information processing, in practice, 
the finite creation efficiency of such centres, along with the require-
ments for parallelism, necessitate the coupling of registers separated 
by significantly larger distances.

Recent advances involving the quantum manipulation of NV 
defects have allowed researchers to achieve sub-diffraction limited 
resolution, single-shot read-out, and dipole-coupling-mediated  
entanglement between neighbouring NV electronic spins8–18. 
Despite such substantial developments, it remains unclear whether 
these individual pieces, each of which invariably require a unique 
set of experimental conditions, can be seamlessly unified into a scal-
able room-temperature architecture19. Thus, the development of an 
architectural blueprint that combines the associated experimental 
facets, while demonstrating that such a combination can enable 
high-fidelity quantum operations, is of crucial importance.

In what follows, we describe and analyse a feasible architecture 
for a room-temperature, diamond-based quantum information 
processor. Our approach makes use of an array of single NV centres, 
created through ion implantation and subsequent annealing11,20. 
To overcome the challenge of coupling remote NV registers, we 
develop a novel method that enables coherent long-range interac-
tions between NV centres, mediated by an optically un-addressable 
‘dark’ spin chain data bus (DSCB)21. For concreteness, within our 
architecture, we will consider the specific implementation of such a 
DSCB by utilizing implanted nitrogen impurities (P1 centres) with 
spin 1/2, as shown in Fig. 1a8,22. We analyse realistic imperfections 
and decoherence mechanisms, concluding that the implementation 
of this architecture is feasible with current experimental technology. 
Moreover, we demonstrate the possibility of high-fidelity remote 
coupling gates, whose error rates fall below the threshold for quan-
tum error correction in a two-dimensional (2D) surface code23.

Results
The NV qubit register. Single NV registers contain a spin triplet 
electronic ground state (S = 1) and can be optically pumped and 
initialized to the 0 e spin state, which has no magnetic dipole 
coupling with other NV registers or impurities. After optical 
initialization, the electronic spin of each register remains in the 0 e 
state, unless coherently transferred to the 1 e state by a resonant 
microwave (MW) pulse, as shown in Fig. 1a10–13. The NV nuclear 
spin associated with nitrogen atoms (I = 1/2 for 15N) possesses an 
extremely long coherence time (13C nuclear spins could also in 
principle be utilized) and will serve as the memory qubit in our 
system24,25; manipulation of the nuclear spin is accomplished with 
radio frequency (RF) pulses26. The Hamiltonian governing the 

electronic and nuclear spins of the NV register is

H S BS BI AS Ie n z e z n z z z, ,= + + +∆0
2 m m

with zero-field splitting ∆0 = 2.87GHz, electronic spin gyromagnetic 
ratio µe =  − 2.8 MHz/Gauss, nuclear spin gyromagnetic ratio 
µn =  − 0.43 kHz/Gauss, and hyperfine coupling A = 3.0 MHz10. The 
application of a magnetic field along the NV-axis (z̆) ensures full 
addressability of the two-qubit system, resulting in the energy levels 
shown in Fig. 1a. A universal set of two-qubit quantum operations 
can easily be achieved with only MW and RF controls, as shown in 
Fig. 1b and detailed in Methods26.

Furthermore, it is possible to selectively read-out the state of the 
NV register; for example, to read-out the nuclear qubit of a regis-
ter, we apply a CnNOTe gate to couple the electronic and nuclear 
spins, thereby allowing for read-out of the electronic spin based on 
fluorescence detection. Our approach to scalability will ultimately 
involve a hierarchical design principle that ensures a spatial sepa-
ration between NV registers, which is of order the optical wave-
length; while this will, in principle, enable individualized read-out, 
additional use of a red Laguerre-Gaussian donut beam can further 
enhance read-out fidelities14. Indeed, the read-out of individual reg-
isters may be complicated by the strong fluorescence background 
from neighbouring NV centres. To suppress this background fluo-
rescence, a red donut beam can be used, with its minimum located at 
the particular NV centre being read-out14. Whereas the fluorescence 
signal from the NV register located at the minimum persists, the 
remaining illuminated registers will be dominated by the stimulated 
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Figure 1 | Schematic representation of individual NV registers within 
bulk diamond. (a) Each nV register contains a nuclear spin I = 1/2 
(yellow), providing quantum memory, and an electronic spin S = 1 (green). 
Dark spins (black) represent elements of an optically un-addressable spin 
chain, which coherently couples spatially separated nV registers. The nV 
level structure (in a high B field) is shown. A resonant mW (ΩmW) pulse 
coherently transfers the electronic spin of the register from 0 e to 1 e; 
subsequent manipulation of the nuclear spin is accomplished through an 
RF pulse (ΩRF). The far detuned −1 e state can be neglected to create an 
effective two-qubit register. However, the full three-level nV structure will 
be utilized in horizontal DsCB-mediated coherent coupling of nV registers. 
(b) A universal set of two-qubit gates can easily be achieved with only 
mW and RF controls26. Electronic spin manipulation can be accomplished 
with a mW field, where t represents the duration of the mW pulse. By 
exploiting the hyperfine coupling between the electronic and nuclear spin, 
one can achieve controlled-noT operations conditioned on either spin. In 
particular, a CenoTn gate can be accomplished by utilizing a RF π-pulse, 
which flips the nuclear spin conditioned on the electronic spin being in |1〉e. 
similarly, a CnnoTe gate can be accomplished by utilizing the hyperfine 
interaction to generate a controlled-phase (CP) gate, where τ represents 
the duration of the wait time required to achieve such a hyperfine-driven 
CP gate. Performed between two single-qubit Hadamard gates (π/2-
pulses) on the electronic spin, such a CP gate generates the desired 
CnnoTe gate. Finally, combining the CenoTn and CnnoTe gates allows  
for the execution of a swap gate.

Yao et al., Nat. Comm. 2012: “Scalable Architecture for a Room Temperature Solid-State...”

163

http://dx.doi.org/10.1038/ncomms1788


ARTICLE   

�

nATuRE CommunICATIons | DoI: 10.1038/ncomms1788

nATuRE CommunICATIons | 3:800 | DoI: 10.1038/ncomms1788 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

emission induced by the red donut beam. In addition to suppress-
ing the background noise, the red donut beam can also suppress 
the nuclear decoherence of the remaining NV registers, by reducing  
the amount of time these registers spend in the electronic-excited 
state (Supplementary Note 1)27. Moreover, this approach may be 
particularly applicable in the case where NV registers are separated 
by sub-optical-wavelength distances. After each round of fluores-
cence detection, the electronic spin is polarized to the 0 e state, while 
the Iz component of the nuclear spin, a quantum non-demolition  
observable, remains unchanged28. Therefore, it is possible to repeat 
this read-out procedure multiple times to improve the read-out 
fidelity15,16. A strong magnetic field Bz ,0 1∼  Tesla along the NV 
axis should be used to decouple the electronic and nuclear spins to 
achieve high-fidelity single-shot read-out of NV registers16. In addi-
tion to sub-wavelength read-out, optical donut beams also introduce 
the possibility of selectively manipulating individual NV registers 
with sub-wavelength resolution. In this case, we envision the use 
of a green Laguerre-Gaussian donut beam; whereas un-illuminated 
NV centres may respond to a resonant MW pulse, illuminated regis-
ters undergo a strong optical cycling transition that suppresses their 
response to MW pulses due to the quantum Zeno effect29,30.

Approach to scalable architecture. One of the key requirements for 
fault-tolerant quantum computation is the ability to perform paral-
lel gate operations. In our approach, this is achieved by consider-
ing a hierarchy of controllability. The lowest level of the hierarchy 
consists of an individual optically addressable plaquette with hori-
zontal and vertical spatial dimensions ~100–500 nm, containing a 
single computational NV register, as shown in Fig. 2a. The plaquette 
dimensions are chosen such that register control and read-out can 
be achieved using conventional far-field or sub-wavelength optical 
techniques10,14,24,30,31. The second level, termed a super-plaquette 
(~10 µm ×10 µm), consists of a lattice of plaquettes whose compu-
tational registers are coupled through DSCBs. At the highest level 
of the hierarchy, we consider an array of super-plaquettes, where 
individual super-plaquettes are controlled by confined MW fields32. 
In particular, micro-solenoids can confine fields to within super-
plaquettes, allowing for parallel operations at the super-plaquette 
level. For example, as shown in Fig. 2, independent MW pulses 
can allow for simultaneous operations on the electronic spins of all 
computational NV registers within all super-plaquettes. To control 
registers at the super-plaquette boundaries, we define a dual super-
plaquette lattice (Fig. 2a). Localized MW fields, within such a dual 
lattice, can provide a smooth transition between the boundaries of 
neighbouring super-plaquettes.

Taking advantage of the separation of length scales inherent to 
optical control and MW confinement provides a mechanism to 
achieve parallelism; indeed, the hierarchical control of plaquettes, 
super-plaquettes and super-plaquette arrays allows for simultane-
ous single- and two-qubit gate operations, which are fundamental 
to fault-tolerant computation. One of the key differences between 
the currently proposed architecture and previous proposals6,33, is 
that the design here does not rely on optically resolved transitions, 
which are only accessible at cryogenic temperatures.

The required 2D array of NV centres can be created via a two-
step implantation process. We envision first implanting single nitro-
gen atoms along particular rows within each plaquette, as shown in 
Fig. 2b; subsequent annealing occurs until the creation of an NV 
centre, after which, a second nitrogen implantation step generates 
the spin chain data bus. The selective manipulation of individual 
registers within our 2D array is enabled by the application of a spa-
tially dependent external magnetic field z̆B y y B zz z( ) = +( )˘,a 0 ; this 
1D magnetic field gradient is sufficiently strong (α~105 T m − 1) to 
allow for spectroscopic MW addressing of individual NV registers, 
each of which occupies a unique row in the super-plaquette, as 
shown in Fig. 2b32,34,35.

Dark spin chain data bus. To coherently couple two spatially sepa-
rated NV centres, we consider two distinct approaches. First, we 
consider an approach, which is appropriate for spin-state transfer 
along the direction of the magnetic field gradient, in which indi-
vidual addressing of spins is possible. This allows for an adiabatic 
sequential swap between neighbouring qubits and, consequently, 
between the ends of the chain. Alternatively, in the situation where 
individual addressing of spins is not possible (that is, in the direction 
transverse to the field gradient), we show that global control pulses 
achieve effective Hamiltonian evolution, which enables quantum 
state transfer through the spin chain. In both cases, we show that 
perfect state transfer and remote coupling gates are possible even 

M
ag

ne
tic

 fi
el

d 
gr

ad
ie

nt

b

a

M

1

y

x

Figure 2 | The architecture for a room-temperature solid-state quantum 
computer. (a) A 2D hierarchical lattice allowing for length-scale-based 
control, which enables fully parallel operations. At the lowest level, 
individual plaquettes are outlined in grey and each contains a single 
computational nV register. At the second level of hierarchy, a super-
plaquette, outlined in white, encompasses a lattice of plaquettes; each 
super-plaquette is separately manipulated by micro-solenoid confined 
mW fields. To allow for quantum information transfer across boundaries 
of super-plaquettes, there exists a dual super-plaquette lattice outlined in 
red. (b) The schematic nV register implantation within a super-plaquette. 
Two rows of individual plaquettes within a super-plaquette are shown. nV 
registers, consisting of an electronic (green) and nuclear (yellow) spin are 
shown within a staggered up-sloping array that is row-repetitive. Individual 
rows within a single plaquette are specified by an integer n with n = 1 being 
the bottom row and n = M being the top row. To achieve a staggered 
structure, we specify a unique implantation row within each plaquette 
wherein single impurities are implanted and subsequently annealed. For 
a given row of plaquettes, the implantation row corresponding to the left-
most plaquette is n  =  1, whereas the plaquette to the immediate right has 
implantation row n  =  2; this pattern continues until the final plaquette 
in a given row, which by construction, has the highest implantation row 
number. The implantation process is repeated for each row of plaquettes 
within the super-plaquette and creates an array of nV registers, which 
each occupy a unique row in the super-plaquette. Because each nV 
register occupies a unique row within the super-plaquette, the magnetic 
field gradient in the ŷ̂ direction allows for individual spectroscopic 
addressing of single registers. Coherent coupling of spatially separated  
nV registers in adjacent plaquettes is mediated by a DsCB and is 
schematically represented by the curved lines connecting individual 
registers. The second implantation step corresponds to the creation of 
these horizontal and vertical dark spin chains.
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when the intermediate spin chain is completely unpolarized (infi-
nite spin temperature).

We begin by analysing the adiabatic sequential swap in a spin-
1/2 chain. This approach is suitable to couple registers in plaquettes 
that are vertically adjacent, relying on the individual addressability 
of qubits and utilizing the magnetic dipole coupling between spin-
chain elements. As shown in the Supplementary Methods, under 
the secular approximation, the magnetic dipole coupling between a 
pair of neighbouring spins can be reduced to Ising form

H S S Sz z

i
i i

z
int

,
( ) ,= + +

=
∑4 1 2

1 2
0k w d

where κ is the relevant component of the dipole tensor, ω0 captures 
the electronic Zeeman energy, and δi characterizes both the hyper-
fine term (nuclear spin dependent) and the magnetic field gradi-
ent. From the Ising Hamiltonian, an XX interaction between qubits 
can be distilled by driving with H S tdrive i i x

i
i= +=∑ 1 2 0, cos[( ) ]Ω w d ,  

leading to (under the rotating wave approximation, in the rotating frame, 
with | |Ω Ω1 2+ k , and in a rotated basis with (x,y,z)→(z,  − y, x))

H S S S S S Sz z
int ( ) .= + + ++ − − +k 1 2 1 2 1 1 2 2Ω Ω

The spin-flip process in Hint is highly suppressed in the limit of 
| |Ω Ω1 2− k , whereas the same process is dominant in the case 
of | |Ω Ω1 2− k . Hence, by slowly ramping the Rabi frequencies 
Ω1 and Ω2 through one another, adiabatic swap of the quantum 
states of the two impurities can be achieved through rapid adi-
abatic passage, as shown in Fig. 3a. Generalizing to arbitrary length  
spin chains yields H S S S S Si i i i i i i i

z
int ( )= + +∑ ∑+

+
− −

+
+k 1 1 Ω , whereby 

the sequential adiabatic swap of quantum states along the spin 
chain can be achieved by successively tuning individual Rabi fre-
quencies across one another. During the adiabatic swap of a sin-
gle pair of spins, higher order interactions, such as those resulting 
from next-to-nearest neighbours, will be suppressed because of the 
differences in Rabi frequencies. By including the magnetic dipole 
coupling between the electronic spin of the NV register and the spin 
chain quantum channel, we arrive at an effective mixed spin chain 
with the DSCB connecting the two electronic spins of the vertically  
separated NV registers.

Crucially, such an adiabatic sequential swap is robust against 
variations in the coupling strength κ, which can be induced by the 
imprecise implantation of impurities that form the spin-1/2 chain; in 
particular, even for the case of varying κi,i + 1, perfect adiabatic swap 
occurs so long as the rate at which Ωi and Ωi + 1 are ramped through 
one another is sufficiently small. Within the proposed architecture, 
the impurities forming the horizontal spin chain will not induce 
operational errors during the vertical adiabatic sequential swap as 
the design principle allows for selective spin echoing (Fig. 5).

Next, we consider a second method, termed free-fermion state 
transfer (FFST) developed in ref. 36, to coherently couple NV regis-
ters in the horizontal direction. In contrast to the adiabatic sequential 
swap, the method utilizes only global control over dark impurities and 
effective Hamiltonian evolution. The relaxation of the requirement 
of individual control over elements of the dark spin chain renders 
this second method, applicable for coherent coupling between  
NV registers in horizontally adjacent plaquettes, transverse to the 
direction of the field gradient. In particular, the protocol achieves 
coherent coupling through an unpolarized, infinite-temperature 
spin chain, employing purely Hamiltonian evolution under

H g S S S S

S S S S

N

i

N

i i i i

FFST NV NV h c= + +

+ +

+ − + −

=

−
+

+
− −

+
+∑

( . .)

(

1 1 2

1

1

1 1k ))

(2)(2)

(3)(3)

(4)(4)

as shown in Fig. 3b. This Hamiltonian, obtained in a similar fashion  
equation (3), results in coherent interactions between NV centres, 
which is best understood through an analogy with eigenmode tun-
neling in a many-body system. Specifically, the spin chain described 
by HFFST can be viewed as a system of non-interacting fermions. As 
described in ref. 36, by tuning the NV centres into resonance with a 
single fermionic eigenmode, an effective three-state system can be 

Magnetic field gradienta

b

c

Uniform magnetic field

1

2

DSCBDSCB
2-

qu
bi

t g
at

e

2-
qu

bi
t g

at
e

�

� � � � gg

1

0

–1

NV2NV1

NV1

NV2

� � � � �

Ω5Ω4Ω3Ω2

Ω

Ω
∆

ΩN

N

N

Ω5–Ω4

Ω1

Ω2–Ω1

Ω3–Ω2

Ω4–Ω3

Figure 3 | DSCB-mediated coherent coupling of spatially separated 
NV registers. (a) Adiabatic sequential swap along the vertical direction, 
parallel to the magnetic field gradient. Individual addressing of impurities, 
enabled by the field gradient, allows for a slow ramping of the Rabi 
frequencies Ωi and Ωj through one another; this achieves adiabatic swap of 
the quantum states of the two impurities through rapid adiabatic passage. 
Thus, sequential adiabatic swap of quantum states along the spin chain can 
be achieved by successively tuning individual Rabi frequencies across one 
another. (b) FFsT in the horizontal direction, transverse to the magnetic 
field gradient. The coupling strength between the end qubits and the 
spin chain is g, whereas the interchain coupling strength is κ. schematic 
representation of the level structure of the nV electronic spin and a dark 
impurity spin. Controlling the nV-impurity coupling g is an essential 
component of FFsT and occurs by driving the nV in two-photon resonance, 
with Rabi frequency Ω and detuning ∆. (c) schematic circuit diagram 
outlining the protocol to achieve coherent coupling between the nuclear 
memory qubits of spatially separated nV registers. First, the nuclear and 
electronic qubits of a single register are swapped. next, the electronic 
qubits of the two nV centres to be coupled are swapped through the 
DsCB. Finally, a two-qubit gate between the electronic and nuclear  
spin of the second register is performed, before the memory qubit is 
returned to the nuclear spin of the original nV centre. 
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realized. Mediated by this fermionic eigenmode, the electronic states 
of two remote NV centres can be coherently swapped. Coupled with 
arbitrary two-qubit gates between the nuclear and electronic spin 
(Fig. 1b; Methods), an electronic swap gate enables universal com-
putation between spatially remote nuclear spin memories, as shown 
in Fig. 3c. Crucially, such a swap gate is insensitive to the polariza-
tion of the intermediate dark spins and high-fidelity quantum state 
transfer can be achieved, provided that the fermionic mode is delo-
calized and that the coupling, g, of the NV qubit to the spin chain is 
controllable. As detailed in the Methods, by utilizing the three-level 
NV ground-state structure (Fig. 3b), it is possible to fully control the 
NV-chain coupling. This tunability also ensures that FFST is funda-
mentally robust to experimentally relevant coupling-strength disor-
der, which could be induced by implantation imprecision. Indeed, 
by separately tuning the NV-chain coupling on either side of the 
DSCB, it is possible to compensate for both disorder-induced asym-
metry in the fermionic eigenmode as well as altered eigenenergies 
(Supplementary Methods)36–38.

Implementation, operational errors and gate fidelities. The spe-
cific implementation of the DSCB can be achieved with implanted 
nitrogen impurity ions. Dipole coupling between neighbouring 
nitrogen electronic spins forms the DSCB, whereas dipole cou-
pling between the NV and nitrogen electronic spins forms the 
qubit–DSCB interaction; non-secular terms of this magnetic dipole 
coupling are highly suppressed owing to the spatially dependent 
external magnetic field Bz(y), resulting in the effective interaction 
found in equation (2). In addition, the nitrogen impurities possess 
a strong hyperfine coupling, the principal axis of which can take 
on four possible orientations due to tetrahedral symmetry39–41. 
Dynamic Jahn–Teller (JT) reorientation of the nitrogen impu-
rity’s hyperfine principal axis results in two particular considera-
tions, namely the addressing of additional JT frequencies yielding 
a denser super-plaquette frequency spectrum and the JT-governed 
spin-lattice relaxation time T N

1  (Supplementary Methods). As T N
1  

is characterized by an Arrhenius rate equation40 at ambient tem-
peratures, a combination of a static electric field and slight cooling 
by ~50 K allows for a substantial extension of the relaxation time to 
~1 s; hence, in the following consideration of operational errors, we 
will assume that we are limited by T1

NV, the spin-lattice relaxation 
time of the NV centre.

We now consider various imperfections, which may introduce 
operational errors. In particular, we consider the errors associated 
with the sequential swap-mediated coupling between vertically 
adjacent registers and the FFST between horizontally adjacent reg-
isters. We begin by discussing the analytic error estimate associated 
with each method, after which, we summarize the results of full 
numerical simulations (Supplementary Methods).

First, we consider the accumulated infidelity associated with the 
adiabatic sequential swap,

p N p p p p perr
SS

off
SS

adia dip T
SS

T
SS≈ + + + +( ).1 2

The first term, poff
SS

i g∼ ( / )Ω ∆ 2, represents off-resonant cross-
talk induced by MW manipulations with Rabi frequency Ωi. Here 
∆g characterizes the gradient-induced splitting achieved within the 
super-plaquette frequency spectrum (Supplementary Methods). 
The second term, padia, corresponds to the non-adiabatic correc-
tion resulting from an optimized adiabatic ramp profile42–44. The 
third term, pdip i∼ ( / )k Ω 2, is directly obtained from equation (3) 
and corresponds to additional off-resonant errors. The fourth error 
term, pT

SS
1 corresponds to the depolarization error induced by the 

finite NV T1 time, while the final error term, pT
SS

2 corresponds to the 
infidelity induced by dephasing. As each error term is considered 
within the context of a single adiabatic swap, the total error contains 

(5)(5)

an additional factor of N, representing the chain length, which is 
plaquette size dependent.

We can similarly consider the accumulated infidelity associated 
with FFST,

p p p p p perr off f g T T
FFST FFST FFST FFST≈ + + + +1 2 .

In direct analogy to perr
SS , the first term in perr

FFST corresponds to the 
excitation of an NV register by off-resonant MW fields. The second 
term, pf, corresponds to the undesired coupling with off-resonant  
fermionic modes. Since the coupling strength is characterized by 
g N/ 36, while the splitting of the eigenenergy spectrum ~κ/N, such 
an off-resonant error induces an infidelity ∼ ( )( / )/( / )g N Nk

2
. The 

third error term, pg, results from the protocol designed to control, 
g, the NV-chain coupling (see Methods for details). Directly analo-
gous to perr

SS , the fourth and fifth terms correspond to errors induced 
by the operational time, tFFST, which causes both depolarization and 
dephasing.

Finally, we perform numerical simulations, taking into account 
the nitrogen JT frequencies, to characterize the infidelity of both 
the adiabatic sequential swap and FFST within the NV architecture, 
as shown in Fig. 4. The results of these calculations are in excel-
lent agreement with the above theoretical predictions. In particular, 
these simulations reveal that, for sufficiently long T1 100NV ∼ ms,  
operational infidelities in both DSCB methods can be kept  
below 10 − 2.

These simulations clearly show that the T1 time of the NV elec-
tronic spin is of critical importance in obtaining high-fidelity quan-
tum operations. While at room temperature, T1 appears to vary 
depending on the particular sample and on the specific properties 
of the local NV environment, such as strain, values on the order of 
10 ms are generally obtained24,39. However, the spin-lattice relaxa-
tion mechanism governing T1 is most likely related to an Orbach 
process45,46, which is strongly temperature dependent. In such a 
case, modest cooling of the sample by ~50 K, is likely to extend T1 

(6)(6)
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Figure 4 | Numerical simulation of the DSCB fidelity. (a) The operational 
infidelity associated with the adiabatic sequential swap for N = 18. The 
simulations account for the JT orientation of nitrogen impurities and utilize 
the optimized adiabatic ramp profile42. simulations utilize an optimized 
coupling strength of 8.71 kHz (18.1 nm spacing). Full numerical integration 
of the time-dependent schrödinger equation produces infidelity contour 
plots as a function of total swap time and T1

nV. (b) numerical simulations 
of the operational infidelity associated with FFsT for N = 7. non-nearest 
neighbour interactions are assumed to be refocused through dynamic 
decoupling as described in the methods. simulations, which utilize an 
optimized coupling strength of 12.6kHz (16 nm spacing), are based on 
a full diagonalization and also account for the JT orientation of nitrogen 
impurities. Infidelity contour plots are again shown as a function of total 
swap time and T1

nV.
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by more than an order of magnitude, thereby making high-fidelity 
gates possible.

Given that such numerical estimations suggest the possibility of 
achieving high-fidelity two-qubit operations between remote NV 
registers, the proposed architecture seems well suited to the imple-
mentation of topological quantum error correction. In particular, 
we imagine implementing a 2D surface code, which requires only 
nearest-neighbour two-qubit gates and single-qubit preparation 
and measurement23,47,48. Recent progress in optimizing this sur-
face code has yielded an error threshold of ε~1.4% (ref. 49), which 
is above the estimated infidelity corresponding to both the adi-
abatic sequential swap and FFST; thus, in principle, implementation  
of such a 2D surface code can allow for successful topological  
quantum error correction, and hence, fault tolerant quantum  
computation50.

Discussion
The above considerations indicate the feasibility of experimen-
tally realizing a solid-state quantum computer capable of operat-
ing under ambient conditions at or near room temperature. We 
emphasize that a majority of the elements required for the realiza-
tion of individual qubits in our architecture have already been dem-
onstrated. In our approach, these techniques are supplemented by 
both a new mechanism for remote register coupling between NV 
centres as well as a hierarchical design principle, which facilitates 
scalability. The remote coupling mechanisms discussed can natu-
rally be implemented via nitrogen ion implantation in ultra-pure 
diamond crystals and are robust to realistic imperfections and  
disorder36. Moreover, single errors during quantum state transfer 
are localized to individual transport channels and do not have a 
propagating effect on the remaining computation.

While we hope that the proposed architecture evinces the  
feasibility of room temperature quantum information process-
ing, the implementation and integration of the various proposed  
elements still require significant advances in areas ranging from 
engineering to materials science. Crucially, recent results have 
demonstrated substantial progress towards overcoming challenges 
such as the optimization of planar microcoil arrays51,52 and efficient 
beam steering in micromirror systems53. Furthermore, by eliminat-
ing requirements for cryogenic temperatures, our blueprint aims to 
make the realization of a scalable quantum computer significantly 
more practical.

The present work opens a number of new directions that can 
subsequently be explored. In particular, although we have consid-
ered the direct errors associated with DSCB-mediated coupling, it is 
instructive to note that the fidelity of such quantum gates can often 
be significantly improved, using techniques from optimal control 
theory54,55. For example, such methods of optimal control, while 
negating the detrimental effects of decoherence, can also simulta-
neously allow for the implementation of high-fidelity gates, despite 
both frequency and coupling disorder as induced by ion implan-
tation errors. Indeed, the ability to precisely guide the quantum 
evolution via optimal control, even when the system complexity 
is exacerbated by environmental coupling, provides an alternative 
solution to improve single- and two-qubit gate fidelities56. In addi-
tion, it is well known that the local strain field surrounding each 
NV centre can significantly alter the register’s properties; hence, 
through a detailed understanding of electric field induced strain,  
it may be possible to improve the coherence properties of the  
qubit. Moreover, the long coherence times of individual P1 centres, 
each of which harbours an associated nuclear spin, suggest the pos-
sibility of utilizing these dark spins as computational resources in 
and of themselves57. Beyond these specific applications, a number 
of scientific avenues can be explored, including, for example,  
understanding and controlling the non-equilibrium dynamics of 
disordered spin systems.

Methods
Controlling qubit-chain coupling in the NV architecture. To achieve an effec-
tive Hamiltonian of the form given by equation (4), it is essential to control the 
coupling strength between the NV register and the neighbouring impurity. Here we 
utilize the three levels of the NV electronic spin58 to effectively control g, as shown 
in Fig. 3b, whereby the Hamiltonian (under MW driving) can be written as

H

S S SN N
x

NV

= − 〉〈 + − 〉〈−
− 〉〈 + 〉〈− +

− +
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where Ω represents the Rabi frequency on the NV register, ∆ represents the associ-
ated detuning, and ΩN represents the Rabi frequency on the nitrogen impurity. In 
this case, as the NV two-photon detuning is zero, it is convenient to define bright 

and dark states, | | |B〉 = 〉+ − 〉1 1
2

 and | | |D〉 = 〉− − 〉1 1
2

; further, in the resulting 

two-level picture, the associated dressed states are | | ( / ) |+〉 ≈ 〉 + 〉B 2 0Ω ∆  and 
| | ( / ) |−〉 ≈ 〉 − 〉0 2Ω ∆ B , in the limit Ω ∆ . Hence, rewriting the Hamiltonian in 
this limit yields
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impurity. The coupling term can be further re-expressed as
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Thus, by working within the NV subspace {|D〉,| − 〉}, it is possible to completely 
control the coupling between the NV register and Nitrogen impurity, g ∼k ( / )Ω ∆ ,  
by tuning the Rabi frequency and detuning. It is possible to work in the required 
two-state subspace by ensuring that k∆ and hence, that the | + 〉 state remains 
unpopulated, with corresponding off-resonant error κ2/∆2.

Furthermore, we evince a possible scheme to coherently map the quantum 
information that is stored in the nuclear memory into the desired electronic sub-
space. For example, consider mapping |0〉(α|↑〉 + β|↓〉) to (α| − 〉 + β|D〉)|↑〉,  
where the first (tensor) factor corresponds to the electronic state and the second 
corresponds to the nuclear state of a single NV. The proposed mapping can be 
achieved in a two-step process. First, by simultaneously performing a π − pulse on 
the transitions |0〉|↓〉→| − 1〉|↓〉 and |0〉|↓〉→|1〉|↓〉 with oppositely signed 
Rabi frequencies, one can map |0〉|↓〉 to |D〉|↓〉. Next, one utilizes an RF pulse 
to flip the nuclear spin, which yields |D〉|↓〉→|D〉|↑〉. Finally, turning Ω on in 
an adiabatic fashion ensures that the state preparation populates only |D〉 and | − 〉, 
thereby mapping the quantum information into the desired electronic subspace.

Arbitrary two-qubit gates within the NV register. Whereas the DSCB enables 
long-range quantum logic between spatially separated NV electronic spins, univer-
sal two-qubit gates between the nuclear spin quantum memories require additional 
local logic between nuclear and electronic spins, as outlined in Fig. 1b. Here we 
specify, in detail, the implementation of such local logic gates. A strong MW pulse 
(with ΩMW A) can perform an arbitrary electronic spin rotation independent 
of the nuclear spin state. This can be mapped to a nuclear spin rotation by imple-
menting a swap gate between the nuclear and electronic spins. Such a swap gate 
can be decomposed into three controlled-NOT gates: CeNOTn CnNOTeCeNOTn. 
A CeNOTn gate can be accomplished by utilizing an RF π-pulse (with ΩRF A),  
which flips the nuclear spin conditioned on the electronic spin being in |1〉e. 
Finally, a hyperfine-driven controlled-phase gate enables the remaining CnNOTe 
gate (up to single Hadamards on the electronic spin). This demonstrates that a 
universal set of local two-qubit gates between NV electronic and nuclear spins can 
easily be achieved with only MW and RF controls26. Such arbitrary local logic is 
crucial to enable the preparation of nuclear spin quantum information and forms 
an important portion of DSCB-mediated remote coupling (Fig. 3c).

Specific implementation of architecture. In this section, we offer a specific 
implementation of the architectural design principle and discuss the various in-
gredients required to achieve DSCB-mediated coherent coupling between spatially 
separated NV registers. In particular, we consider the refocusing of non-nearest 
neighbour interactions along the horizontal spin chain.

(7)(7)

(8)(8)

(9)(9)
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The effective Hamiltonian evinced in equation (4) has nearest neighbour form; 
although next-nearest-neighbour interactions will represent a correction, we show 
that such interactions can be refocused within the current architectural design, and 
further, that, in principle, interactions beyond next-nearest-neighbour can also 
be refocused. In particular, the horizontal spin chain (N total spins) is arranged 

in a staggered saw-tooth fashion, as shown in Fig. 5. Within such an architecture, 
nearest neighbour coupling terms correspond to all pairs of adjacent spins, each 
separated by ~20 nm, with corresponding interaction Hamiltonian

H S S S S S S S SN N A B B C C D D A= ( )∑ + − + − + − +
′

−+ + + +k h.c.

where the sum runs over all nearest neighbour pairs in a given dark spin chain. 
Thus, next-to-nearest neighbour terms for each spin correspond to the subsequent 
strongest interaction

H S S S S

S S S S
NN NN A C B D

NN C A D B

= +

+ + +

∑ + − + −

′
+

′
− +

′
−

k

k

( )

( ) . .h c

where the prime denotes the next link in the saw-tooth chain as shown in Fig. 5.  
In addition to the impurity spins, FFST incorporates the electronic spin of the  
NV register into a mixed spin chain. It is important to note that the spin-flip 
Hamiltonians HN and HNN are derived from the secular approximated Ising cou-
pling by the application of driving fields as per equation (3). As each row (1,2,3,4) 
is separately addressable by virtue of the magnetic field gradient (applying four 
frequencies per row to ensure that all JT and nuclear spin states are addressed), it 
is possible to apply a spin-echo procedure to refocus the next-nearest-neighbour 
terms. In particular, by flipping the spins in rows 1 and 2 (Fig. 5) after time Td/2, 
where Td is a small fraction of the desired evolution duration, the next-nearest-
neighbour interactions are refocused since each term contains spins from only row 
1 or 2. However, half of the nearest neighbour interactions are also refocused, leav-
ing effective evolution under the Hamiltonian H S S S Seff N A B C D1 = ( )∑ + − + −+ +k h.c. 
Analogously, by flipping the spins in rows 2 and 3, effective evolution under the 
Hamiltonian H S S S Seff N B C D A2 = ( )∑ + − +

′
−+ +k h.c. is achieved, again with HNN 

refocused. Combining the evolution according to Heff1 and Heff2 yields the desired 
nearest-neighbour Hamiltonian with next-to-nearest neighbour interactions 
refocused. However, as Heff1 and Heff2 do not commute, it will be necessary to 
employ piecewise evolution according to the Trotter–Suzuki formalism59. Further 
refocusing of higher order non-nearest neighbour interactions can also be achieved 
by extending the number of rows corresponding to the saw-tooth design; such  
an extension allows for the isolation of each specific pair of nearest neighbour 
interactions, thereby achieving the desired nearest-neighbour evolution through  
a Trotter sequence. 
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We show that qubits coupled sequentially to a mesoscopic static completely mixed spin bath via the Heisen-
berg interaction can become highly entangled. Straightforward protocols for the generation of multipartite
entangled Greenberger-Horne-Zeilinger �GHZ� states are presented. We show the feasibility of an experimental
realization in a quantum dot by the hyperfine interaction of an electron with the nuclear spins.
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I. INTRODUCTION

The quest to realize quantum information processing
�QIP� has motivated an impressive race to implement high-
precision preparation and manipulation of isolated two-level
quantum systems �qubits� in a wide variety of physical
settings.1 A hallmark achievement for each such approach is
the generation of quantum entanglement through controlled
interaction between two or more qubits. Since switchable
direct interactions between qubits often entail additional de-
coherence mechanisms, many QIP proposals rely on interac-
tions mediated by an additional quantum system. As a rule
this mediator �just as the qubits themselves� needs to be pre-
pared in a pure state to achieve high-fidelity quantum opera-
tions, and it may look futile to use a high-entropy mesos-
copic spin bath for this task. In contrast to these
expectations, we show here that high-fidelity entanglement
generation can be realized even if the qubits can interact only
with an arbitrarily mixed spin bath, provided that this inter-
action can be switched on and off, single-qubit unitaries are
available, and the bath has slow internal dynamics. This is
motivated by and will be illustrated through the example of
electron spin qubits in quantum dots �QDs�,2 where the en-
semble of lattice nuclear spins represents a strongly coupled
but slowly evolving spin bath.

Nuclear spins in quantum dots have received much
theoretical3–8 and experimental9,10 attention in the QIP con-
text as the main source of electron spin decoherence through
the strong hyperfine coupling. It has also been noted that
their slow internal dynamics and long �expected� decoher-
ence time11 make the ensemble of nuclear spins useful as a
quantum memory12 or for quantum computation.13 These ap-
plications, however, require careful yet unachieved prepara-
tion of the nuclear system. What we show here is that the
unprepared highly or even maximally mixed �nuclear� sys-
tem is able to mediate coherent interaction between electrons
and thereby allows the generation of highly entangled states
of many �electron spin� qubits without any electron-electron
interaction.

We consider a QD in the single-electron regime14 and
assume the availability of single-electron state preparation
and measurement as well as the controlled shuttling of pre-
pared electrons into and out of the QD, all of which have
been demonstrated experimentally.15 Additionally required is
control of the detuning �e.g., by a magnetic or electric field�,
which switches the hyperfine �HF� interaction between reso-

nant and off-resonant regimes. We first show how sequential
interaction of three electrons with the nuclear bath can gen-
erate a maximally entangled pair of electron spins. More
generally, the class of states that can be generated via the
spin bath is characterized in terms of matrix product states.
Finally we show that imperfect electron spin operations, in-
homogeneous couplings between electron and nuclei, and
modifications to the ideal static spin bath still allow for the
scheme to be realized. In situations where the spin-orbit cou-
pling is large, our scheme can be an interesting alternative to
the standard exchange based setups, because it does not
involve occupation of any higher orbital levels.16,17

II. ENTANGLEMENT GENERATION

We consider each electron coupled via the uniform
Heisenberg interaction to the bath of N nuclear spins and to
an external magnetic field Bz ��=1�,

H =
A

2N
�I+S− + S+I−� +

A

N
IzSz + g��BBzS

z. �1�

S is the spin operator for the electron and I�=�iIi
� are the

three components of the collective nuclear spin operators
��= � ,z and �I+ , Iz�=−I+ and �I+ , I−�=2Iz�. g� is the electron
g factor and �B is the Bohr magneton. We consider spin-1/2
nuclei and neglect bath dynamics, the bath spins’ Zeeman
energies, and inhomogeneities in the Heisenberg couplings
for now. We discuss the validity of these approximations
toward the end of this paper.

We use the Dicke basis ��I ,m ,��	, where I�I+1� is the
eigenvalue of the collective angular momentum operator I2,
the eigenvalue of Iz is given by m, and � is the permutation
quantum number.18 The initial state of the spin bath in the
following is the identity

�bath =
1

2N �
I,m,�

�I,m,��
I,m,�� = 12N/2N. �2�

In the following we omit �, which does not enter in the
dynamics. This situation of a completely unknown bath state
is, e.g., a suitable description for GaAs QDs even at tempera-
tures as low as 100 mK.9,10 In the following, time will be
given in units of N /A. Even though the idea we present is
applicable to any �quasi�static bath, we perform all estima-
tions for GaAs, i.e., in particular A−1�40 ps.

The first electron spin �which we also refer to as ancilla
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electron� is prepared in the state �↑ � and interacts resonantly
for a time t1 with the nuclear spin bath,

U�I,m,↑� = cIm�t1��I,m,↑� + sIm�t1��I,m + 1,↓� , �3�

with U=e−iHt1 and

cIm�t1� = cos� �1 + 2I�t1

4
 − i

1 + 2m

1 + 2I
sin� �1 + 2I�t1

4
 ,

sIm�t1� =
− 2i��I − m��1 + I + m�

1 + 2I
sin� �1 + 2I�t1

4
 .

Then the next electron spin, with initial state �+ �
=1 /�2��↑ �+ �↓ ��, interacts for a time t2 off-resonantly �e.g.,
in the presence of a large Bz� with the spin bath. For
g��BBz�A /�N, the flip-flop part of the Hamiltonian can be
approximately neglected,19 yielding

V�t2��m,+� =
1
�2

�m��e−i�B̃+m�t2/2�↑� + e+i�B̃+m�t2/2�↓�� ,

where B̃=g��BBzN /A and the index I has been omitted for
brevity. Remarkably, by choosing the interaction time t2=�,
the state of the electron is transformed to �−i�m��−�m�, i.e., for
even m=2k to �−1�k�+ � and for odd m=2k+1 to −i�−1�k�−�.
For convenience we assume that B̃t2 /2=2��, ��N, which
is adjusted by the “free” parameter of the large field. With
the third electron, also in �+ � initially and with the same
interaction, the state becomes

�cIm�t1��I,m,↑��� �� � sIm�t1��I,m + 1,↓��� �� , �4�

with upper �lower� signs referring to even �odd� m.
In the final step, the ancilla electron interacts resonantly

with the nuclei again �cf. Eq. �3��, giving

�cIm�t1��� ���cIm�t1��m,↑� + sIm�t1��m + 1,↓�� ,

�sIm�t1��� ���cIm
� �t1��m + 1,↓� + sIm�t1��m,↑�� �5�

for even/odd m, and is eventually measured projectively in
the z basis. If the measurement outcome is ↓, it is clear from
Eq. �5� that in each subspace the second and third electrons
are in the maximally entangled state

�m + 1���+ +� − e�i	m�− − ��/�2, �6�

where the phase 	m=2 arg�cIm� depends on the quantum
numbers I and m, leading to a washing out of the entangle-
ment when the average over the different subspaces is taken.
However, for short times ��2I+1�t1
1 for typical values of
I��N�, this phase tends to zero and near ideal entanglement
is created, albeit at the price of a lower success probability,
see Fig. 1.

III. MULTIPARTITE ENTANGLEMENT

The presented scheme generalizes in a straightforward
manner to multipartite entanglement creation. Following the
same protocol using n electrons with arbitrary initial states
��1� , . . . , ��n�, the final state becomes

��n� =
1
�2

�1 + ��− 1�m+1iz��n	��1, . . . ,�n� , �7�

where the matrices are given in the standard z basis and we
assumed the short-time limit t1→0 for clarity. If ��k�= �+ �
for all k, this is an n-partite Greenberger-Horne-Zeilinger
�GHZ� state. The m-dependent relative phase in the above
equation restricts to generation of GHZ states with even par-
ticle number.

When multiple resonant interactions with the ancilla and
varying interaction times are allowed, a larger class of states
becomes accessible. To see which states can in principle be
prepared, we exploit the similarity of our setup to the se-
quential entanglement generation scheme analyzed in Ref.
20. There it was shown that all the matrix product states
�MPSs� of bond dimension d can be prepared if a string of
qubits interacts sequentially with a d-dimensional ancilla
system and arbitrary unitaries can be performed on ancilla
and qubit in every step.

To apply this result to the present case, the ancilla electron
and nuclear spin system together represent the control qubit:
an effective d=2 system with Hilbert space spanned for
given �I ,m� by ��I ,m ,↑� , �I ,m+1,↓�	. To see that arbitrary
unitaries are possible, note that x rotations of the control
qubit are caused by resonant interaction, while a static
Bz field causes z rotations. From these, all single-qubit
gates on the control qubit can be constructed. The
off-resonant interaction considered before performs essen-
tially a CNOT gate between the passing and the control qubit.
In the CNOT gate the “control qubit” is the control and the
passing electron is the target, in the �↑ ,↓� and �� � basis,
respectively. Combined with single-qubit gates �on the pass-
ing electron�, this seems to be enough to allow for arbitrary
transformations on the coupled control-target system. How-
ever, the situation is more complicated since the effective
gate performed by the off-resonant interaction differs for
even and odd parities of the control qubit, namely, V���
=e�−1�mi��/4�zx,1

m CNOT1→2x,1
m . I.e., not only there is, as seen

(

(

(

)

)

)

FIG. 1. �Color online� Left: Sketch of the protocol. �a� The
z-polarized “control electron” interacts resonantly with the nuclear
spin bath. �b� A sequence of x-polarized electrons interacts off-
resonantly with the bath. �c� The control electron interacts reso-
nantly again and is then measured in the z basis. Right: Time de-
pendence of overlap F with Bell state �	−�= ��++�− �−−�� /�2 �solid
blue line� for N=103. The dashed red line shows the probability P
for a ↓ measurement.
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before, a parity-dependent phase but also whether logical-0
or logical-1 controls the bit flip in the passing qubit depends
on the parity of m. One way to remove this m-dependence
and enable the generation of arbitrary states is to perform an
“Iz parity measurement” by sending an electron �+ � into the
dot, and then measure it in the �� � basis after off-resonant
interaction for a time �. Depending on the outcome, either
the odd or the even states are projected out. Remarkably,
gaining this single bit of information about the
2N-dimensional bath then allows us to remove all
m-dependences and perform clean CNOT gates. Hence the
interactions outlined above are sufficient to prepare all d=2
MPSs with high fidelity. If the passing electrons can be
brought into interaction with the ancilla again at any time,
arbitrary two-qubit gates can be performed, which implies
that all matrix product states with two-dimensional bonds
can be sequentially created.20

Direct resonant interactions lead to very low-fidelity x ro-
tations due to averaging over the different subspaces, indi-
cating that prior measurement21–23 or cooling24 of the spin
bath might be necessary. More sophisticated control
schemes, however, allow for near-unit-fidelity single-qubit
rotations with no prior preparation: In Ref. 25 it was proven
that high-fidelity arbitrary single-qubit gates can be effected
by a Hamiltonian H=�z+��x cos 	+y sin 	�, when
only the parameter 	 can be controlled precisely. For � and
� it is sufficient to know that they are nonzero for some
value of a controllable external parameter and zero for an-
other. In our situation we have the three Hamiltonians H1

=�z=B�Iz /2 �nuclear Zeeman�, H2= A
2N ��m+1 /2�z

+�I,mx� �resonant HF�, and H3= A
2N ���B̃+m+1 /2�

+ B̃�I / ��Bg���z �off-resonant HF� at hand. The Pauli matri-
ces act on the control qubit, �I is the nuclear magnetic mo-
ment, and �I,m=�I�I+1�−m�m+1�. The plus and minus signs
for H3 can be effected through spin flips of the passing elec-
tron �recall that xe

iHtx=eixHxt and xzx=−z�. These
Hamiltonians can be switched on and off �adiabatically26� at
will. Appropriate iterations of evolutions can lead to effec-
tive Hamiltonians of weighted sums and commutators of
H1,2,3. In particular, the subspace independence of the param-
eter ��B allows for generation of any weighted sum of x
and y with the weights being �I ,m� independent, thus mak-
ing the results of Ref. 25 applicable. We have thus shown
that while naive use of resonant interactions will lead to poor
gate fidelities for the control qubit, enhanced control
schemes still allow for full access to high-fidelity rotations.
Hence, in principle, universal quantum computation on an
electron spin quantum register can be performed, with all
interactions mediated by the highly mixed spin bath.

IV. EXPERIMENTAL FEASIBILITY

We discuss now various couplings that have been ne-
glected in the idealized Hamiltonian �1� but are present in the
QD setup. We are concerned here only with their effects on
the basic entanglement generation scheme. It is clear that the
scheme can only work as long as it is fast compared to the
electron T2 time, since the coherence of the ancilla electron

must be preserved. We see below that neither nuclear dynam-
ics nor inhomogeneity place more stringent conditions on
our scheme.

A. Inhomogeneity

The HF Hamiltonian in QDs has a slightly different form
from the one in Eq. �1�, because the collective bath operators
have a spatial dependence A /NI�→A���i�iIi

�, with
�= � ,z. The coupling constants �i are ��I,i��e�ri��2, with
��e�ri��2 being the probability of finding the electron at loca-
tion ri, and A=� j� j denotes now the effective �average� hy-
perfine coupling strength. We focus our analysis on short
resonant interaction times �t1
�N /A. The electronic state
after the above protocol conditioned on a ↓ measurement is
proportional to

�
�,��


���A+ei�1
z+2

z �Azt2 + ei�1
z+2

z �Azt2A+����+ +� � H.c.,

where the Pauli matrices act on the off-resonant electrons
and ���= �i1¯ iN� and ����= �i1�¯ iN� � label the orthonormal
basis of Ij

z eigenstates. Evaluating the matrix elements and
introducing the normalization, we get

��t2� =
1

N�t2��j

� j
2 �

i1,. . .,iN=�1/2
ij=−1/2

��+0+0� + �− j− j�� � H.c., �8�

with the states �+0�t2��=ei�0t2/2�↑ �+e−i�0t2/2�↓ � and �− j�t2��
=ei�jt2/2�↑ �+e−i�jt2/2�↓ �, both of which depend on the nuclear
spin configuration �i	 via the frequencies �0=�0��i	�
=����i� and � j =�0+� j and the normalization N�t2�
=� j� j

2�3+cos�� jt2��. The time dependence of the states has
been omitted for brevity in the above formula. Straightfor-
wardly, one now determines the fidelity F�t2�= 
	−���t2��	−�
with the desired maximally entangled state �	−���+0+0�
+ �−0−0� as

F�t2� = 2 � � j
2��

j

� j
2�3 + cos�� jt2�� . �9�

This expression readily gives the fidelity for arbitrary par-
ticle numbers and arbitrary distributions of coupling con-
stants. For N�1, the obtained value is independent of par-
ticle number, and for the relevant situation of Gaussian
coupling F=0.90, 0.83, and 0.78 for one dimension, two
dimensions, and three dimensions, respectively. Including
the difference in magnetic moments for Ga and As �75As:
�I,As=1.44; 69Ga: �I,Ga,1=2.02 �60%�; and 71Ga: �I,Ga,2
=2.56 �40%� �Ref. 7��, these values become F=0.83, 0.78,
and 0.74, indicating that our scheme is not compromised by
realistic inhomogeneities.

For small inhomogeneity we find the optimal time t2
�opt� by

setting the time derivative of F zero and expanding the equa-
tion in terms of the deviations � j =� j −��, where ��

=� / t2
�opt�. Going to second order in the small parameters

� j /��, the ensuing quadratic equation yields ��

=�1�5−�1+24�1−�2 /�1
2�� /4, with �x= 1

N� j� j
x. Plugging

t2
�opt� back into Eq. �9� and keeping terms up to second order,

we find F�� /���=1− �
2N� j�� j /���2.
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B. Nuclear Zeeman energies

For the times considered, nuclear Zeeman energies lead to
an important relative phase Bz�I,jt2 for each of the two terms
in the sum of the conditional state given in Eq. �8�. Consid-
ering one homogeneously coupled species of nuclear spins,
the state of Eq. �6� will have an additional m-dependent
phase. In each invariant subspace this produces an overall
phase �Bz�It2m and a relative phase �Bz�It2 between the
two parts of the superposition. This might not seem harmful,
but due to the parity effect, the sign of the phase depends on
the parity of m. Since this phase is of order �, it could spoil
the protocol. However, by simply waiting for an appropriate
time tp after each of the n electrons has passed, the total
relevant phase is �−1�mnBz�I�t2+ tp�; with tp+ t2 an integer
multiple of � / ��IBz�, it is again m independent. By the same
procedure, the nuclear Zeeman related phase can be removed
for single-species inhomogeneous systems.

For systems with strongly varying nuclear magnetic mo-
ments �I,j, the relative phase depends on “which nuclear spin
has flipped” and the waiting time needs to be chosen such
that all the relative phases are close to 2k�. Otherwise the
final fidelity may be strongly degraded. For the three species
in GaAs this is the case, e.g., for Bz�t2+ tp��7�, and assum-
ing that a flat wave function still allows for a fidelity �0.9
with moderate overhead in time. In principle, one can com-
pletely cancel the undesired phase by removing the electrons
from the QD and reversing the magnetic field for tp= t2.

C. Bath dynamics

The major internal dynamics of nuclear spins in QDs
stems from the indirect hyperfine mediated interaction and
the direct dipolar interaction.6,8 Both mechanisms lead to
bilocal errors that contain spin-flip terms ���d

kl+�i
kl�Ik

+Il
− and

phase changing zz terms ��d
klIk

zIl
z. The transition rates for

direct and indirect interactions are �dd /rkl
3 and �i� j /�e, re-

spectively, where �e is the electron Zeeman energy and rkl
= �rk−rl�.

The dephasing interactions �Ii
zIj

z lead to a relative phase
between the terms in Eq. �8�, similar to the nuclear Zeeman
energies. The energy difference, i.e., �in a mean-field treat-
ment� the Zeeman splitting of a single nuclear spin in the
field of its neighbors, is a few times �dd.24 Thus we need
N�dd / �r0

3A�
1; given �dd /r0
3�0.1 ms �Ref. 7� for nearest

neighbors and A�40 ps, this condition is readily fulfilled
even for large dots.

We have seen above that for each term in the mixed state,
the qubits rotate on the equatorial plane of the Bloch sphere
with frequencies � j when the jth nuclear spin has been
flipped. If this particular spin is involved in a spin flip due to
bath dynamics, the resulting rotation with “wrong” fre-
quency spoils the entanglement. The errors in the rotation
angle for the term containing the flip of the jth spin are �d,i

j

=��k��d,i
kj t�2�� j −�k�2�t2

opt�2, and the final overall errors are
� j� j

2�d,i
j /� j� j

2. We evaluate the above sums in the continuum
limit for Gaussian couplings and get for the indirect flips a
total error of �i�

2A�3
2 / ��4

2��, where �i is determined by the
integrals over the coupling constants. Taking A /��1 for the
large ��1 T� fields that we require, we find errors of 2.4%,

2.0%, and 1.5% for one dimension, two dimensions, and
three dimensions, respectively, for N=104 �we define N here
as the number of nuclei within the 1 / �2e� width of the
Gaussian�. For the direct nuclear dipole-dipole transitions,
the error is of size �d�2�3

2�dd / �Ar0
3�4

2�, where numerical
evaluation of the “dipolar integrals” �d yields 0.01%, 0.8%,
and 5% for the same situation as above. This overall error is
thus on the order of a few percent for realistic situations.

D. Storage

We implicitly assumed the possibility of storing the elec-
trons protected from any bath. In QD structures this could be
achieved by shuttling the electrons to a nuclear spin-free re-
gion or employing dynamical decoupling schemes; see, for
example, Ref. 6. The required storage times of a few tens of
microseconds should be readily achieved.

E. Imperfect electronic operations

A finite probability that an up electron is wrongly detected
as a down electron �or vice versa� degrades the final en-
tanglement. However, as only one electron needs to be mea-
sured, the effect is no worse for the n-partite GHZ state than
for the Bell state ��+�. The same goes for variations in the
resonant interaction time t1. In contrast, errors in the electron
preparation and variations in the off-resonant interaction
time t2, since they affect each of the n electrons, lead to a
fidelity reduction that scales exponentially with n. Variations

in t2 must be such that B̃�t2
1, with B̃�A /�N, which
makes this the most stringent but still realistic27,28 require-
ment for electron timing.

V. SUMMARY AND CONCLUSIONS

We have considered the Heisenberg interaction of electron
spin qubits with a long-lived spin bath in a situation where
nothing is known about the state of the bath. We have shown
that nevertheless high-fidelity multipartite entanglement can
be created via this bath.

The qubits interact neither directly with each other nor
simultaneously with the bath at any time. Our protocol thus
demonstrates that even the interaction with infinite tempera-
ture systems can mediate highly coherent operations and thus
represent a valuable resource for quantum information pro-
cessing that merits further investigation. In fact, when only
one bit of information is extracted from the spin bath, arbi-
trary gates between the bath and the qubits are possible, and
all matrix product states with two-dimensional bonds can be
created by sequential interaction. The explicit protocols we
presented can be realized in quantum dot setups and would
�in typical GaAs dots� allow for the creation of entanglement
between two electrons on a time scale of a few microsec-
onds.
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We show that superradiant optical emission can be observed from the polarized nuclear spin ensemble

surrounding a single-photon emitter such as a single quantum dot or nitrogen-vacancy center. The

superradiant light is emitted under optical pumping conditions and would be observable with realistic

experimental parameters.

DOI: 10.1103/PhysRevLett.104.143601 PACS numbers: 42.50.Nn, 78.67.�n

Superradiance (SR) is a cooperative radiation effect
resulting from spontaneous buildup and reinforcement of
correlations between initially independent dipoles. Its most
prominent feature is an emission intensity burst in which
the system radiates much faster than an otherwise identical
system of independent emitters. This phenomenon is of
fundamental importance in quantum optics and since its
first prediction by Dicke in 1954 [1] it has been studied
extensively (for a review see [2]). The rich steady state
properties of the associated dynamics can account for
strong correlation effects including phase transitions and
bistability [3,4]. Yet in its original form optical SR is
difficult to observe due to dephasing dipole-dipole
van der Waals interactions, which suppress a coherence
buildup in atomic ensembles.

In this Letter, we show that cooperative emission can
occur from the ensemble of nuclear spins surrounding a
quantum emitter such as a self-assembled quantum dot
(QD) or an nitrogen- vacancy (NV) center. The interaction
of the nuclear spin ensemble and optical field is mediated
by the electron spin of the emitter. Because of the indirect
character of the interaction, the dephasing van der Waals
interactions vanish in this setting.

We first explain the proposal using the example of an
NV center in a diamond. Then, we adapt the model to QDs,
which promise strong effects due to the large number of
involved nuclei. Despite the inhomogeneity of the nuclear
spin coupling and related dephasing processes, we predict
a SR-like correlation buildup in the nuclear spin ensemble
and a significant intensity burst of several orders of mag-
nitude in the optical emission profile. Finally, we point out
the possibility of observing phase transitions and bista-
bility in the nuclear system.

The superradiant effect is based on the collective hyper-
fine (HF) interaction of the electronic spin of the defect
(QD or NV) with N initially polarized proximal nuclear
spins. It is dominated by the isotropic contact term [5,6]
and reads in an external magnetic field (@ ¼ 1):

H ¼ g

2
ðAþS� þ A�SþÞ þ gAzSz þ!SS

z: (1)

Here S� and A� ¼ P
N
i¼1 gi�

�
i (� ¼ þ;�; z) denote elec-

tron and collective nuclear spin operators, respectively.
The coupling coefficients are normalized such that

P
ig

2
i ¼

1 and individual nuclear spin operators ��
i are assumed to

be spin 1=2 for simplicity; g gives the overall HF coupling
strength and !S denotes the electron Zeeman splitting. We
neglect the typically very small nuclear Zeeman and nu-
clear dipole-dipole terms.
Let us first consider NV centers, in which the effect can

be studied in a clean and relatively small spin environment.
Because of their extraordinary quantum properties, such as
ultralong decoherence times even at room temperature, NV
centers have attracted wide interest [7] resulting, e.g., in
the demonstration of entanglement and quantum gates
between the electron and proximal nuclear spins [8].
Both the NV center’s electronic ground (3A) and optically
excited states (3E) are spin triplet (S ¼ 1) [7]. In the
absence of a magnetic field, the ground state sublevels
jmS ¼ �1i are split from jmS ¼ 0i. In the following, we
assume that a B field is applied along the NVaxis to bring
jmS ¼ 0i and jmS ¼ 1i close to degeneracy [9]. In this
case, jmS ¼ �1i is off resonance and can be disregarded.
We focus on low-strain NV centers with well-defined
selection rules and assume that it is optically excited by
selectively driving the weakly allowed transition from
jmS ¼ 1i to a state jExi in the 3E manifold which decays
primarily into jmS ¼ 0i [10]; see Fig. 1(a). The nuclear
spin environment of the NV center consists of proximal
13C (I ¼ 1=2) nuclei in the otherwise spinless 12C matrix,
which are HF coupled to the electronic spin of the defect
center. The interaction is dominated by the Fermi-contact
term such that the coupling is isotropic (to first order) and
described by Eq. (1) (!S here contains both zero-field
splitting and Zeeman energy). Nevertheless in the simula-
tions conducted below, we included the small anisotropic
dipole-dipole terms.
We describe now the coupling of the nuclear spin to the

optical field as depicted in Fig. 1(b). It is best understood as
a two-step process: first, strongly driving a dipole-
forbidden optical transition of the jmS ¼ 1i spin state
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(the allowed transition is far off resonant) pumps the
electron into jmS ¼ 0i. Such Raman spin-flip transitions
have been demonstrated recently [10]. Since the short-
lived excited state is populated negligibly throughout the
process, we can eliminate it from the dynamics using
standard techniques and obtain a master equation for the
electron spin decaying with effective rate �r:

_� ¼ �rðS��Sþ � 1
2S

þS��� 1
2�S

þS�Þ � i½H;��; (2)

each decay being accompanied by a Raman photon.
Second, the return to state jmS ¼ 1i, necessary for the
next emission, occurs through H via a HF mediated elec-
tron spin flip (and nuclear spin flop). Thus, each Raman
photon indicates a nuclear spin flop and the emission
intensity IðtÞ is proportional to the change in nuclear
polarization. Starting from a fully polarized state, SR is
due to the increase in the operative HF matrix element
hAþA�i. The scale of the coupling is set by A :¼ g

P
igi.

For a small relative coupling strength � ¼ A=ð2�Þ, where
� :¼ j�r=2þ i!Sj, the electron is predominantly in its
jmS ¼ 0i spin state and we can project Eq. (2) to the
respective subspace. The reduced master equation for the
nuclear density operator reads

_� ¼ crðA��Aþ � 1
2A

þA��� 1
2�A

þA�Þ
� ici½AþA�; �� � igmS½Az; ��; (3)

where cr ¼ g2=ð2�Þ2�r and ci ¼ g2=ð2�Þ2!S.
As the electron is optically pumped into jmS ¼ 0i, the

last term—representing the electron’s Knight field—in
Eq. (3) vanishes. Assuming resonance (!S ¼ 0) the equa-
tion closely resembles the SR master equation which has
been discussed extensively in the context of atomic physics
[2] and thus SR effects might be expected. However, there
is a crucial difference: the inhomogeneous nature (gi �
const) of the operators A�. They do not preserve the
collective spin, affecting the relative phase between nuclei.
This could prevent the phased emission necessary for SR
[2,11,12]. However, as we shall see, SR is still clearly

present in realistic inhomogeneous systems. We take the
ratio of the maximum intensity to the initial intensity (the
maximum for independent spins) Icoop=Iind as our figure of

merit in the following: if this relative intensity peak height
is >1 it indicates cooperative effects.
To see that this effect can be observed at NV centers, we

simulate Eq. (2) numerically [13]. The number N of effec-
tively coupled nuclei can range from a few to a few
hundred, since the concentration of 13C can be widely
tuned [14]. The HF constants gi between the defect and
the nearest �40 nuclei were derived in [6] in an ab initio
calculation. Nuclei outside this shell (�7 �A) have a cou-
pling strength ggi weaker than 2�� 0:5 MHz and are not
considered here. The excited state lifetime of the NV
center has been measured as � � 13 ns [15,16]. Thus, we
adopt an effective rate �r ¼ 2�� 10 MHz for the decay
from jmS ¼ 1i to jmS ¼ 0i enabled by driving the Raman
transition. The intensity enhancements predicted by exact
simulations for small, randomly chosen, and initially po-
larized spin environments are shown in Fig. 1(c). In
samples of higher 13C concentration N can be larger and
stronger effects are expected.
One characteristic feature of SR is the linear N depen-

dence of the associated effects (already visible in Fig. 1).
Since the number of nuclei to which the electron couples is
much larger in a QD than in a NV center, QDs are particu-
larly attractive candidates for the investigation of SR. In
the following we study the dynamics of the QD system in
different regimes and we show that strong signatures of SR
can be expected in realistic settings.
Let us consider a self-assembled QD in which a single

conduction band electron is coupled by isotropic Fermi-
contact interaction to a large number of nuclear spins.
Optical pumping of the electron is realized by a Raman
process, driving a forbidden transition to a trion state [17],
and including the HF coupling we again obtain dynamics
as sketched in Fig. 1(b). For the optical pumping rate
values �r ¼ 2�� ð0:1–1Þ GHz are applicable [18,19]. A
comparison with the HF coupling constants reported for
different materials [20] shows that for InGaAs and CdSe
QDs at resonance Eq. (3) are not valid since the relative
coupling strength � � 1. We therefore consider the dynam-
ics of the system under conditions of a finite electron
inversion [using Eq. (2)]. In this regime, the electron can
be seen as a driven and damped two-level system: the
nuclei ‘‘pump’’ excitations into the electron, which are
damped by the Raman-mediated decay; cooperative be-
havior manifests in enhanced HF interaction. This en-
hancement directly translates into increased electron
inversion hSþS�i to which the emitted photon rate is
proportional and thus SR from a single QD can be ex-
pected. Let us rephrase this, since SR from a single emitter
is somewhat counter intuitive. Of course, on an optical time
scale, antibunched single photons will be emitted at a rate
below the optical decay rate. It is, in fact, typically much
slower since the emitter is pumped into the optically in-
active state jmS ¼ 0i. SR on time scales �1=�r consists

FIG. 1 (color online). (a) Simplified level scheme of NV center
with relevant � system (cf. the text and [10]). (b) Sketch of
relevant processes: electronic ground states are coupled by
optical pumping and HF flipflops; the states are labeled by the
z components of the electron and nuclear spin. (c) Icoop=Iind for

randomly chosen nuclear environments of an NV center. The
first nuclear shell is taken to be spinless, as due to their very
strong coupling they would evolve largely independent from the
ensemble.
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thus of lifting this ‘‘spin blockade’’ by HF coupling which
becomes increasingly more efficient as nuclear cooperative
effects kick in. As in the homogeneous case [2], this
enhancement is associated with the transition through nu-
clear Dicke states jJ;mi, jmj � J. Although J is not
preserved by inhomogeneous A�, we can use the Dicke
states to illustrate the dynamics. For instance, due to the
large homogeneous component in A�, its matrix elements
show a strong increase / J for states jJ;mi, jmj � J.

For large relative coupling strengths � 	 1 the electron
saturates and superradiant emission is capped by the decay
rate �r=2, prohibiting the observation of an intensity burst.
In order to avoid this bottleneck regime, we choose a de-

tuning !S ¼ A=2 such that 0< � ¼ A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r þ A2

p 
 1. In
this parameter range, the early stage of the evolution—in
which the correlation buildup necessary for SR takes place
[2]—is well described by Eq. (3). The nuclear phasing is
counteracted by the dephasing (inhomogeneous) part of the

Knight term (/g ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðgiÞ

p
=2 [21]), which can cause tran-

sitions J ! J � 1. However, the system evolves in a many-
body protected manifold (MPM) [22]: The term
�½AþA�; �� energetically separates different total nuclear
spin-J manifolds. A rough estimate of the ratio between
detuning and dephasing shows a dependence /�2, with
proportionality factor >1 (diverging in the homogeneous
limit). Thus for values � � 1 the correlation buildup
should be largely MPM protected. We now confirm these
considerations and show by numerical simulation of
Eq. (2) that a SR peaking of several orders of magnitude
can be observed in the Raman radiation from an optically
pumped QD; cf. Fig. 2. An exact numerical simulation of
the dynamics is not feasible due to the large number of
coupled nuclei and since the dynamics for inhomogeneous
coupling cannot be restricted to a low-dimensional sub-
space. To obtain IðtÞ / d

dt

P
ih�þ

i �
�
i i, we therefore use an

approximative scheme. By Eq. (2), these expectation val-

ues are related to fourth-order correlation terms involving
both the electron and nuclear spins. We use a factorization
assumption to reduce the higher-order expressions in terms
of the covariance matrix �þ

ij ¼ h�þ
i �

�
j i. Following [23],

we apply the bosonic Wick’s theorem, incorporating the
fermionic character of same-site nuclear spin operators
(½�þ

i ;�
�
i �þ¼1) and replace, e.g., h�þ

i �
z
jS

�i!ð�þ
jj� 1

2Þ�
h�þ

i S
�i��þ

ij h�þ
j S

�i. But the electron spin plays a special
role and factorizing it completely leads to poor results.
Therefore we also solve Eq. (2) for the main higher-order
term involving the electron, the ‘‘mediated covariance
matrix’’ ��

ij ¼ h�þ
i S

z��
j i. All other higher-order expecta-

tion values therein are factorized under consideration of
special symmetries for operators acting on the same site.
In the regimes accessible to an exact treatment, i.e., the

homogeneous case and for few inhomogeneously coupled
particles, the factorization results agree well with the exact
evolution (see the inset in Fig. 2). This shows that it quan-
titatively captures the effect of nuclear spin coherences
while allowing a numerical treatment of hundreds of spins.
Finally, in addition to the constant detuning !S ¼ A=2 for
the displayed simulations we compensated the Overhauser
field dynamically [24]. Furthermore, we assume a Gauss-
ian spatial electron wave function. The results obtained
with these methods are displayed in Figs. 2 and 3. For � �
1, the strong MPM protection suppresses dephasing, lead-
ing to pronounced SR signatures: A strong intensity burst,
whose relative height scales / N (for large N). For large
��1, the relative height is reduced only by half com-
pared to the ideal Dicke case. For smaller �, it decreases
further due to increased dephasing. For � 
 0:3, where
MPM protection is weak and the decay process is signifi-
cantly slowed down (cr/�2), even the linear scaling is lost.
From Fig. 3, one extrapolates that for a fully polarized

initial state a huge intensity overhead of several orders of
magnitude (�103–104) is predicted. If the initial state is not
fully polarized, SR effects are reduced. However, even
when, e.g., starting from a mixture of symmetric Dicke
states jJ; Ji with polarization P ¼ 60% [18,25] our simu-
lations predict a strong intensity peak and (for N 	 1) a

FIG. 2 (color online). Relative intensity under dynamical
Overhauser field compensation: N ¼ 212, !S ¼ A=2, and � ¼
0:3(I), 0.7(II), 0.99(III). (IV) shows the ideal Dicke SR profile [1]
as a reference. Inset: comparison of exact evolution and factor-
ization for N ¼ 9 inhomogeneously coupled spins (left peak,
scaled by factor 50) and N ¼ 212 homogeneous spins (� ¼ 0:7).
Fully independent emitters lead to an exponential curve slowly
decaying from 1 to zero and are therefore not depicted.

FIG. 3 (color online). Icoop=Iind for different values of �—the
Overhauser field is dynamically compensated and !S ¼ A=2 in
all cases—compared to the ideal Dicke case. The dashed line
corresponds to a partially polarized dot (cf. the text).
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linear N dependence: Icoop=Iind � 0:03N (� ¼ 0:99), i.e.,

only a factor 4 weaker than for full polarization.
Note that for the sake of simplicity, we consider I ¼ 1=2

nuclei in our simulations. In terms of particle numbers N,
this is a pessimistic assumption as typical QD host mate-
rials carry a higher spin. We can incorporate this effect by
treating higher spins as 2I homogeneously coupled spins
I ¼ 1=2, thus increasing the effective particle number by
the factor 2I. Most QDs consist of a few different species
of nuclei with strongly varying magnetic moments, in-
creasing the inhomogeneity of the system. However, in
the worst case the different species evolve independently,
diminishing the effect by a small factor corresponding to
the number of species. In our simulations, the effect was
shown to be much smaller.

We have neglected the dipolar and quadrupolar interac-
tion among the nuclear spins. The former is always negli-
gible on the time scale considered here [5]. The latter is
absent for nuclear spin I ¼ 1=2 (NV centers, CdSe QDs) or
strain-free QDs [18]. In strongly strained QDs it can be
important [26], and a term

P
i�iðIzii Þ2 must be added to

Eq. (1), where zi is defined as the main axis of the local
electric-field-gradient tensor.

Having seen that SR can be observed in experimentally
accessible nuclear spin ensembles, let us briefly explore
two further applications of this setting: nuclear spin polar-
ization and phase transitions. We first note that the master
equation Eq. (3) describes optical pumping of the nuclear
spins. Its steady states are the eigenstates of Az, which lie in
the kernel of A�, so-called dark states, and include the
fully polarized state. Hence the setting described by
Eqs. (2) and (3) can be used to polarize the nuclei [27],
i.e., to prepare an initial state required for SR.

Finally, nuclear spin systems may be used to study
further cooperative effects such as phase transitions. It is
known [3] that in the thermodynamic limit an optically
driven atomic system with collective decay—as de-
scribed by Eq. (3) for homogeneous operators and
mS ¼ !S ¼ 0—can undergo a second-order nonequilib-
rium phase transition in the steady state. In our setting an
effective driving can be established by a dc magnetic field
Bx perpendicular to the polarization direction. A semiclas-
sical treatment of the equations of motion deduced from
Eq. (2) predicts a similar phase transition in the combined
system of electron and nuclear spins in certain regimes.
Preliminary simulations confirm the validity of the semi-
classical results and also indicate the appearance of related
phenomena like bistability and hysteresis, which have
recently been observed in polarization experiments, e.g.,
[28]. A detailed analysis of these topics and an analytical
description of the SR dynamics presented here will be the
subject of a forthcoming publication [29].

In conclusion, we have shown that the nuclear spin en-
vironment of individual QDs and NV centers shows super-
radiant optical emission under suitable optical pumping
conditions. While in NV centers a collective inten-

sity enhancement of up to 100% is predicted, the much
larger nuclear spin ensembles in QDs could lead to relative
peak heights of several orders of magnitude. This would be
clear evidence of coherent HF dynamics of nuclear spin
ensembles in QDs. The rich physics of SR systems, in-
cluding bistability and phase transitions, could thus be
studied in a long-lived mesoscopic solid-state system.
We acknowledge support by GIF, the DFG within SFB

631 and the Cluster of Excellence NIM, the NSF, DARPA,
and the Packard Foundation.
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We theoretically show that intriguing features of coherent many-body physics can be observed in electron
transport through a quantum dot (QD). We first derive a master-equation-based framework for electron transport
in the Coulomb-blockade regime which includes hyperfine (HF) interaction with the nuclear spin ensemble in
the QD. This general tool is then used to study the leakage current through a single QD in a transport setting.
We find that, for an initially polarized nuclear system, the proposed setup leads to a strong current peak, in
close analogy with superradiant emission of photons from atomic ensembles. This effect could be observed with
realistic experimental parameters and would provide clear evidence of coherent HF dynamics of nuclear spin
ensembles in QDs.
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I. INTRODUCTION

Quantum coherence is at the very heart of many intriguing
phenomena in today’s nanostructures.1,2 For example, it is
the essential ingredient to the understanding of the famous
Aharonov-Bohm-like interference oscillations of the conduc-
tance of metallic rings3 or the well-known conductance steps in
quasi-one-dimensional wires.4,5 In particular, nonequilibrium
electronic transport has emerged as a versatile tool to gain deep
insights into the coherent quantum properties of mesoscopic
solid-state devices.6,7 Here, with the prospect of spintronics
and applications in quantum computing, a great deal of
research has been directed towards the interplay and feedback
mechanisms between electron and nuclear spins in gate-based
semiconductor quantum dots.8–14 Current fluctuations have
been assigned to the random dynamics of the ambient nuclear
spins15 and/or hysteresis effects due to dynamic nuclear
polarization.15–18 Spin-flip-mediated transport, realized in
few-electron quantum dots in the so-called spin-blockade
regime,19 has been shown to exhibit long time scale oscillations
and bistability as a result of a buildup and relaxation of
nuclear polarization.15,16 The nuclear spins are known to act
collectively on the electron spin via hyperfine interaction. In
principle, this opens up an exciting test bed for the observation
of collective effects which play a remarkable role in a wide
range of many-body physics.20–22

In quantum optics, the concept of superradiance (SR),
describing the cooperative emission of photons, is a paradigm
example for a cooperative quantum effect.1,23,24 Here, initially
excited atoms emit photons collectively as a result of the
buildup and reinforcement of strong interatomic correlations.
Its most prominent feature is an emission intensity burst in
which the system radiates much faster than an otherwise
identical system of independent emitters. This phenomenon
is of fundamental importance in quantum optics and has been
studied extensively since its first prediction by Dicke in 1954.23

Yet, in its original form the observation of optical SR has
turned out to be difficult due to dephasing dipole-dipole van
der Waals interactions, which suppress a coherence buildup in
atomic ensembles.

This paper is built on analogies between mesoscopic
solid-state physics and quantum optics: The nuclear spins

surrounding a quantum dot (QD) are identified with an
atomic ensemble, individual nuclear spins corresponding to the
internal levels of a single atom and the electrons are associated
with photons. Despite some fundamental differences—for
example, electrons are fermions, whereas photons are bosonic
particles—this analogy stimulates conjectures about the po-
tential occurrence of related phenomena in these two fields of
physics. Led by this line of thought, we address the question
of whether superradiant behavior might also be observed in a
solid-state environment where the role of photons is played by
electrons. To this end, we analyze a gate-based semiconductor
QD in the Coulomb blockade regime, obtaining two main
results, of both experimental and theoretical relevance. First,
in analogy to superradiant emission of photons, we show how
to observe superradiant emission of electrons in a transport
setting through a QD. We demonstrate that the proposed
setup, when tuned into the spin-blockade regime, carries
clear fingerprints of cooperative emission, with no van der
Waals dephasing mechanism on relevant time scales. The
spin blockade is lifted by the hyperfine (HF) coupling which
becomes increasingly more efficient as correlations among the
nuclear spins build up. This markedly enhances the spin-flip
rate and hence the leakage current running through the QD.
Second, we develop a general theoretical master-equation
framework that describes the nuclear spin mediated transport
through a single QD. Apart from the collective effects due
to the HF interaction, the electronic tunneling current is
shown to depend on the internal state of the ambient nuclear
spins through the effective magnetic field (Overhauser field)
produced by the hyperfine interaction.

The paper is structured as follows. In Sec. II, we highlight
our key findings and provide an intuitive picture of our basic
ideas, allowing the reader to grasp our main results on a
qualitative level. By defining the underlying Hamiltonian,
Sec. III then describes the system in a more rigorous fashion.
Next, we present the first main result of this paper in Sec. IV: a
general master equation for electron transport through a single
QD which is coherently enhanced by the HF interaction with
the ambient nuclear spins in the QD. It features both collective
effects and feedback mechanisms between the electronic and
the nuclear subsystem of the QD. Based on this theoretical
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framework, Sec. V puts forward the second main result,
namely the observation of superradiant behavior in the leakage
current through a QD. The qualitative explanations provided in
Sec. II should make it possible to read this part independently
of the derivation given in Sec. IV. Section VI backs up
our analytical predictions with numerical simulations. When
starting from an initially polarized nuclear spin ensemble, the
leakage current through the QD is shown to exhibit a strong
peak whose relative height scales linearly with the number of
nuclear spins, which we identify as the characteristic feature
of superradiant behavior. In Sec. VII we draw conclusions and
give an outlook on future directions of research.

II. MAIN RESULTS

In this section we provide an intuitive exposition of our key
ideas and summarize our main findings.

HF-assisted electron transport. We study a single electri-
cally defined QD in the Coulomb-blockade regime which is
attached to two leads, as schematically depicted in Fig. 1.
Formally, the Hamiltonian for the total system is given by

H = HZ + HB + HT + HHF. (1)

Here, HZ describes the electronic level structure inside the QD
in the presence of an external magnetic field. Next, HB refers to
two independent reservoirs of noninteracting electrons, the left
and right leads, respectively. The coupling between these and
the QD is described in terms of a tunneling Hamiltonian HT

and HHF models the collective hyperfine interaction between
an electron confined inside the QD and an ensemble of N

proximal nuclear spins surrounding the QD. Note that the
specific form of H is given later in Sec. III.

Our analysis is built on a quantum master-equation ap-
proach, a technique originally rooted in the field of quantum

FIG. 1. (Color online) Schematic illustration of the transport
system: An electrically defined QD is tunnel-coupled to two electron
reservoirs, the left and right lead, respectively. A bias voltage
V = (μL − μR)/e is applied between the two leads in order to induce
a current through the QD. An external magnetic field is used to
tune the system into the sequential-tunneling regime and the QD
effectively acts as a spin filter. The resulting spin blockade can be
lifted by the HF interaction between the QD electron and the nuclear
spins in the surrounding host environment.

optics. By tracing out the unobserved degrees of freedom
of the leads we derive an effective equation of motion for
the density matrix of the QD system ρS—describing the
electron spin inside the QD as well as the nuclear spin
ensemble—irreversibly coupled to source and drain electron
reservoirs. In addition to the standard assumptions of a
weak system-reservoir coupling (Born approximation), a flat
reservoir spectral density, and a short reservoir correlation time
(Markov approximation), we demand the hyperfine flip-flops
to be strongly detuned with respect to the effective magnetic
field seen by the electron throughout the dynamics. Under
these conditions, the central master equation can be written as

ρ̇S(t) = −i[HZ + HHF,ρS(t)]

+
∑

σ=↑,↓
ασ (t)

[
dσρS(t)d†

σ − 1

2
{d†

σ dσ ,ρS(t)}
]

+
∑

σ=↑,↓
βσ (t)

[
d†

σ ρS(t)dσ − 1

2
{dσ d†

σ ,ρS(t)}
]
,

(2)

where the tunneling rates ασ (t) and βσ (t) describe dissipative
processes by which an electron of spin σ tunnels from
one of the leads into or out of the QD, respectively. Here,
the fermionic operator d†

σ creates an electron of spin σ inside
the QD. While a detailed derivation of Eq. (2) along with the
precise form of the tunneling rates is presented in Sec. IV,
here we focus on a qualitative discussion of its theoretical
and experimental implications. Essentially, our central master
equation exhibits two core features.

Nuclear-state-dependent electronic dissipation. First, dis-
sipation only acts on the electronic subsystem with rates
ασ (t) and βσ (t) that depend dynamically on the state of the
nuclear subsystem. This nonlinear behavior potentially results
in hysteretic behavior and feedback mechanisms between the
two subsystems as already suggested theoretically11,14,20,21 and
observed in experiments in the context of double QDs in the
Pauli-blockade regime (see, e.g., Refs. 12, 13, and 18). On a
qualitative level, this finding can be understood as follows:
The nuclear spins provide an effective magnetic field for
the electron spin, the Overhauser field, whose strength is
proportional to the polarization of the nuclear spin ensemble.
Thus, a changing nuclear polarization can either dynamically
tune or detune the position of the electron levels inside the
QD. This, in turn, can have a marked effect on the transport
properties of the QD as they crucially depend on the position
of these resonances with respect to the chemical potentials
of the leads. In our model, this effect is directly captured by
the tunneling rates dynamically depending on the state of the
nuclei.

SR in electron transport. Second, the collective nature of
the HF interaction HHF allows for the observation of coherent
many-body effects. To show this, we refer to the following
example: Consider a setting in which the bias voltage and an
external magnetic field are tuned such that only one of the two
electronic spin components, say the level |↑〉, lies inside the
transport window. In this spin-blockade regime the electrons
tunneling into the right lead are spin-polarized; that is, the
QD acts as a spin filter.25,26 If the HF coupling is sufficiently
small compared to the external Zeeman splitting, the electron
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is predominantly in its |↓〉 spin state, making it possible to
adiabatically eliminate the electronic QD coordinates. In this
way we obtain an effective equation of motion for the nuclear
density operator μ only. It reads

μ̇ = cr

[
A−μA+ − 1

2
{A+A−,μ}

]

+ ici[A
+A−,μ] + i

g

2
[Az,μ], (3)

where Aμ = ∑N
i=1 giσ

μ

i with μ = +, − ,z are collective
nuclear spin operators, composed of all N individual nuclear
spin operators σ

μ

i , with gi being proportional to the probability
of the electron being at the location of the nucleus of site i.
Again, we highlight the core implications of Eq. (3) and for a
full derivation thereof, including the definition of the effective
rates cr and ci , we refer to Sec. V. Most notably, Eq. (3) closely
resembles the SR master equation which has been discussed
extensively in the context of atomic physics24 and therefore
similar effects might be expected.

Superradiance is known as a macroscopic collective phe-
nomenon which generalizes spontaneous emission from a
single emitter to a many-body system of N atoms.1 Starting
from a fully polarized initial state the system evolves within a
totally symmetric subspace under permutation and experiences
a strong correlation buildup. As a consequence, the emission
intensity is not of the usual exponentially decaying form, but
conversely features a sudden peak occurring on a very rapid
time scale ∼1/N with a maximum ∼N2.

In this paper, we show that the same type of cooperative
emission can occur from an ensemble of nuclear spins
surrounding an electrically defined QD: The spin blockade can
be lifted by the HF interaction as the nuclei pump excitations
into the electron. Starting from a highly polarized, weakly
correlated nuclear state (which could be prepared by, e.g.,
dynamic polarization techniques12,13,22), this process becomes
increasingly more efficient, as correlations among the nuclei
build up due to the collective nature of the HF interaction. This
results in an increased leakage current. Therefore, the current
is collectively enhanced by the electron’s HF interaction
with the ambient nuclear spin ensemble, giving rise to a
superradiant-like effect in which the leakage current through
the QD takes the role of the radiation field: To stress this
relation, we also refer to this effect as superradiant transport
of electrons.

Comparison to conventional SR. Compared to its conven-
tional atomic counterpart, our system incorporates two major
differences: First, our setup describes superradiant behavior
from a single emitter, since in the strong Coulomb-blockade
regime the electrons are emitted antibunched. As described
above, the superradiant character is due to the nuclear
spins acting collectively on the electron spin leading to an
increased leakage current on time scales longer than single
electron tunneling events. The second crucial difference is the
inhomogeneous nature (gi �= const) of the collective operators
Aμ. Accordingly, the collective spin is not conserved, leading
to dephasing between the nuclei which in principle could
prevent the observation of superradiant behavior. However, as
exemplified in Fig. 2, we show that under realistic conditions—
taking into account a finite initial polarization of nuclear
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time t c−1
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FIG. 2. (Color online) Normalized leakage current through a QD
in the spin-blockade regime for N nuclear spins, initial nuclear po-
larization p, and external Zeeman splitting ω0 in units of the total HF
coupling constant AHF ≈ 100 μeV, summarized as (N,p,ω0/AHF).
For homogeneous HF coupling the dynamics can be solved exactly
(black dotted line). Compared to this idealized benchmark, the
effects are reduced for realistic inhomogeneous HF coupling, but
still present: The relative peak height becomes more pronounced for
smaller detuning ω0 or higher polarization p (solid red line compared
to the blue dashed and green dash-dotted line, respectively). Even
under realistic conditions, the relative peak height is found to scale
linearly with N , corresponding to a strong enhancement for typically
N ≈ 105–106.

spins p and dephasing processes due to the inhomogeneous
nature of the HF coupling—the leakage current through
the QD still exhibits the characteristic peak whose relative
height scales linearly with the number of nuclear spins. Even
though the effect is reduced compared to the ideal case, for
an experimentally realistic number of nuclei N ≈ 105–106

a strong increase is still predicted. The experimental key
signature of this effect, the relative peak height of the leakage
current, can be varied by either tuning the external Zeeman
splitting or the initial polarization of the nuclear spins.

In the remainder of the paper, Eqs. (2) and (3) are derived
from first principles; in particular, the underlying assumptions
and approximations are listed. Based on this general theoretical
framework, more results along with detailed discussions are
presented. For both the idealized case of homogeneous HF
coupling—in which an exact solution is feasible even for
relatively large N—and the more realistic inhomogeneous
case, further numerical simulations prove the existence of a
strong superradiant peaking in the leakage current of single
QD in the spin-blockade regime.

III. THE SYSTEM

This section gives an in-depth description of the Hamilto-
nian under study, formally introduced in Eq. (1). The system
we consider consists of a single electrically defined QD
in a transport setting as schematically depicted in Fig. 1.
Due to strong confinement only a single orbital level is
relevant. Moreover, the QD is assumed to be in the strong
Coulomb-blockade regime so that at maximum one electron
resides inside the QD. Therefore, the effective Hilbert space of
the QD electron is span {|↑〉,|↓〉,|0〉} where the lowest energy
states for an additional electron in the QD with spin σ =↑ , ↓
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are split by an external magnetic field. The Hamiltonian for
the total system is given in Eq. (1).

Here, the first term,

HZ =
∑

σ

εσ d†
σ dσ , (4)

describes the electronic levels of the QD. The Zeeman splitting
between the two spin components is ω0 = ε↑ − ε↓ (we set h̄ =
1) and the QD electron operators are d†

σ = |σ 〉〈0|, describing
transitions from the state |0〉 with no electron inside the QD to
a state |σ 〉 with one electron of spin σ inside the QD.

Electron transport through the QD is induced by attaching
the QD to two electron leads (labeled as L and R), which
are in thermal equilibrium at chemical potentials μL and
μR , respectively. The leads themselves constitute reservoirs
of noninteracting electrons,

HB =
∑
α,k,σ

εαkc
†
αkσ cαkσ , (5)

where c
†
αkσ (cαkσ ) creates (annihilates) an electron in lead α =

L,R with wave vector k and spin σ . The operators c
†
αkσ (cαkσ )

fulfill the usual Fermi commutation relations: {c†
αkσ ,c

†
α′k′σ ′ } =

{cαkσ ,cα′k′σ ′ } = 0 and {c†
αkσ ,cα′k′σ ′ } = δα,α′δk,k′δσ,σ ′ . The effect

of the Coulomb interaction in the leads can be taken into
account by renormalized effective quasiparticle masses. A
positive source-drain voltage V = (μL − μR)/e leads to a
dominant tunneling of electrons from left to right. Microscop-
ically, the coupling of the QD system to the electron reservoirs
is described in terms of the tunneling Hamiltonian

HT =
∑
α,k,σ

T
(α)
k,σ d†

σ cαkσ + H.c., (6)

with the tunnel matrix element T
(α)
k,σ specifying the transfer

coupling between the lead α = L,R and the system. There is
no direct coupling between the leads and electron transfer is
only possible by charging and discharging the QD.

The cooperative effects are based on the collective hyperfine
interaction of the electronic spin of the QD with N initially
polarized nuclear spins in the host environment of the QD.27

It is dominated by the isotropic contact term28 given by

HHF = g

2
(A+S− + A−S+) + gAzSz. (7)

Here Sμ and Aμ = ∑N
i=1 giσ

μ

i with μ = +, − ,z denote
electron and collective nuclear spin operators, respectively.
The coupling coefficients are normalized such that

∑
i g

2
i = 1

and individual nuclear spin operators σ
μ

i are assumed to be
spin- 1

2 for simplicity; g is related to the total HF coupling
strength AHF via g = AHF/

∑
i gi . We neglect the typically

very small nuclear Zeeman and nuclear dipole-dipole terms.28

For simplicity, we also restrict our analysis to one nuclear
species only. These simplifications are addressed in more detail
in Sec. VI.

The effect of the HF interaction with the nuclear spin
ensemble is twofold: The first part of the above Hamiltonian
Hff = g

2 (A+S− + A−S+) is a Jaynes-Cummings-type inter-
action which exchanges excitations between the QD electron
and the nuclei. The second term HOH = gAzSz constitutes a
quantum magnetic field, the Overhauser field, for the electron

spin generated by the nuclei. If the Overhauser field is not
negligible compared to the external Zeeman splitting, it can
have a marked effect on the current by (de)tuning the hyperfine
flip-flops.

IV. GENERALIZED QUANTUM MASTER EQUATION

Electron transport through a QD can be viewed as a tool
to reveal the QD’s nonequilibrium properties in terms of
the current-voltage I/V characteristics. From a theoretical
perspective, a great variety of methods such as the scattering
matrix formalism29 and nonequilibrium Green’s functions7,30

have been used to explore the I/V characteristics of quantum
systems that are attached to two metal leads. Our analysis is
built upon the master equation formalism, a tool widely used
in quantum optics for studying the irreversible dynamics of
quantum systems coupled to a macroscopic environment.

In what follows, we employ a projection operator based
technique to derive an effective master equation for the
QD system—comprising the QD electron spin as well as
the nuclear spins—which experiences dissipation via the
electron’s coupling to the leads. This dissipation is shown
to dynamically depend on the state of the nuclear system
potentially resulting in feedback mechanisms between the two
subsystems. We derive conditions which allow for a Markovian
treatment of the problem and list the assumptions our master
equation based framework is based on.

A. Superoperator formalism: Nakajima-Zwanzig equation

The state of the global system that comprises the QD as well
as the environment is represented by the full density matrix
ρ(t). However, the actual states of interest are the states of the
QD which are described by the reduced density matrix ρS =
TrB[ρ], where TrB . . . averages over the unobserved degrees
of freedom of the Fermi leads. We derive a master equation
that governs the dynamics of the reduced density matrix ρS

using the superoperator formalism. We start out from the von
Neumann equation for the full density matrix

ρ̇ = −i[H (t),ρ], (8)

where H (t) can be decomposed into the following form which
turns out to be convenient later on:

H (t) = H0(t) + H1(t) + HT . (9)

Here, H0(t) = HZ + HB + g〈Az〉t Sz comprises the Zeeman
splitting caused by the external magnetic field via HZ and
the Hamiltonian of the noninteracting electrons in the leads
HB ; moreover, the time-dependent expectation value of the
Overhauser field has been absorbed into the definition of
H0(t). The HF interaction between the QD electron and
the ensemble of nuclear spins has been split up into the
flip-flop term Hff and the Overhauser field HOH, that is HHF =
HOH + Hff . The term H1(t) = H	OH(t) + Hff comprises the
Jaynes-Cummings-type dynamics Hff and fluctuations due to
deviations of the Overhauser field from its expectation value,
that is, H	OH(t) = gδAzSz, where δAz = Az − 〈Az〉t .

The introduction of superoperators—operators acting on
the space of linear operators on the Hilbert space—allows for
a compact notation. The von Neumann equation is written
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as ρ̇ = −iL(t)ρ, where L(t) = L0(t) + L1(t) + LT is the
Liouville superoperator defined via Lα· = [Hα,·]. Next, we
define the superoperator P as a projector onto the relevant
subspace

Pρ(t) = TrB[ρ(t)] ⊗ ρ0
B = ρS(t) ⊗ ρ0

B, (10)

where ρ0
B describes separate thermal equilibria of the two leads

whose chemical potentials are different due to the bias voltage
V = (μL − μR)/e. Essentially, P maps a density operator
onto one of product form with the environment in equilibrium
but still retains the relevant information on the system state.
The complement of P is Q = 1 − P .

By inserting P and Q in front of both sides of the von
Neumann equation one can derive a closed equation for the
projection Pρ(t), which for factorized initial condition, where
Qρ(0) = 0, can be rewritten in the form of the generalized
Nakajima-Zwanzig master equation,

d

dt
Pρ = −iPLPρ −

∫ t

0
dt ′ PLQ T̂ e−i

∫ t

t ′ dτQL(τ )QLPρ(t ′),

(11)

which is nonlocal in time and contains all orders of the
system-leads coupling.31 Here, T̂ denotes the chronological
time-ordering operator. Since P and Q are projectors onto
orthogonal subspaces that are only connected by LT , this
simplifies to

d

dt
Pρ = −iPLPρ −

∫ t

0
dt ′PLT T̂ e−i

∫ t

t ′ dτQL(τ )LT Pρ(t ′).

(12)

Starting out from this exact integro-differential equation, we
introduce some approximations: In the weak coupling limit
we neglect all powers of LT higher than two (Born approx-
imation). Consequently, we replace L(τ ) with L(τ ) − LT in
the exponential of Eq. (12). Moreover, we make use of the
fact that the nuclear spins evolve on a time scale that is very
slow compared to all electronic processes: In other words,
the Overhauser field is quasistatic on the time scale of single
electronic tunneling events.22,32 That is, we replace 〈Az〉τ with
〈Az〉t in the exponential of Eq. (12), which removes the explicit
time dependence in the kernel. By taking the trace over the
reservoir and using TrB[P ρ̇(t)] = ρ̇S(t), we get

ρ̇S(t) = −i(LZ + LHF)ρS(t) −
∫ t

0
dτ TrB(LT e−i[L0(t)+L1(t)]τ

×LT Pρ(t − τ )). (13)

Here, we also used the relations PLT P = 0 and LBP = 0
and switched the integration variable to τ = t − t ′. Note that,
for notational convenience, we suppress the explicit time
dependence of L0(1)(t) in the following. In the next step, we
iterate the Schwinger-Dyson identity:

e−i(L0+L1)τ = e−iL0τ − i

∫ τ

0
dτ ′ e−iL0(τ−τ ′)L1e

−i(L0+L1)τ ′
.

(14)

In what follows, we keep only the first term of this infinite
series (note that the next two leading terms are explicitly cal-
culated in Appendix A). In quantum optics, this simplification

is well known as an approximation of independent rates of
variation.33 In our setting it is valid, if L1(t) is small compared
to L0(t) and if the bath correlation time τc is short compared
to the HF dynamics, AHF � 1/τc. Pictorially, this means that
during the correlation time τc of a tunneling event, there is
not sufficient time for the Rabi oscillation with frequency
g � AHF to occur. For typical materials,34 the relaxation time
τc is in the range of ∼10−15 s corresponding to a relaxation
rate �c = τ−1

c ≈ 105 μeV. Indeed, this is much faster than all
other relevant processes. In this limit, the equation of motion
for the reduced density matrix of the system simplifies to

ρ̇S(t) = −i(LZ + LHF)ρS(t)

−
∫ t

0
dτ TrB

(
LT e−iL0(t)τLT ρS(t − τ ) ⊗ ρ0

B

)
. (15)

Note, however, that this master equation is not Markovian as
the rate of change of ρS(t) still depends on its past. Conditions
which allow for a Markovian treatment of the problem are
addressed in the following.

B. Markov approximation

Using the general relation e−iL0τO = e−iH0τOeiH0τ for any
operator O, we rewrite Eq. (15) as

ρ̇S(t) = −i[HZ + HHF,ρS(t)] −
∫ t

0
dτ TrB

([
HT ,

[
H̃T (τ ),

e−iH0τ ρS(t − τ )eiH0τ ⊗ ρ0
B

]])
. (16)

In accordance with the previous approximations, we replace
e−iH0τ ρS(t − τ )eiH0τ by ρS(t) which is approximately the
same since any correction to H0 would be of higher order
in perturbation theory.35,36 In other words, the evolution of
ρS(t − τ ) is approximated by its unperturbed evolution, which
is legitimate provided that the relevant time scale for this
evolution τc is very short (Markov approximation). This
step is motivated by the typically rapid decay of the lead
correlations functions;35 the precise validity of this approx-
imation is elaborated below. In particular, this simplification
disregards dissipative effects induced by HT , which is valid
self-consistently provided that the tunneling rates are small
compared to the dynamics generated by H0.

Moreover, in Eq. (16) we introduced the tunneling Hamil-
tonian in the interaction picture as H̃T (τ ) = e−iH0τHT eiH0τ .
For simplicity, we only consider one lead for now and add
the terms referring to the second lead later on. Therefore, we
can disregard an additional index specifying the left or right
reservoir and write explicitly

H̃T (τ ) =
∑
k,σ

Tk,σ e−i[εσ (t)−εk]τ d†
σ ckσ + H.c. (17)

Here, the resonances εσ (t) are explicitly time dependent as
they dynamically depend on the polarization of the nuclear
spins

ε↑(↓)(t) = ε↑(↓) ± g

2
〈Az〉t . (18)

The quantity

ω = ε↑(t) − ε↓(t) = ω0 + g〈Az〉t (19)
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can be interpreted as an effective Zeeman splitting which
incorporates the external magnetic field as well as the mean
magnetic field generated by the nuclei.

Since the leads are assumed to be at equilibrium, their
correlation functions are given by

TrB
[
c
†
kσ (τ )ck′σ ′ρ0

B

] = δσ,σ ′δk,k′e−iεkτ fk, (20)

TrB
[
ckσ (τ )c†

k′σ ′ρ
0
B

] = δσ,σ ′δk,k′eiεkτ (1 − fk), (21)

where the Fermi function fk = (1 + exp[β(εk − μ)])−1 with
inverse temperature β = 1/(kBT ) gives the thermal occupa-
tion number of the respective lead in equilibrium. Note that
all terms comprising two lead creation c

†
kσ or annihilation

operators ckσ vanish since ρ0
B contains states with definite

electron number only.35 The correlation functions are diagonal
in spin space and the tunneling Hamiltonian preserves the
spin projection; therefore, only corotating terms prevail. If we
evaluate all dissipative terms appearing in Eq. (16), due to the
conservation of momentum and spin in Eqs. (20) and (21), only
a single sum over k,σ survives. Here, we single out one term
explicitly, but all other terms follow analogously. We obtain

ρ̇S(t) = · · · +
∑

σ

∫ t

0
dτ Cσ (τ )d†

σ e−iH0τ ρS(t − τ )eiH0τ dσ ,

(22)

where the correlation time of the bath τc is determined by the
decay of the noise correlations,

Cσ (τ ) =
∑

k

|Tk,σ |2fke
i[εσ (t)−εk]τ =

∫ ∞

0
dε Jσ (ε)ei[εσ (t)−ε]τ .

(23)

Here, we made use of the fact that the leads are macroscopic
and therefore exhibit a continuous density of states per spin
n(ε). On top of that, we have introduced the spectral density
of the bath as

Jσ (ε) = Dσ (ε)f (ε), (24)

where Dσ (ε) = n(ε)|Tσ (ε)|2 is the effective density of states.
The Markovian treatment manifests itself in a self-consistency
argument: We assume that the spectral density of the bath Jσ (ε)
is flat around the (time-dependent) resonance εσ (t) over a range
set by the characteristic width �d. Typically, both the tunneling
matrix elements Tσ (ε) as well as the density of states n(ε) are
slowly varying functions of energy. In the so-called wide-band
limit the effective density of states Dσ (ε) is assumed to be
constant so that the self-consistency argument will exclusively
concern the behavior of the Fermi function f (ε), which is
intimately related to the temperature of the bath T . Under
the condition, that Jσ (ε) behaves flat on the scale �d, it can
be replaced with its value at εσ (t), and the noise correlation
simplifies to

Cσ (τ ) = Jσ (εσ (t))eiεσ (t)τ
∫ ∞

0
dε e−iετ . (25)

Using the relation∫ ∞

0
dε e−iετ = πδ(τ ) − iP

1

τ
, (26)

with P denoting Cauchy’s principal value, we find that the
Markov approximation Re[Cσ (τ )] ∝ δ(τ ) is fulfilled provided
that the self-consistency argument holds. This corresponds to
the white-noise limit where the correlation-time of the bath is
τc = 0. Pictorially, the reservoir has no memory and instan-
taneously relaxes to equilibrium. We can then indeed replace
e−iH0τ ρS(t − τ )eiH0τ with ρS(t) and extend the integration in
Eq. (16) to infinity, with negligible contributions due to the
rapid decay of the memory kernel. In the following, we derive
an explicit condition for the self-consistency argument to be
satisfied.

Let us first consider the limit T = 0: As schematically
depicted in Fig. 3, in this case f (ε) behaves perfectly flat
except for ε = μ, where the self-consistency argument is
violated. Therefore, the Markovian approximation is valid at
T = 0 given that the condition |εσ (t) − μ| � �d is fulfilled.
In this limit, all tunneling rates are constant over time and
effectively decoupled from the nuclear dynamics. Note that
for the observation of superradiant transport it is sufficient to
restrict oneself to this case.

For a more general analysis, we now turn to the case of
finite temperature T > 0. We require the absolute value of the
relative change of the Fermi function around the resonance
εσ (t) over a range of the characteristic width �d to be much
less than unity, that is,∣∣∣∣∂f (ε)

∂ε

∣∣∣
εσ (t)

∣∣∣∣�d � 1. (27)

An upper bound for the first factor can easily be obtained as
this quantity is maximized at the chemical potential μ, for all
temperatures. Evaluating the derivative at εσ (t) = μ results in
the compact condition,

�d � 4kBT . (28)

Thus, finite temperature T > 0 washes out the rapid character
of f (ε) at the chemical potential μ and, provided that Eq. (28)
is fulfilled, allows for a Markovian treatment.

FIG. 3. (Color online) Fermi function for finite temperature
(dashed blue line) and in the limit T = 0 (solid blue line). The
absolute value of the derivative of the Fermi function f ′(ε) (dotted
orange line for finite temperature) is maximized at the chemical
potential μ and tends to a δ function in the limit T → 0. The
Markovian description is valid provided that the Fermi function is
approximately constant around the resonances εσ (t) on a scale of the
width of these resonances, schematically shown in red [solid line for
εσ (t) < μ and dashed line for εσ (t) > μ].
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Two distinct mechanisms contribute to the width �d:
dissipation due to coupling to the leads and the effect of
H1(t). Both of them have been neglected self-consistently in
the memory kernel when going from Eq. (12) to Eq. (15).
Typically, the tunneling rates are of the order of ∼5–20 μeV,
depending on the transparency of the tunnel barrier. Regarding
the contribution due to H1(t), we first consider two limits
of particular importance: For a completely mixed state the
fluctuation of the nuclear field around its zero expectation
value is of the order of ∼AHF/

√
N ≈ 0.1 μeV. In contrast,

for a fully polarized state these fluctuations can be neglected,
whereas the effective strength of the flip-flop dynamics is
∼AHF/

√
N as well. Therefore, in both limits considered here,

the dominant contribution to �d is due to the coupling to the
leads and the self-consistency condition could still be met
with cryostatic temperatures kBT � 10 μeV, well below the
orbital level spacing. However, we note that in the course of
a superradiant evolution, where strong correlations among the
nuclei build up, the dominant contribution to �d may come
from the flip-flop dynamics, which are AHF/4 ≈ 25 μeV at
maximum for homogeneous coupling. For realistic conditions,
though, this effect is significantly reduced, as demonstrated in
our simulations in Sec. VI.

C. General master equation for nuclear spin-assisted transport

Assuming that the self-consistency argument for a Marko-
vian treatment is satisfied, we now apply the following
modifications to Eq. (16): First, we neglect level shifts due to
the coupling to the continuum states which can be incorporated
by replacing the bare frequencies εσ (t) with renormalized
frequencies. Second, one adds the second electron reservoir
that has been omitted in the derivation above. Last, one
performs a suitable transformation into a frame rotating at
the frequency ε̄ = (ε↑ + ε↓)/2 leaving all terms invariant but
changing HZ from HZ = ε↑d

†
↑d↑ + ε↓d

†
↓d↓ to HZ = ω0S

z.
After these manipulations one arrives at the central master
equation as stated in Eq. (2) where the tunneling rates with
ασ (t) = ∑

x=L,R α(x)
σ (t), βσ (t) = ∑

x=L,R β(x)
σ (t), and

α(x)
σ (t)

2π
= nx(εσ (t))

∣∣T (x)
σ (εσ (t))

∣∣2
[1 − fx(εσ (t))],

(29)
β(x)

σ (t)

2π
= nx(εσ (t))

∣∣T (x)
σ (εσ (t))

∣∣2
fx(εσ (t))

govern the dissipative processes in which the QD system
exchanges single electrons with the leads. The tunneling rates,
as presented here, are widely used in nanostructure quantum
transport problems.35,37,38 However, in our setting they are
evaluated at the resonances εσ (t) which dynamically depend
on the polarization of the nuclear spins [see Eq. (18)]. Note that
Eq. (2) incorporates finite temperature effects via the Fermi
functions of the leads. This potentially gives rise to feedback
mechanisms between the electronic and the nuclear dynamics,
since the purely electronic diffusion markedly depends on the
nuclear dynamics.

Since Eq. (2) marks our first main result, at this point
we quickly reiterate the assumptions our master equation
treatment is based on.

(i) The system-lead coupling is assumed to be weak and
therefore treated perturbatively up to second order (Born
approximation).

(ii) In particular, the tunneling rates are small compared to
the effective Zeeman splitting ω.

(iii) Level shifts arising from the coupling to the continuum
states in the leads are merely incorporated into a redefinition
of the QD energy levels εσ (t).

(iv) There is a separation of time scales between electron-
spin dynamics and nuclear-spin dynamics. In particular, the
Overhauser field g〈Az〉t evolves on a time scale that is slow
compared to single electron tunneling events.

(v) The HF dynamics generated by H1(t) = Hff + H	OH(t)
is (i) sufficiently weak compared to H0 and (ii) slow compared
to the correlation time of the bath τc, which is AHFτc � 1
(approximation of independent rates of variation). Note that
the flip-flop dynamics can become very fast as correlations
among the nuclei build up culminating in a maximum coupling
strength of AHF/4 for homogeneous coupling. This potentially
drives the system into the strong coupling regime where con-
dition (i), that is ω � ||H1(t)||, might be violated. However,
under realistic conditions of inhomogeneous coupling this
effect is significantly reduced.

(vi) The effective density of states Dσ (ε) = n(ε)|Tσ (ε)|2 is
weakly energy dependent (wide-band limit). In particular, it is
flat on a scale of the characteristic widths of the resonances.
(vii) The Markovian description is valid provided that either

the resonances are far away from the chemical potentials of
the leads on a scale set by the characteristic widths of the
resonances or the temperature is sufficiently high to smooth
out the rapid character of the Fermi functions of the leads. This
condition is quantified in Eq. (28).
In summary, we have derived a quantum master equation
describing electronic transport through a single QD which
is collectively enhanced due to the interaction with a large
ancilla system, namely the nuclear spin ensemble in the host
environment. Equation (2) incorporates two major intriguing
features both of theoretical and experimental relevance: Due
to a separation of time scales, only the electronic subsystem
experiences dissipation with rates that depend dynamically
on the state of the ancilla system. This nonlinearity gives
rise to feedback mechanisms between the two subsystems as
well as hysteretic behavior. Moreover, the collective nature of
the HF interaction offers the possibility to observe intriguing
coherent many-body effects. Here, one particular outcome is
the occurrence of superradiant electron transport, as shown in
the remainder of this paper.

Note that in the absence of HF interaction between the QD
electron and the proximal nuclear spins, that is, in the limit
g → 0, our results agree with previous theoretical studies.36

V. SUPERRADIANCE-LIKE ELECTRON TRANSPORT

Proceeding from our general theory derived above, this
section is devoted to the prediction and analysis of superradiant
behavior of nuclear spins, evidenced by the strongly enhanced
leakage current through a single QD in the Coulomb-blockade
regime; see Fig. 1 for the scheme of the setup. A pronounced
peak in the leakage current will serve as the main evidence for
SR behavior in this setting.
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We note that, in principle, an enhancement seen in the
leakage current could also simply arise from the Overhauser
field dynamically tuning the hyperfine flip-flops. However,
we can still ensure that the measured change in the leakage
current through the QD is due to cooperative emission only
by dynamically compensating the Overhauser field. This
can be achieved by applying a time-dependent magnetic or
spin-dependent ac Stark field such that Hcomp(t) = −g〈Az〉t Sz,
which is done in most of our simulations below to clearly
prove the existence of superradiant behavior in this setting.
Consequently, in our previous analysis H0(t) is replaced with
H0 = H0(t) − g〈Az〉t Sz = HZ + HB so that the polarization
dependence of the tunneling rates is removed and we can drop
the explicit time dependence of the resonances εσ (t) → εσ .
Under this condition, the master equation for the reduced
system density operator can be written as

ρ̇S(t) = −i[ω0S
z + HHF + Hcomp(t),ρS(t)]

+
∑

σ=↑,↓
ασ

[
dσρS(t)d†

σ − 1

2
{d†

σ dσ ,ρS(t)}
]

+
∑

σ=↑,↓
βσ

[
d†

σ ρS(t)dσ − 1

2
{dσ d†

σ ,ρS(t)}
]
. (30)

In accordance with our previous considerations, in this
specific setting the Markovian treatment is valid provided
that the spectral density of the reservoirs varies smoothly
around the (time-independent) resonances εσ on a scale set
by the natural widths of the level and the fluctuations of the
dynamically compensated Overhauser field. More specifically,
throughout the whole evolution the levels are assumed to be
far away from the chemical potentials of the reservoirs;39,40

for an illustration see Fig. 3. In this wide-band limit, the
tunneling rates ασ , βσ are independent of the state of the
nuclear spins. The master equation is of Lindblad form which
guarantees the complete positivity of the generated dynamics.
Equation (30) agrees with previous theoretical results,36 except
for the appearance of the collective HF interaction between
the QD electron and the ancilla system in the Hamiltonian
dynamics of Eq. (30).

To some extent, Eq. (30) bears some similarity with the
quantum theory of the laser. While in the latter the atoms
interact with bosonic reservoirs, in our transport setting the QD
is pumped by the nuclear spin ensemble and emits fermionic
particles.30,38

If the HF dynamics is the slowest time scale in the problem,
Eq. (30) can be recast into a form which makes its superradiant
character more apparent. In this case, the system is subject to
the slaving principle:30 The dynamics of the whole system
follow that of the subsystem with the slowest time constant,
making it possible to adiabatically eliminate the electronic
QD coordinates and to obtain an effective equation of motion
for the nuclear spins. In this limit, the Overhauser field is
much smaller than the Zeeman splitting so that a dynamic
compensation of the OH can be disregarded for the moment.
For simplicity, we consider a transport setting in which only
four tunneling rates are different from zero (see Fig. 1). The
QD can be recharged from the left and the right lead, but
only electrons with spin projection σ =↑ can tunnel out of
the QD into the right lead. We define the total recharging rate

β = β↓ + β↑ = β
(L)
↓ + β

(R)
↓ + β

(L)
↑ and for notational conve-

nience unambiguously set α = α
(R)
↑ . First, we project Eq. (30)

onto the populations of the electronic levels and the coherences
in spin space according to ρmn = 〈m|ρS |n〉, where m,n = 0,

↑ , ↓. This yields

ρ̇00 = αρ↑↑ − βρ00, (31)

ρ̇↑↑ = −i
g

2
[Az,ρ↑↑] − i

g

2
(A−ρ↓↑ − ρ↑↓A+)

−αρ↑↑ + β↑ρ00, (32)

ρ̇↓↓ = +i
g

2
[Az,ρ↓↓] − i

g

2
(A+ρ↑↓ − ρ↓↑A−) + β↓ρ00,

(33)

ρ̇↑↓ = −iω0ρ↑↓ − i
g

2
(Azρ↑↓ + ρ↑↓Az)

− i
g

2
(A−ρ↓↓ − ρ↑↑A−) − α

2
ρ↑↓. (34)

We can retrieve an effective master equation for the regime in
which on relevant time scales the QD is always populated by
an electron. This holds for a sufficiently strong recharging rate,
that is in the limit β � α, which can be implemented exper-
imentally by making the left tunnel barrier more transparent
than the right one. Then, the state |0〉 is populated negligibly
throughout the dynamics and can be eliminated adiabatically
according to ρ00 ≈ α

β
ρ↑↑. In analogy to the Anderson impurity

model, in the following this limit is referred to as local moment
regime. The resulting effective master equation reads

ρ̇S = −i[ω0S
z + HHF,ρS] + γ

[
S−ρSS

+ − 1

2
{S+S−,ρS}

]

+�

[
SzρSS

z − 1

4
ρS

]
, (35)

where

γ = β↓
β

α (36)

is an effective decay rate and

� = β↑
β

α (37)

represents an effective electronic dephasing rate. This situation
is schematized in Fig. 4. The effective decay (dephasing)
describes processes in which the QD is recharged with a spin
down (up) electron after a spin up electron has tunneled out
of the QD. As demonstrated in Ref. 41, additional electronic
dephasing mechanisms only lead to small corrections to the
dephasing rate � and are therefore neglected in Eq. (35).

In the next step we aim for an effective description that
contains only the nuclear spins: Starting from a fully polarized
state, SR is due to the increase in the operative HF matrix
element 〈A+A−〉. The scale of the coupling is set by the total
HF coupling constant AHF = g

∑
i gi . For a sufficiently small

relative coupling strength27

ε = AHF/(2	), (38)

where

	 = |α/2 + iω0|, (39)
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FIG. 4. (Color online) The electronic QD system in the local
moment regime after the adiabatic elimination of the |0〉 level
including the relevant dissipative processes. Within the effective
system (box) we encounter an effective decay term and an effective
pure dephasing term, with the rates γ and �, respectively. This
simplification is possible for fast recharging of the QD, that is, β � α.

the electron is predominantly in its |↓〉 spin state and we
can project Eq. (35) to the respective subspace. As shown in
detail in Appendix B, in this limit the master equation for
the reduced nuclear density operator μ = Trel[ρS] is given by
Eq. (3), where the effective coefficients read

cr = g2α

4	2
, (40)

ci = g2ω0

4	2
. (41)

This master equation is our second main result. In an optical
setting, it has previously been predicted theoretically to
exhibit strong SR signatures.27 Conceptually, its superradiant
character can be understood immediately in the ideal case
of homogeneous coupling in which the collective state of all
nuclear spins can be described in terms of Dicke states |J,m〉:
The enhancement of the HF interaction is directly associated
with the transition through nuclear Dicke states |J,m〉, m � J .
In this idealized setting, the angular momentum operator
I = √

NA of the nuclear spin ensemble obeys the SU(2)
Lie algebra, from which one can deduce the ladder operator
relation I−|J,m〉 = √

J (J + 1) − m(m − 1)|J,m − 1〉. This
means that, starting from an initially fully polarized state
|J = N/2,m = N/2〉, the nuclear system cascades down the
Dicke ladder with an effective rate

�̃m→m−1 = cr

N
(N/2 + m)(N/2 − m + 1), (42)

since, according to the first term in Eq. (3), the populations of
the Dicke states evolve as

μ̇m,m = − cr

N
(N/2 + m)(N/2 − m + 1)μm,m

+ cr

N
(N/2 + m + 1)(N/2 − m)μm+1,m+1. (43)

While the effective rate is �̃N/2→N/2−1 = cr at the very top of
the the ladder it increases up to �̃|m|�N/2 ≈ cr

4 N at the center
of the Dicke ladder. This implies the characteristic intensity
peaking as compared to the limit of independent classical
emitters the emission rate of which would be �̃cl = cr

N
N↑ =

cr

N
(N/2 + m).

However, there is also a major difference compared to the
superradiant emission of photons from atomic ensembles: In
contrast to its atomic cousin, the prefactor cr/N ∝ 1/N2 is
N -dependent, resulting in an overall time of the SR evolution
〈tD〉 which increases with N . By linearizing Eq. (42) for the
beginning of the superradiant evolution24 as �̃m→m−1 ≈ cr (s +
1), where s = N/2 − m gives the number of nuclear flips, one
finds that the first flip takes place in an average time c−1

r , the
second one in a time (2cr )−1, and so on. The summation of all
these elementary time intervals gives an upper bound estimate
for the process duration until the SR peaking as

〈tD〉 � 2

cr

[
1 + 1

2
+ · · · + 1

N/2

]
≈ 2 ln(N/2)

cr

, (44)

which, indeed, increases with the number of emitters as
∼N ln(N ), whereas one obtains 〈tD〉 ∼ ln(N )/N for ordinary
SR.24 Accordingly, in our solid-state system the characteristic
SR peak appears at later times for higher N . The underlying
reason for this difference is that in the atomic setting each
new emitter adds to the overall coupling strength, whereas in
the central spin setting a fixed overall coupling strength AHF is
distributed over an increasing number of particles. Note that in
an actual experimental setting N is not a tunable parameter, of
course. For our theoretical discussion, though, it is convenient
to fix the total HF coupling strength AHF and to extrapolate
from our findings to an experimentally relevant number of
nuclear spins N .

For large relative coupling strength ε � 1 the QD electron
saturates and superradiant emission is capped by the decay
rate α/2, prohibiting the observation of a strong intensity
peak. In order to circumvent this bottleneck regime, one has to
choose a detuning ω0 such that 0 < ε � 1. However, to realize
the spin-blockade regime, where the upper spin manifold is
energetically well separated from the lower spin manifold, the
Zeeman splitting has to be of the order of ω0 ∼ AHF, which
guarantees ε < 1. In this parameter range, the early stage of
the evolution—in which the correlation buildup necessary for
SR takes place24—is well described by Eq. (3).

The inhomogeneous nature (gi �= const) of the collective
operators Aμ leads to dephasing between the nuclei, possibly
preventing the phased emission necessary for the observation
of SR.24,27,42,43 The inhomogeneous part of the last term
in Eq. (3)—the electron’s Knight field—causes dephasing44

∝g
√

Var(gi)/2, possibly leading to symmetry reducing tran-
sitions J → J − 1. Still, it has been shown that SR is also
present in realistic inhomogeneous systems,27 since the system
evolves in a many-body protected manifold (MPM): The
second term in Eq. (3) energetically separates different total
nuclear spin-J manifolds, protecting the correlation buildup
for large enough ε.

The superradiant character of Eq. (3) suggests the ob-
servation of its prominent intensity peak in the leakage
current through the QD in the spin-blockade regime. We have
employed the method of full-counting-statistics (FCS)45,46 in
order to obtain an expression for the current and find (setting
the electron’s charge e = 1)

I (t) = αρ↑↑ − β
(R)
↓ ρ00. (45)

This result is in agreement with previous theoretical findings:
The current through the device is completely determined by
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the occupation of the levels adjacent to one of the leads.29,37,39

The first term describes the accumulation of electrons with spin
σ =↑ in the right lead, whereas the second term describes
electrons with σ =↓ tunneling from the right lead into the
QD. As done before,27 we take the ratio of the maximum
current to the initial current (the maximum for independent
emitters) Icoop/Iind as our figure of merit: A relative intensity
peak height Icoop/Iind > 1 indicates cooperative effects. One
of the characteristic features of SR is that this quantity scales
linearly with the number of spins N .

In the local-moment regime, described by Eq. (35),
the expression for the current simplifies to I (t) = (1 −
β

(R)
↓ /β)α〈S+S−〉t ∝ 〈S+S−〉t , showing that it is directly pro-

portional to the electron inversion. This, in turn, increases
as the nuclear system pumps excitations into the electronic
system. A compact expression for the relation between the
current and the dynamics of the nuclear system can be obtained
immediately in the case of homogeneous coupling,

d

dt
〈S+S−〉t = − d

dt
〈I z〉t − γ 〈S+S−〉t . (46)

Since the nuclear dynamics are, in general, much slower
than the electron’s dynamics, the approximate solution of this
equation is 〈S+S−〉t ≈ − d

dt
〈I z〉t /γ . As a consequence, the

current I (t) is proportional to the time-derivative of the nuclear
polarization,

I (t) ∝ − d

dt
〈I z〉t . (47)

Still, no matter how strong the cooperative effects are, on a
time scale of single electron tunneling events, the electrons will
always be emitted antibunched, since in the strong Coulomb-
blockade regime the QD acts as a single-electron emitter.47

Typically, the rate for single-electron emission events is even
below the tunneling rate α due to the spin blockade. On
electronic time scales ∼1/α, the SR mechanism manifests
in lifting this blockade; as argued above, the efficiency of this
process is significantly enhanced by collective effects.

Before we proceed with an in-depth analysis of the current
I (t), we note that an intriguing extension of the present work
would be the study of fluctuations thereof (see, for example,
Ref. 48 for studies of the shot noise spectrum in a related
system). Insights into the statistics of the current could be
obtained by analyzing two-time correlation functions such as
〈n↑(t + τ )n↑(t)〉, where n↑ = d

†
↑d↑. This can conveniently be

done via the Quantum Regression Theorem,49 which yields the
formal result 〈n↑(t + τ )n↑(t)〉 = TrS[n↑eWτ (n↑ρS(t))]. Here,
W denotes the Liouvillian governing the system’s dynamics
according to ρ̇S = WρS [see Eq. (35)] and TrS[· · ·] refers to
the trace over the system’s degree of freedoms. This procedure
can be generalized to higher-order correlation functions and
full evaluation of the current statistics might reveal potential
connections between current fluctuations and cooperative
nuclear dynamics.

VI. ANALYSIS AND NUMERICAL RESULTS

A. Experimental realization

The proposed setup described here may be realized with
state-of-the-art experimental techniques. First, the Markovian

regime, valid for sufficiently large bias eV, is realized if the
Fermi functions of the leads are smooth on a scale set by
the natural widths of the levels and residual fluctuations due
to the dynamically compensated Overhauser field. Since for
typical materials8 the hyperfine coupling constant is AHF =
1–100 μeV and tunneling rates are typically9 of the order of
∼10 μeV, this does not put a severe restriction on the bias volt-
age which is routinely18,19 in the range of hundreds of μV or
mV. Second, in order to tune the system into the spin-blockade
regime, a sufficiently large external magnetic field has to be
applied. More precisely, the corresponding Zeeman splitting
ω0 energetically separates the upper and lower manifolds in
such a way that the Fermi function of the right lead drops
from one at the lower manifold to zero at the upper manifold.
Finite temperature T smears out the Fermi function around
the chemical potential by approximately ∼kBT . Accordingly,
with cryostatic temperatures of kBT ∼ 10 μeV being routinely
realized in the laboratory,10 this condition can be met by
applying an external magnetic field of ∼5–10 T, which is
equivalent to ω0 ≈ 100–200 μeV in GaAs.8,50 The charging
energy U , typically ∼1–4 meV,9,19 sets the largest energy
scale in the problem justifying the Coulomb-blockade regime
with negligible double occupancy of the QD provided that the
chemical potential of the left lead is well below the doubly
occupied level. Last, we note that similar setups to the one
proposed here have previously been realized experimentally
by, for example, Hanson et al.26,50

Proceeding from these considerations, we now show by
numerical simulation that an SR peaking of several orders
of magnitude can be observed for experimentally relevant
parameters in the leakage current through a quantum dot in the
spin-blockade regime. We first consider the idealized case of
homogeneous coupling for which an exact numerical treatment
is feasible even for a larger number of coupled nuclei. Then,
we continue with the more realistic case of inhomogeneous
coupling for which an approximative scheme is applied. Here,
we also study scenarios in which the nuclear spins are not
fully polarized initially. Moreover, we discuss intrinsic nuclear
dephasing effects and undesired cotunneling processes which
have been omitted in our simulations. In particular, we show
that the inhomogeneous nature of the HF coupling accounts
for the strongest dephasing mechanism in our system. We note
that this effect is covered in the second set of our simulations.
Finally, we self-consistently justify the perturbative treatment
of the Overhauser-field fluctuations as well as the HF flip-flop
dynamics.

B. Superradiant electron transport

1. Idealized setting

The homogeneous case allows for an exact treatment
even for a relatively large number of nuclei as the system
evolves within the totally symmetric low-dimensional sub-
space {|J,m〉,m = −J, . . . ,J }. Starting from a fully polarized
state, a strong intensity enhancement is observed; typical
results obtained from numerical simulations of Eq. (30) are
depicted in Fig. 5 for N = 60 and N = 100 nuclear spins.
The corresponding relative peak heights display a linear
dependence with N (cf. Fig. 6), which we identify as the
characteristic feature of SR. Here, we have used the numerical
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FIG. 5. (Color online) Typical time evolution of the normalized
current for homogeneous coupling under dynamical compensation
of the Overhauser field and a relative coupling strength of ε = 0.5,
shown here for N = 60 and N = 100 nuclear spins. The characteristic
feature of SR, a pronounced peak in the leakage current proportional
to N , is clearly observed.

parameters AHF = 1, ω0 = 1 and α = β
(L)
↑ = β

(L)
↓ = β

(R)
↓ =

0.1 in units of ∼100 μeV, corresponding to a relative coupling
strength ε = 0.5.

Before we proceed, some further remarks on the dynamic
compensation of the Overhauser field seem appropriate: We
have merely introduced it in our analysis in order to provide
a clear criterion for the presence of purely collective effects,
given by Icoop/Iind > 1. In other words, dynamic compensation
of the Overhauser field is not a necessary requirement for the
observation of collective effects, but it is rather an adequate
tool to display them clearly. From an experimental point of
view, the dynamic compensation of the Overhauser field might
be challenging as it requires accurate knowledge about the
evolution of the nuclear spins. Therefore, we also present
results for the case in which the external magnetic field
is constant and no compensation is applied. Here, we can
distinguish two cases: Depending on the sign of the HF
coupling constant AHF, the time dependence of the effective

FIG. 6. (Color online) Ratio of the maximum current to the initial
current Icoop/Iind as a function of the number of nuclear spins N for
homogeneous coupling and a relative coupling strength of ε = 0.5:
Results for perfect compensation (dashed line) are compared to the
case of dynamic compensation (dotted line) of the Overhauser field
(OHC). Simulations without compensation of the Overhauser field
set bounds for the enhancement of the leakage current, depending on
the sign of the HF coupling constant AHF; solid and dash-dotted line
for AHF > 0 and AHF < 0, respectively.

Zeeman-splitting ω can either give rise to an additional
enhancement of the leakage current (AHF > 0) or it can
counteract the collective effects (AHF < 0). As shown in Fig. 6,
this sets lower and upper bounds for the observed enhancement
of the leakage current.

In Fig. 6 we also compare the results obtained for dynamic
compensation of the Overhauser field to the idealized case
of perfect compensation in which the effect of the Overhauser
term is set to zero, that is, HOH = gAzSz = 0. Both approaches
display the same features justifying our approximation of
neglecting residual (de)tuning effects of the dynamically
compensated Overhauser field with respect to the external
Zeeman splitting ω0. This is also discussed in greater detail
below.

2. Beyond the idealized setting

Inhomogeneous HF coupling. In principle, the inhomoge-
neous HF coupling could prevent the phasing necessary for SR.
However, as shown below, SR is still present in realistically
inhomogeneous systems. In contrast to the idealized case of
homogeneous coupling, the dynamics cannot be restricted
to a low-dimensional subspace so that an exact numerical
treatment is not feasible due to the large number of nuclei. We
therefore use an approximate approach which has previously
been shown to capture the effect of nuclear spin coherences
while allowing for a numerical treatment of hundreds of
spins.22,27 For simplicity, we restrict ourselves to the local
moment regime in which the current can be obtained directly
from the electron inversion I (t) ∝ 〈S+S−〉t . By Eq. (35), this
expectation value is related to a hierarchy of correlation terms
involving both the electron and the nuclear spins. Based on a
Wick type factorization scheme, higher-order expressions are
factorized in terms of the covariance matrix γ +

ij = 〈σ+
i σ−

j 〉
and the “mediated covariance matrix” γ −

ij = 〈σ+
i Szσ−

j 〉. For
further details, see Refs. 22 and 27.

The coupling constants gj have been obtained from the
assumption of a two-dimensional Gaussian spatial electron
wave function of width

√
N/2. Specifically, we present results

for two sets of numerical parameters, corresponding to a
relative coupling strength of ε = 0.5, where AHF = 1, ω0 = 1,
γ = 0.1, and � = 0.08, and ε = 0.55 with AHF = 1, ω0 = 0.9,
γ = 0.1, and � = 0.067.

As shown in Figs. 7 and 8, the results obtained with these
methods demonstrate clear SR signatures. In comparison to
the ideal case of homogeneous coupling, the relative height is
reduced, but for a fully polarized initial state we still find a
linear enhancement Icoop/Iind ≈ 0.043N (ε = 0.5); therefore,
as long as this linear dependence is valid, for typically N ≈
105–106 a strong intensity enhancement of several orders of
magnitude is predicted (∼103–104).

Imperfect initial polarization. If the initial state is not
fully polarized, SR effects are reduced: However, when
starting from a mixture of symmetric Dicke states |J,J 〉
with polarization p = 80(60)%, we find that the linear N

dependence is still present: Icoop/Iind ≈ 0.0075(0.0025)N for
ε = 0.5; that is, the scaling is about a factor of ∼5(15) weaker
than for full polarization.51 Still, provided the linear scaling
holds up to an experimentally realistic number of nuclei
N ≈ 105–106, this amounts to a relative enhancement of the
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FIG. 7. (Color online) Typical time evolution of the normalized
current for inhomogeneous coupling, shown here for up to N = 132

nuclear spins and a relative coupling strength ε = 0.55. Compared
to the idealized case of homogeneous coupling, the SR effects are
reduced, but still clearly present. A Gaussian spatial electron wave
function has been assumed and the Overhauser field is compensated
dynamically.

order of Icoop/Iind ∼ 102–103. To clearly resolve this peak
experimentally, any spurious current should not be larger than
the initial HF-mediated leakage current. As we argue below,
this condition can be fulfilled in our setup, since the main
spurious mechanism, cotunneling, is strongly suppressed.

Nuclear Zeeman term and species inhomogeneity. In our
simulations we have disregarded the nuclear Zeeman energies.
For a single nuclear species, this term plays no role in the SR
dynamics. However, in typical QDs several nuclear species
with different g factors are present (“species inhomogeneity”).
In principle, these are large enough to cause additional dephas-
ing between the nuclear spins, similar to the inhomogeneous
Knight field.22 However, this dephasing mechanism only
applies to nuclei which belong to different species.22 This
leads to few (in GaAs three) mutually decohered subsystems,
each of which is described by our theory.

Nuclear interactions. Moreover, we have neglected the
dipolar and quadrupolar interactions among the nuclear spins.
First, the nuclear dipole-dipole interaction can cause diffusion
and dephasing processes. Diffusion processes that can change
Az are strongly detuned by the Knight field and therefore
are of minor importance, as corroborated by experimentally
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FIG. 8. (Color online) Ratio of the maximum current to the initial
current Icoop/Iind as a function of the number of nuclear spins N

for relative coupling strengths ε = 0.5 and ε = 0.55: Results for
inhomogeneous coupling. The linear dependence is still present when
starting from a nuclear state with finite polarization p = 0.8.

measured spin diffusion rates.52,53 Resonant processes such as
∝I z

i I z
j can lead to dephasing similar to the inhomogeneous

Knight shift. This competes with the phasing necessary for the
observation of SR as expressed by the first term in Eq. (3).
The SR process is the weakest at the very beginning of the
evolution where we estimate its strength as cmin

r ≈ 10 μeV/N .
An upper bound for the dipole-dipole interaction in GaAs has
been given in Ref. 28 as ∼10−5 μeV, in agreement with values
given in Refs. 32 and 41. Therefore, the nuclear dipole-dipole
interaction can safely be neglected for N � 105. In particular,
its dephasing effect should be further reduced for highly
polarized ensembles.

Second, the nuclear quadrupolar interactions can have two
origins: strain (largely absent in electrically defined QDs) and
electric field gradients originating from the electron. These
have been estimated for typical electrically defined QDs in
Ref. 41 to lead to an additional nuclear level splitting on the
order of ∼10−5 μeV. Moreover, they are absent for nuclear
spin I = 1/2 (e.g., CdSe QDs). To summarize, the additional
dephasing mechanisms induced by nuclear interactions are
much smaller than the terms arising from the inhomogeneous
Knight field.32 As argued above and confirmed by our
simulations, the latter does not prevent the observation of SR
behavior due to the presence of the MPM-term in Eq. (3).

3. Quantitative aspects

Initially, the HF-mediated SR dynamics is rather slow, with
its characteristic time scale set by c−1

r ; for experimentally
realistic parameters—in what follows we use the parameter set
(ε = 0.5, α ≈ 10 μeV, N ≈ 105) for numerical estimates—
this corresponds to c−1

r ≈ 10 μs. Based on fits as shown
in Fig. 9, we then estimate for the SR process duration
〈tD〉 ≈ 50c−1

r ≈ 500 μs, which is still smaller than recently
reported54 nuclear decoherence times of ∼1 ms. Therefore, it
should be possible to observe the characteristic enhancement
of the leakage current before the nuclear spins decohere.

Leakage current. Accordingly, in the initial phasing stage,
the HF-mediated lifting of the spin blockade is rather weak,
resulting in a low leakage current, approximatively given by
I (t = 0)/(eh̄−1) ≈ ε2α/N . Therefore, the initial current due to
HF processes is inversely proportional to the number of nuclear

FIG. 9. (Color online) Total time until the observation of the
characteristic SR peaking tmax for ε = 0.5 (blue dots) and ε = 0.55
(orange squares). Based on Eq. (44), logarithmic fits are obtained
from which we estimate tmax for experimentally realistic number of
nuclear spins N ≈ 105.
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spins N . However, as correlations among the nuclei build up,
the HF-mediated lifting becomes more efficient, culminating
in a maximum current of Imax/(eh̄−1) ≈ ε2α, independent of
N . For realistic experimental values—also taking into account
the effects of inhomogeneous HF coupling and finite initial
polarization p ≈ 0.6—we estimate the initial (maximum)
leakage current to be of the order of I (t = 0) ≈ 6 fA(Imax ≈
10 pA). Leakage currents in this range of magnitudes have
already been detected in single QD spin-filter experiments,26 as
well as double QD Pauli-blockade experiments;15,16,18,19 here,
leakage currents below 10 and 150 fA, respectively, have been
attributed explicitly to other spurious processes.18,26 These are
addressed in greater detail in the following.

Our transport setting is tuned into the sequential tunneling
regime and therefore we have disregarded cotunneling pro-
cesses which are fourth order in HT . In principle, cotunneling
processes could lift the spin blockade and add an extra
contribution to the leakage current that is independent of
the HF dynamics. However, note that cotunneling current
scales as Ict ∝ α2, whereas sequential tunneling current I ∝ α;
accordingly, cotunneling current can always be suppressed
by making the tunnel barriers less transparent.26 Moreover,
inelastic cotunneling processes exciting the QD spin can be
ruled out for eV, kBT < ω0 due to energy conservation.25

The effectiveness of a single quantum dot to act as an
electrically tunable spin filter has also been demonstrated
experimentally:26 The spin-filter efficiency was measured to
be nearly 100%, with Ict being smaller than the noise floor
∼10 fA. Its actual value has been calculated as ∼10−4 fA,
from which we roughly estimate Ict ∼ 10−2 fA in our setting.
This is smaller than the initial HF-mediated current I (t = 0)
and considerably smaller than Imax, even for an initially not
fully polarized nuclear spin ensemble. Still, if one is to
explore the regime where cotunneling cannot be neglected,
phenomenological dissipative terms—effectively describing
the corresponding spin-flip and pure dephasing mechanisms
for inelastic and elastic processes, respectively—should be
added to Eq. (30).

4. Self-consistency

In our simulations we have self-consistently verified that
the fluctuations of the Overhauser field, defined via

	OH(t) = g

√〈
A2

z

〉
t
− 〈Az〉2

t , (48)

are indeed small compared to the external Zeeman splitting ω0

throughout the entire evolution. This ensures the validity of our
perturbative approach and the realization of the spin-blockade
regime. From atomic SR it is known that in the limit of
homogeneous coupling large fluctuations can build up, since in
the middle of the emission process the density matrix becomes
a broad distribution over the Dicke states.24 Accordingly, in
the idealized, exactly solvable case of homogeneous coupling
we numerically find rather large fluctuations of the Overhauser
field; as demonstrated in Fig. 10, this holds independently of
N . In particular, for a relative coupling strength ε = 0.5 the
fluctuations culminate in max[	OH]/ω0 ≈ 0.35. However, in
the case of inhomogeneneous HF coupling the Overhauser
field fluctuations are found to be smaller as the buildup of
these fluctuations is hindered by the Knight term causing

FIG. 10. (Color online) Fluctuations of the Overhauser field
relative to the external Zeeman splitting ω0. In the limit of homoge-
neous HF coupling, strong fluctuations build up towards the middle
of the emission process (red line, ε = 0.5). For inhomogeneous
coupling this buildup of fluctuations is hindered by the dephasing
between the nuclear spins, resulting in considerably smaller fluctua-
tions: The value of the Overhauser fluctuations is shown at the time of
the SR peak tmax for ε = 0.5 (orange squares) and ε = 0.55 (green
diamonds). The Overhauser fluctuations reach a maximum value later
than tmax; see blue dots for ε = 0.5. For independent homogeneously
coupled nuclear spins, one can estimate the fluctuations via the
binominal distribution (black line).

dephasing among the nuclear spins. As another limiting case,
we also estimate the fluctuations for completely independent
homogeneously coupled nuclear spins via the binominal
distribution as max[	OH] ∼ 0.5AHF/

√
N (Ref. 55).

Moreover, we have also ensured self-consistently the
validity of the perturbative treatment of the flip-flop dynamics;
that is, throughout the entire evolution, even for maximum
operative matrix elements 〈A+A−〉t , the strength of the flip-
flop dynamics ‖Hff‖ was still at least five times smaller
than ω0.

VII. CONCLUSION AND OUTLOOK

In summary, we have developed a master equation
based theoretical framework for nuclear-spin-assisted trans-
port through a QD. Due to the collective nature of the HF
interaction, it incorporates intriguing many-body effects as
well as feedback mechanisms between the electron spin and
nuclear spin dynamics. As a prominent application, we have
shown that the current through a single electrically defined QD
in the spin-blockade regime naturally exhibits superradiant
behavior. This effect stems from the collective hyperfine
interaction between the QD electron and the nuclear spin
ensemble in the QD. Its most striking feature is a lifting
of the spin blockade and a pronounced peak in the leakage
current. The experimental observation of this effect would
provide clear evidence of coherent HF dynamics of nuclear
spin ensembles in QDs.

Finally, we highlight possible directions of research going
beyond our present work: Apart from superradiant electron
transport, the setup proposed here is inherently well suited
for other experimental applications like dynamic polarization
of nuclear spins (DNPs): In analogy to optical pumping,
Eq. (3) describes electronic pumping of the nuclear spins.
Its steady states are eigenstates of Az, which lie in the
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kernel of the collective jump operator A−. In particular, for
a completely inhomogeneous system the only steady state
is the fully polarized one, the ideal initial state required
for the observation of SR effects. When starting from a
completely unpolarized nuclear state, the unidirectionality
of Eq. (3)—electrons with one spin orientation exchange
excitations with the nuclear spins, while electrons of opposite
spin primarily do not—implies that the rather warm electronic
reservoir can still extract entropy out of the nuclear system.
More generally, the transport setting studied here possibly
opens up the route towards the (feedback-based) electronic
preparation of particular nuclear states in single QDs. This is
in line with similar ideas previously developed in double QD
settings (see, e.g., Refs. 12, 15, 18, 20, and 54).

In this work we have specialized on a single QD. However,
our theory could be extended to a double QD (DQD) setting
which is likely to offer even more possibilities. DQDs are
routinely operated in the Pauli-blockade regime where despite
the presence of an applied source-drain voltage the current
through the device is blocked whenever the electron tunneling
into the DQD has the same spin orientation as the one already
present. The DQD parameters and the external magnetic field
can be tuned such that the role of the states |σ 〉,σ =↓ ,↑, in
our model is played by a pair of singlet and triplet states, while
all other states are off-resonant. Then, along the lines of our
study, nonlinearities appear due to dependencies between the
electronic and nuclear subsystems and collective effects enter
via the HF-mediated lifting of the spin blockade.

While we have focused on the Markovian regime and the
precise conditions for its validity, Eq. (15) offers a starting
point for studies of non-Markovian effects in the proposed
transport setting. All terms appearing in the memory kernel
of Eq. (15) are quadratic in the fermionic creation and
annihilation operators allowing for an efficient numerical
simulation, without having to explicitly invoke the flatness
of the spectral density of the leads. This should then shed light
on possibly abrupt changes in the QD transport properties due
to feedback mechanism between the nuclear spin ensemble
and the electron spin.

Last, our work also opens the door towards studies of
dissipative phase transitions in the transport setting: When
combined with driving, the SR dynamics can lead to a variety
of strong-correlation effects, nonequilibrium, and dissipative
phase transitions,1,56–58 which could now be studied in a meso-
scopic solid-state system, complementing other approaches to
dissipative phase transitions in QDs.59–62
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APPENDIX A: MICROSCOPIC DERIVATION
OF THE MASTER EQUATION

In this appendix we provide some details regarding the
derivation of the master equations as stated in Eqs. (2) and
(30). It comprises the effect of the HF dynamics in the

memory kernel of Eq. (13) and the subsequent approximation
of independent rates of variation.

In the following, we show that it is self-consistent to neglect
the effect of the HF dynamics L1(t) in the memory kernel of
Eq. (13) provided that the bath correlation time τc is short
compared to the Rabi flips produced by the HF dynamics.
This needs to be addressed as cooperative effects potentially
drive the system from a weakly coupled into a strongly
coupled regime. First, we reiterate the Schwinger-Dyson
identity in Eq. (14) as an infinite sum over time-ordered nested
commutators

e−i(L0+L1)τ = e−iL0τ

∞∑
n=0

(−i)n
∫ τ

0
dτ1

∫ τ1

0
dτ2 . . .

×
∫ τn−1

0
dτn L̃1(τ1)L̃1(τ2) . . . L̃1(τn), (A1)

where for any operator X

L̃1(τ )X = eiL0τL1e
−iL0τX

= [eiH0τH1e
−iH0τ ,X] = [H̃1(τ ),X]. (A2)

More explicitly, up to second order Eq. (A1) is equivalent to

e−i(L0+L1)τX

= e−iL0τX − ie−iL0τ

∫ τ

0
dτ1[H̃1(τ1),X]

− e−iL0τ

∫ τ

0
dτ1

∫ τ1

0
dτ2[H̃1(τ1),[H̃1(τ2),X]] + · · · .

(A3)

Note that the time dependence of H̃1(τ ) is simply given by

H̃1(τ ) = eiωτH+ + e−iωτH− + H	OH, H± = g

2
S±A∓,

(A4)

where the effective Zeeman splitting ω = ω0 + g〈Az〉t is
time dependent. Accordingly, we define L̃1(τ ) = L̃+(τ ) +
L̃−(τ ) + L̃	OH(τ ) = eiωτL+ + e−iωτL− + L	OH, where
Lx · = [Hx,·] for x = ±,	OH. In the next steps, we explicitly
evaluate the first two contributions to the memory kernel that
go beyond n = 0 and then generalize our findings to any order
n of the Schwinger-Dyson series.

1. First-order correction

The first-order contribution n = 1 in Eq. (13) is given by

�(1) = i

∫ t

0
dτ

∫ τ

0
dτ1TrB(LT e−iL0τ [H̃1(τ1),X]). (A5)

Performing the integration in τ1 leads to

�(1) =
∫ t

0
dτ

{
g

2ω
(1 − e−iωτ )TrB(LT [S+A−,X̃τ ])

+ g

2ω
(eiωτ − 1)TrB(LT [S−A+,X̃τ ])

+ igτTrB(LT [(Az − 〈Az〉t )Sz,X̃τ ])

}
, (A6)

where, for notational convenience, we introduced the op-
erators X = LT ρS(t − τ )ρ0

B and X̃τ = e−iH0τ [HT ,ρS(t −
τ )ρ0

B]eiH0τ ≈ [H̃T (τ ),ρS(t)ρ0
B]. In accordance with previous
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approximations, we have replaced e−iH0τ ρS(t − τ )eiH0τ with
ρS(t) since any additional term besides H0 would be of higher
order in perturbation theory.35,36 In particular, this disregards
dissipative effects: In our case, this approximation is valid
self-consistently provided that the tunneling rates are small
compared to effective Zeeman splitting ω. The integrand
decays on the leads-correlation time scale τc, which is typically
much faster than the time scale set by the effective Zeeman
splitting, ωτc � 1. This separation of time scales allows
for an expansion in the small parameter ωτ , for example,
g

ω
(eiωτ − 1) ≈ igτ . We see that the first-order correction can

be neglected if the the bath correlation time τc is sufficiently
short compared to the time scale of the HF dynamics, that is
gτc � 1. The latter is bounded by the total hyperfine coupling
constant AHF (since ||gAx || � AHF) so that the requirement
for disregarding the first-order term reads AHFτc � 1.

2. Second-order correction

The contribution of the second term n = 2 in the
Schwinger-Dyson expansion can be decomposed into

�(2) = �(2)
zz + �

(2)
ff + �

(2)
fz . (A7)

The first term �(2)
zz contains contributions from H	OH only,

�(2)
zz =

∫ t

0
dτ

∫ τ

0
dτ1

∫ τ1

0
dτ2TrB(LT e−iL0τ [H̃	OH(τ1),

[H̃	OH(τ2),X]]) (A8)

= −
∫ t

0
dτ (gτ )2TrB

[
LT

(
δAzSzX̃τ δA

zSz

− 1

2
{δAzSzδAzSz,X̃τ }

)]
. (A9)

Similarly, �
(2)
ff , which comprises contributions from Hff only

is found to be

�
(2)
ff = g2

4ω2

∫ t

0
dτ {(1 + iωτ − eiωτ )

× TrB[LT (S+S−A−A+X̃τ + X̃τ S
−S+A+A−)]

+ (1 − iωτ − e−iωτ )TrB[LT (S−S+A+A−X̃τ

+ X̃τ S
+S−A−A+)]}. (A10)

Here, we have used the following simplification: The time-
ordered products which include flip-flop terms only can be
simplified to two possible sequences in which L+ is followed
by L− and vice versa. This holds since

L±L±X = [H±,[H±,X]]

= H±H±X + XH±H± − 2H±XH± = 0. (A11)

Here, the first two terms drop out immediately since the
electronic jump operators S± fulfill the relation S±S± = 0.
In the problem at hand, also the last term gives zero because
of particle number superselection rules: In Eq. (13) the time-
ordered product of superoperators acts on X = [HT ,ρS(t −
τ )ρ0

B]. Thus, for the term H±XH± to be nonzero, coherences
in Fock space would be required, which are consistently
neglected (compare Ref. 36). This is equivalent to ignoring
coherences between the system and the leads. Note that

the same argument holds for any combination HμXHν with
μ,ν = ±.

Similar results can be obtained for �
(2)
fz which comprises

H± as well as H	OH in all possible orderings. Again, using that
the integrand decays on a time scale τc and expanding in the
small parameter ωτ shows that the second-order contribution
scales as ∼(gτc)2. Our findings for the first- and second-order
correction suggest that the nth-order correction scales as
∼(gτc)n. This is proven in the following by induction.

3. nth-order correction

The scaling of the nth term in the Dyson series is governed
by the quantities of the form

ξ
(n)
+−···(τ ) = gn

∫ τ

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτne

iωτ1e−iωτ2 . . . ,

(A12)

where the index suggests the order in which H± (giving an
exponential factor) and H	OH (resulting in a factor of 1) appear.
Led by our findings for n = 1,2, we claim that the expansion
of ξ

(n)
+−···(τ ) for small ωτ scales as ξ

(n)
+−···(τ ) ∼ (gτ )n. Then, the

(n + 1)th terms scale as

ξ
(n+1)
−(	OH)+−···(τ ) = gn+1

∫ τ

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτn

×
∫ τn

0
dτn+1

(
e−iωτ1

1

)
e+iωτ2 · · · (A13)

= g

∫ τ

0
dτ1

(
e−iωτ1

1

)
ξ

(n)
+−···(τ1) (A14)

∼ (gτ )n+1. (A15)

Since we have already verified this result for n = 1,2, the
general result follows by induction. This completes the proof.

APPENDIX B: ADIABATIC ELIMINATION
OF THE QD ELECTRON

For a sufficiently small relative coupling strength ε the
nuclear dynamics are slow compared to the electronic QD
dynamics. This allows for an adiabatic elimination of the
electronic degrees of freedom yielding an effective master
equation for the nuclear spins of the QD.

Our analysis starts out from Eq. (35), which we write as

ρ̇ = W0ρ + W1ρ, (B1)

where

W0ρ = −i[ω0S
z,ρ] + γ

[
S−ρS+ − 1

2
{S+S−,ρ}

]

+�

[
SzρSz − 1

4
ρ

]
, (B2)

W1ρ = −i[HHF,ρ]. (B3)

Note that the superoperator W0 only acts on the electronic
degrees of freedom. It describes an electron in an external
magnetic field that experiences a decay as well as a pure de-
phasing mechanism. In zeroth order of the coupling parameter
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ε the electronic and nuclear dynamics of the QD are decoupled
and SR effects cannot be expected. These are contained in the
interaction term W1.

Formally, the adiabatic elimination of the electronic degrees
of freedom can be achieved as follows:63 To zeroth order in ε

the eigenvectors of W0 with zero eigenvector λ0 = 0 are

W0μ ⊗ ρSS = 0, (B4)

where ρSS = |↓〉〈↓| is the stationary solution for the electronic
dynamics and μ describes some arbitrary state of the nuclear
system. The zeroth-order Liouville eigenstates corresponding
to λ0 = 0 are coupled to the subspaces of “excited” nonzero
(complex) eigenvalues λk �= 0 of W0 by the action of W1.
Physically, this corresponds to a coupling between electronic
and nuclear degrees of freedom. In the limit where the HF
dynamics are slow compared to the electronic frequencies, that
is, the Zeeman splitting ω0, the decay rate γ , and the dephasing
rate �, the coupling between these blocks of eigenvalues and
Liouville subspaces of W0 is weak, justifying a perturbative
treatment. This motivates the definition of a projection operator
P onto the subspace with zero eigenvalue λ0 = 0 of W0

according to

Pρ = Trel[ρ] ⊗ ρSS = μ ⊗ |↓〉〈↓|, (B5)

where μ = Trel[ρ] is a density operator for the nuclear spins,
Trel . . . denotes the trace over the electronic subspace, and, by
definition, W0ρSS = 0. The complement of P is Q = 1 − P .
By projecting the master equation on the P subspace and
tracing over the electronic degrees of freedom we obtain an
effective master equation for the nuclear spins in second-order
perturbation theory,

μ̇ = Trel
[
PW1Pρ − PW1QW−1

0 QW1Pρ
]
. (B6)

Using Trel[SzρSS] = −1/2, the first term is readily evaluated
and yields the Knight shift seen by the nuclear spins,

Trel[PW1Pρ] = +i
g

2
[Az,μ]. (B7)

The derivation of the second term is more involved. It can be
rewritten as

−Trel
[
PW1QW−1

0 QW1Pρ
]

= −Trel
[
PW1(1 − P )W−1

0 (1 − P )W1Pρ
]

(B8)

=
∫ ∞

0
dτ Trel[PW1e

W0τW1Pρ]

−
∫ ∞

0
dτ Trel[PW1PW1Pρ]. (B9)

Here, we used the Laplace transform −W−1
0 = ∫ ∞

0 dτ eW0τ

and the property eW0τP = PeW0τ = P .
Let us first focus on the first term in Eq. (B9). It contains

terms of the form

Trel[P [A+S−,eW0τ [A−S+,μ ⊗ ρSS]]]

= Trel[S
−eW0τ (S+ρSS)]A+A−μ (B10)

− Trel[S
−eW0τ (S+ρSS)]A−μA+ (B11)

+ Trel[S
−eW0τ (ρSSS

+)]μA−A+ (B12)

− Trel[S
−eW0τ (ρSSS

+)]A+μA−. (B13)

This can be simplified using the following relations: Since
ρSS = |↓〉〈↓|, we have S−ρSS = 0 and ρSSS

+ = 0. Moreover,
|↑〉〈↓| and |↓〉〈↑| are eigenvectors of W0 with eigenvalues
−(iω0 + α/2) and +(iω0 − α/2), where α = γ + �, yielding

eW0τ (S+ρSS) = e−(iω0+α/2)τ |↑〉〈↓|, (B14)

eW0τ (ρSSS
−) = e+(iω0−α/2)τ |↓〉〈↑|. (B15)

This leads to

Trel[P [A+S−,eW0τ [A−S+,μ ⊗ ρSS]]]

= e−(iω0+α/2)τ (A+A−μ − A−μA+). (B16)

Similarly, one finds

Trel[P [A−S+,eW0τ [A+S−,μ ⊗ ρSS]]]

= e+(iω0−α/2)τ (μA+A− − A−μA+). (B17)

Analogously, one can show that terms containing two flip or
two flop terms give zero. The same holds for mixed terms that
comprise one flip-flop and one Overhauser term with ∼AzSz.
The term consisting of two Overhauser contributions gives

Trel[P [AzSz,eW0τ [AzSz,μ ⊗ ρSS]]]

= − 1
4 [2AzμAz − [AzAz,μ]]. (B18)

However, this term exactly cancels with the second term from
Eq. (B9). Thus, we are left with the contributions coming from
Eqs. (B16) and (B17). Restoring the prefactors of −ig/2, we
obtain

Trel
[
PW1Q

(−W−1
0

)
QW1Pρ

]

= g2

4

∫ ∞

0
dτ [e−(iω0+α/2)τ (A−μA+ − A+A−μ)

+ e+(iω0−α/2)τ (A−μA+ − μA+A−)]. (B19)

Performing the integration and separating real from imaginary
terms yields

Trel
[
PW1Q

(−W−1
0

)
QW1Pρ

]

= cr

[
A−μA+ − 1

2
{A+A−,μ}

]
+ ici[A

+A−,μ], (B20)

where cr = g2/(4ω2
0 + α2)α and ci = g2/(4ω2

0 + α2)ω0.
Combining Eq. (B7) with Eq. (B20) directly gives the effective
master equation for the nuclear spins given in Eq. (3) in the
main text.
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We investigate dissipative phase transitions in an open central spin system. In our model the central spin
interacts coherently with the surrounding many-particle spin environment and is subject to coherent driving and
dissipation. We develop analytical tools based on a self-consistent Holstein-Primakoff approximation that enable
us to determine the complete phase diagram associated with the steady states of this system. It includes first-
and second-order phase transitions, as well as regions of bistability, spin squeezing, and altered spin-pumping
dynamics. Prospects of observing these phenomena in systems such as electron spins in quantum dots or
nitrogen-vacancy centers coupled to lattice nuclear spins are briefly discussed.

DOI: 10.1103/PhysRevA.86.012116 PACS number(s): 03.65.Yz, 05.30.Rt, 64.60.Ht

I. INTRODUCTION

Statistical mechanics classifies phases of a given system
in thermal equilibrium according to its physical properties. It
also explains how changes in the system parameters allow us to
transform one phase into another, sometimes abruptly, which
results in the phenomenon of phase transitions. A special kind
of phase transitions occur at zero temperature: such transitions
are driven by quantum fluctuations instead of thermal ones and
are responsible for the appearance of exotic quantum phases in
many areas of physics. These quantum phase transitions have
been a subject of intense research in the last 30 years, and are
expected not only to explain interesting behavior of systems at
low temperature, but also to lead to new states of matter with
desired properties (e.g., superconductors, -fluids, and -solids,
topological insulators [1–6]).

Phase transitions can also occur in systems away from
their thermal equilibrium. For example, this is the case when
the system interacts with an environment and, at the same
time, is driven by some external coherent source. Due to
dissipation, the environment drives the system to a steady
state, ρ0(g), which depends on the system and environment
parameters, g. As g is changed, a sudden change in the system
properties may occur, giving rise to a so-called dissipative
phase transition (DPT) [7–14]. DPTs have been much less
studied than traditional or quantum ones. With the advent of
new techniques that allow them to be observed experimentally,
they are starting to play an important role [15]. Moreover, they
offer the intriguing possibility of observing critical effects
nondestructively because of the constant intrinsic exchange
between system and environment [16]. In equilibrium sta-
tistical mechanics a large variety of toy models exist that
describe different kind of transitions. Their study led to a deep
understanding of many of them. In contrast, in the case of DPT
few models have been developed.

The textbook example of a DPT occurs in the Dicke
model of resonance fluorescence [7,17]. There, a system of
spins interacts with a thermal reservoir and is externally
driven. Experimental [18] and theoretical studies [19–22]
revealed interesting features such as optical multistability,

first- and second-order phase transitions, and bipartite
entanglement.

In this paper, we analyze another prototypical open system:
The model is closely related to the central spin system
which has been thoroughly studied in thermal equilibrium
[23–25]. In its simplest form, it consists of a set of spin- 1

2
particles (in the following referred to as the nuclear spins),
uniformly coupled to a single spin- 1

2 (referred to as the
electron spin). In the model we consider, the central spin
is externally driven and decays through interaction with a
Markovian environment. Recently, the central spin model has
found application in the study of solid-state systems such
as electron and nuclear spins in a quantum dot [25] or a
nitrogen-vacancy center.

In what follows, we first provide a general framework for
analyzing DPT in open systems. In analogy with the analysis
of low-energy excitations for closed systems, it is based on
the study of the excitation gap of the system’s Liouville
operator L. We illustrate these considerations using the central
spin model. For a fixed dissipation strength γ , there are two
external parameters one can vary: the Rabi frequency of the
external driving field, �, and the Zeeman shift, ω. We present
a complete phase diagram as a function of those parameters,
characterize all the phases, and analyze the phase transitions
occurring among them. To this end, we develop a series of
analytical tools, based on a self-consistent Holstein-Primakoff
approximation, which allows us to understand most of the
phase diagram. In addition, we use numerical methods to
investigate regions of the diagram where the theory yields
incomplete results. Combining these techniques, we can
identify two different types of phase transitions and regions
of bistability, spin squeezing, and enhanced spin polarization
dynamics. We also identify regions where anomalous behavior
occurs in the approach to the steady state. Intriguingly, recent
experiments with quantum dots, in which the central (elec-
tronic) spin is driven by a laser and undergoes spontaneous
decay, realize a situation very close to the one we study here
and show effects such as bistability, enhanced fluctuations, and
abrupt changes in polarization in dependence of the system
parameters [26,27].
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This paper is organized as follows. Section II sets the
general theoretical framework underlying our study of DPT.
Section III introduces the model and contains a structured
summary of the main results. In Sec. IV we develop the
theoretical techniques and use those techniques to analyze the
various phases and classify the different transitions. Thereafter,
in Sec. V numerical techniques are employed to explain the
features of the phase diagram which are not captured by
the previous theory. Possible experimental realizations and
a generalization of the model to inhomogeneous coupling are
discussed in Sec. VI. Finally, we summarize the results and
discuss potential applications in Sec. VII.

II. GENERAL THEORETICAL FRAMEWORK

The theory of quantum phase transitions in closed systems
is a well-established and extensively studied area in the field of
statistical mechanics. The typical scenario is the following: a
system is described by a Hamiltonian, H (g), where g denotes
a set of systems parameters (like magnetic fields, interactions
strengths, etc.). At zero temperature and for a fixed set of
parameters, g, the system is described by a quantum state,
ψ0(g), fulfilling [H (g) − Eψ0 (g)]|ψ0(g)〉 = 0, where Eψ0 (g)
is the ground-state energy. As long as the Hamiltonian is
gapped (i.e., the difference between E0(g) and the first
excitation energy is finite), any small change in g will alter the
physical properties related to the state |ψ0(g)〉 smoothly and
we remain in the same phase. However, if the first excitation
gap � = Eψ1 (g) − Eψ0 (g) closes at a given value of the
parameters, g = g0, it may happen that the properties change
abruptly, in which case a phase transition occurs.

In the following we adapt analogous notions to the case of
DPT and introduce the concepts required for the subsequent
study of a particular example of a generic DPT in a central
spin model.

We consider a Markovian open system, whose evolution
is governed by a time-independent master equation ρ̇ =
L(g)ρ. The dynamics describing the system are contractive,
implying the existence of a steady state. This steady state
ρ0(g) is a zero eigenvector to the Liouville superoperator
L(g)ρ0(g) = 0. This way of thinking parallels that of quantum
phase transitions, if one replaces [H (g) − Eψ0 (g)] → L(g).
Despite the fact that these mathematical objects are very

different (the first is a Hermitian operator, and the second
a Hermiticity-preserving superoperator), one can draw certain
similarities between them. For instance, for an abrupt change
of ρ0(g) (and thus of certain system observables) it is necessary
that the gap in the (in general complex) excitation spectrum of
the system’s Liouville operator L(g) closes. The relevant gap
in this context is determined by the eigenvalue with largest
real part different from zero (it can be shown that Re(λ) � 0
for all eigenvalues of L [28]). The vanishing of the real part of
this eigenvalue—from here on referred to as asymptotic decay
rate (ADR) [29]—indicates the possibility of a nonanalytical
change in the steady state and thus is a necessary condition for
a phase transition to occur.

In our model system, the Liouvillian low-excitation spec-
trum, and the ADR in particular, can in large parts of the
phase diagram be understood from the complex energies
of a stable Gaussian mode of the nuclear field. We find
first-order transitions where the eigenvalue of this stable mode
crosses the eigenvalue of a metastable mode at zero in the
projection onto the real axis. The real part of the Liouvillian
spectrum closes directly as the stable mode turns metastable
and vice versa. A finite difference in the imaginary parts of
the eigenvalues across the transition prevents a mixing of the
two modes and the emergence of critical phenomena, such
as a change in the nature of the steady-state correlations at
the critical point. In contrast, we also find a second-order
phase transition where the ADR vanishes asymptotically as
both mode energies become zero (in both real and imaginary
part) in the thermodynamic limit. At this critical point a true
degeneracy emerges in the Liouvillian spectrum and mixing of
the two modes point gives rise to diverging correlations in the
nuclear system. This observation parallels the classification
of quantum phase transitions in closed systems. There, a
direct crossing of the ground- and first-excited-state energy
for finite systems (mostly arising from a symmetry in the
system) typically gives rise to a first-order phase transition.
An asymptotical closing of the first excitation gap of the
Hamiltonian in the thermodynamic limit represents the generic
case of a second-order transition [30].

Besides the analogies described so far [cf. Table I], there
are obvious differences, like the fact that in DTP ρ0(g) may
be pure or mixed, and that some of the characteristic behavior
of a phase may also be reflected in how the steady state is

TABLE I. Nonexhaustive comparison of thermal phase transitions (TPTs), quantum phase transitions (QPTs), and DPTs. The concepts for
DPTs parallel in many respects the considerations for QPTs and TPTs. || · ||tr denotes the trace norm and S the entropy. Note that if the steady
state is not unique, additional steady states may come with a nonzero imaginary part of the eigenvalue and then appear in pairs: Lρ = ±iyρ

(y ∈ R).

TPT QPT DPT

System Hamiltonian Hamiltonian Liouvillian
operator H = H † H = H † L–Lindblad
Relevant Free energy Energy eigenvalues “Complex energy” eigenvalues
quantity F (ρ) = 〈H 〉ρ − T 〈S〉ρ Eψ : H |ψ〉 = Eψ |ψ〉 λρ : Lρ = λρρ

Gibbs state Ground state Steady state
State ρT = argmin

ρ�0,Tr(ρ)=1
[F (ρ)] |ψ0〉 = argmin

‖ψ‖=1
[〈ψ | H |ψ〉] ρ0 = argmin

‖ρ‖tr=1
[‖Lρ‖tr]

ρT ∝ exp[−H/kBT ] [H − Eψ0 ]|ψ0〉 = 0 Lρ0 = 0
Phase transition Nonanalyticity in F (ρT ) � = Eψ1 − Eψ0 vanishes ADR = max[Re(λρ)] vanishes
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approached. Nonanalyticities in the higher excitation spectrum
of the Liouvillian are associated to such dynamical phases.

III. MODEL AND PHASE DIAGRAM

A. The model

We investigate the steady-state properties of a homoge-
neous central spin model. The central spin—also referred
to as electronic spin in the following—is driven resonantly
via suitable optical or magnetic fields. Dissipation causes
electronic spin transitions from the spin-up to the spin-down
state. It can be introduced via standard optical pumping
techniques [31,32]. Furthermore, the central spin is assumed
to interact with an ensemble of ancilla spins—also referred
to as nuclear spins in view of the mentioned implementa-
tions [25]—by an isotropic and homogeneous Heisenberg
interaction. In general, this hyperfine interaction is assumed to
be detuned. Weak nuclear magnetic dipole-dipole interactions
are neglected.

After a suitable transformation which renders the Hamil-
tonian time-independent, the system under consideration is
governed by the master equation

ρ̇ = Lρ
(1)

= Jγ
(
S−ρS+ − 1

2 {S+S−,ρ}) − i[HS + HI + HSI ,ρ],

where {·,·} denotes the anticommutator and

HS = J�(S+ + S−), (2)

HI = δωIz, (3)

HSI = a/2(S+I− + S−I+) + aS+S−Iz. (4)

Sα and Iα (α = +, − ,z) denote electron and collective nuclear
spin operators, respectively. Collective nuclear operators are
defined as the sum of N individual nuclear operators Iα =∑N

i=1 σα
i . J� is the Rabi frequency of the resonant external

driving of the electron (in rotating wave approximation), while
δω = ω − a/2 is the difference of hyperfine detuning ω and
half the individual hyperfine coupling strength a. δω, for
instance, can be tuned via static magnetic fields in the z

direction. Note that HI + HSI = a �S �I + ωIz, describing the
isotropic hyperfine interaction and its detuning. The rescaling
of the electron driving and dissipation in terms of the total
(nuclear) spin quantum number J 1 is introduced here for
convenience and will be justified later. Potential detunings
of the electron driving—corresponding to a term �Sz in the
Hamiltonian part of the master equation—can be neglected if
� 	 Ja.

In the limit of strong dissipation γ 
 a the electron degrees
of freedom can be eliminated and Eq. (1) reduces to

σ̇ := TrS(ρ̇) = γeff

(
I−σI+ − 1

2
{I+I−,σ }

)
− i[�effIy + δωIz], (5)

where γeff = a2

γ
, �eff = �a

2γ
, and σ is the reduced density

matrix of the nuclear system. This is a generalization of

1Note that the total spin quantum number J is conserved under the
action of L.

the Dicke model of resonance fluorescence as discussed
in [7,10,22].

Master Eq. (1) has been theoretically shown to display
cooperative nuclear effects such as superradiance (even for
inhomogeneous electron nuclear coupling) [33] and nuclear
spin squeezing [34] in the transient evolution. In analogy to the
field of cooperative resonance fluorescence, the system’s rich
steady-state behavior comprises various critical effects such as
first- and second-order DPT and bistabilities. In the following
we provide a qualitative summary of the phase diagram and
of the techniques developed to study the various phases and
transitions.

B. Phenomenological description of the phase diagram

For a fixed dissipation rate γ = a the different phases and
transitions of the system are displayed schematically in Fig. 1
in dependence on the external driving � and the hyperfine
detuning ω. We stress the point that none of the features
discussed in the following depends critically on this particular
value of the dissipation. In Appendix A we discuss briefly
the quantitative changes in the phase diagram for moderately
lower (higher) values of γ . Further, we concentrate our studies
on the quadrant �,ω > 0, in which all interesting features can
be observed. In the following, we outline the key features of
the phase diagram.

Ω/Ω0

ω
/ω

0
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FIG. 1. (Color online) Schematic of the different phases and
transitions of master Eq. (1). In the two main phases of the system
A (blue) and B (red)—which together cover the whole phase
diagram—the system is found in a RSTSS (cf. text). While phase
A is characterized by normal spin-pumping behavior (large nuclear
polarization in the direction of the dissipation) and a low effective
temperature, phase B displays anomalous spin-pumping behavior
(large nuclear polarization in opposing direction to the dissipation)
and high temperature. They are separated by the first-order phase
boundary b, which is associated with a region of bistability C (framed
by the boundary c). Here a second non-Gaussian solution appears,
besides the normal spin-pumping mode of A. The region of bistability
C culminates in a second-order phase transition at (ω0,�0). Below
this critical point the system is supercritical and no clear distinction
between phases A and B exists. In this region a dynamical phase D

emerges, characterized by anomalous behavior in the approach to the
steady state. For a detailed description of the different phases and
transitions, see Sec. III B.
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First we consider the system along the line segment x

(ω = ω0,� � �0), where �0 = ω0 = a/2 (a is the individual
hyperfine coupling constant) define a critical driving strength
and critical hyperfine detuning, respectively. Here HI vanishes
and the steady state can be constructed analytically as a zero-
entropy factorized state of the electron and nuclear system.
The nuclear field builds up to compensate for the external
driving—forcing the electron in its dark state |↓〉—until the
maximal polarization is reached at the critical value �0. Above
this point the nuclear system cannot compensate for the driving
� anymore and a solution of a different nature, featuring
finite electron inversion and entropy is found. The point �0

shows diverging spin entanglement and is identified below as
a second-order phase transition.

For the separable density matrix ρ0 = |ψ〉 〈ψ |, |ψ〉 =
|↓〉 ⊗ |α〉 the only term in master Eq. (1) which is not trivially
zero is the Hamiltonian term S+( a

2 I− + J�). However,
choosing |α〉 as an approximate eigenstate of the lowering
operator I− |α〉 ≈ α |α〉 (up to second order in ε = 1/

√
J )

with α = −2J�/a ≡ −J�/�0, the corresponding term in
Eq. (1) vanishes in the thermodynamic limit. In Appendix B 1
we demonstrate that approximate eigenstates |α〉 can be
constructed as squeezed and displaced vacua in a Holstein-
Primakoff [35] picture up to a correction of order 1/J .
The squeezing of the nuclear state depends uniquely on
the displacement such that these states represent a subclass
of squeezed coherent atomic states [36]. Remarkably, this
solution—where along the whole segment x the system settles
in a separable pure state—exists for all values of the dissipation
strength γ .

In the limit of vanishing driving � = 0 the steady state
trivially is given by the fully polarized state (being the zero
eigenstate of the lowering operator), as the model realizes a
standard optical spin-pumping setting for dynamical nuclear
polarization [37]. With increasing �, the collective nuclear
spin is rotated around the y axis on the surface of the Bloch
sphere such that the effective Overhauser field in the x direction
compensates exactly for the external driving field on the
electron spin. As a consequence along the whole segment x

the dissipation forces the electron in its dark state |↓〉, and all
electron observables, but also the entropy and some nuclear
observables, are independent of �.

Furthermore, the steady state displays increased nuclear
spin squeezing in the y direction (orthogonal to the mean
polarization vector) when approaching the critical point.
A common measure of squeezing is defined via the spin
fluctuations orthogonal to the mean polarization of the spin
system. A state of a spin-J system is called spin squeezed [36]
if there exists a direction �n orthogonal to the mean spin
polarization 〈 �I 〉 such that

ξ 2
�n ≡ 2

〈
�I 2

�n
〉/|〈 �I 〉| < 1. (6)

In [38] it was shown that every squeezed state also contains
entanglement among the individual constituents. Moreover,
if ξ 2

�n < 1
k

then the spin-squeezed state contains k-particle
entanglement [39–41]. In Appendix B 1 we show that the
squeezing parameter in the y direction for an approximate
I− eigenstate |α〉 is given as ξ 2

êy
=

√
1 − α2/J 2 + O(1/J ) =√

1 − (�/�0)2 + O(1/J ). Note, however, that this equation is

valid only for ξ 2
êy

� 1/
√

J . For higher squeezing the operator
expectation values constituting the term of order O(1/J ) can
attain macroscopic values of order

√
J . For � � �0 we find

that the nuclear spins are in a highly squeezed minimum
uncertainty state, with k-particle entanglement.2 Close to the
critical point k becomes of the order of

√
J [ξ 2

êy
= O(1/

√
J )],

indicating diverging entanglement in the system.
Since the lowering operator is bounded (||I−|| � J ), at

� = �0 where the nuclear field has reached its maximum
value, the zero entropy solution constructed above ceases
to exist. For large electron driving, where � 
 �0 sets
the dominant energy scale, the dissipation γ results in an
undirected diffusion in the dressed state picture and in the
limit � → ∞ the system’s steady state is fully mixed. In
order to describe the system for driving strength � > �0,
in Sec. IV A we develop a perturbative theory designed to
efficiently describe a class of steady states where the electron
and nuclear spins are largely decoupled and the nuclear system
is found in a fully polarized and rotated state with potentially
squeezed, thermal Gaussian fluctuations (also referred to as
rotated squeezed thermal spin states (RSTSS) or the Gaussian
mode). It is fully characterized by its mean polarization as
well as the spin squeezing and effective temperature Teff of
the fluctuations (cf. Appendix C). Squeezed coherent atomic
states, which constitute the solution along segment x, appear
as a limiting case of this class for zero temperature Teff = 0.

In order to describe these RSTSS solutions, we conduct
a systematic expansion of the system’s Liouville operator in
orders of the system size 1/

√
J , by approximating nuclear op-

erators by their semiclassical values and incorporating bosonic
fluctuations up to second order in an Holstein-Primakoff
picture. The resulting separation of time scales between
electron and nuclear dynamics is exploited in a formalized
adiabatic elimination of the electron degrees of freedom.
The semiclassical displacements (i.e., the electron and nu-
clear direction of polarization) are found self-consistently by
imposing first-order stability of the nuclear fluctuations and
correspond to the nuclear and electron steady-state expectation
values derived from the semiclassical Bloch equations (i.e.,
after a brute force factorization 〈SiIj 〉 → 〈Si〉〈Ij 〉, for i,j =
x,y,z) in the equations of motion (cf. Appendix D). For a
given set of semiclassical solutions we derive a second-order
reduced master equation for the nuclear fluctuations which,
in the thermodynamic limit, contains all information on the
nuclear state’s stability, its steady-state quantum fluctuations
and entanglement, as well as the low excitation dynamics in
the vicinity of the steady state and thus allows for a detailed
classification of the different phases and transitions.

Using this formalism, we find that the system enters a new
phase at the critical point �0, in which the nuclear field can no
longer compensate for the external driving, leading to a finite
electron inversion and a nuclear state of rising temperature

2As in Ref. [40] we call a pure state |ψ〉 of N -qubits k-particle
entangled if |ψ〉 is a product of states |ψl〉 each acting on at most k

qubits and at least one of these does not factorize. A mixed state is
at least k-particle entangled if it cannot be written as a mixture of
l < k-particle entangled states.
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for increasing driving strength. At the transition between
the two phases, the properties of the steady state change
nonanalytically and in Sec. IV B2 we will find an asymptotic
closing of the Liouvillian gap (cf. Sec. II) at the critical
point, as the Liouvillian’s spectrum becomes continuous in
the thermodynamic limit. Below we characterize the critical
point (ω0,�0) as a second-order phase transition.

Allowing for arbitrary hyperfine detunings ω, a phase
boundary emerges from the second-order critical point (line
b in Fig. 1), separating two distinct phases A (blue) and B

(red) of the Gaussian mode. The subregion C of A indicates a
region of bistability associated with the phase boundary b and
is discussed below.

At � = 0 the semiclassical equations of motion feature
two steady-state solutions. Not only the trivial steady state of
the spin-pumping dynamics—the fully polarized state in the
−z direction—but also an inverted state where the nuclear
system is fully polarized in the+z direction is a (unstable)
solution of the semiclassical system. Quantum fluctuations
account for the decay of the latter solution of anomalous
spin-pumping behavior. The two semiclassical solutions (the
corresponding quantum states are from here on referred to as
the normal and anomalous spin-pumping modes, respectively)
persist for finite �. As we show employing the formalism
described above (Sec. IV B3), quantum fluctuations destabilize
the mode of anomalous behavior in region A of the phase
diagram. The stable Gaussian solution in phase A displays
a behavior characterized by the competition of dissipation γ

and the onsetting driving field �. The nuclear state is highly
polarized in the direction set by the decay, and the electron
spin starts aligning with the increasing external driving field.
Furthermore, the normal spin-pumping mode of phase A is
characterized by a low effective spin temperature.

The analysis of the low excitation spectrum of the Liou-
villian (Sec. IV B4) shows a direct vanishing of the ADR
at the phase boundary b between A and B, while the
imaginary part of the spectrum is gapped at all times. At this
boundary, the normal mode of phase A destabilizes while
at the same the metastable anomalous mode turns stable
defining the second phase B. The two mode energies are
nondegenerate across the transition preventing a mixing of
the two modes and the emergence of critical phenomena such
as diverging entanglement in the system. Phase B—anomalous
spin pumping—is characterized by a large nuclear population
inversion, as the nuclear field builds up in opposite direction
of the dissipation. At the same time the electron spin counter
aligns with the external driving field �. In contrast to the
normal mode of phase A, phase B features large fluctuations
(i.e., high effective temperature) in the nuclear state, which
increase for high �, until at some point the perturbative
description in terms of RSTSS breaks down and the system
approaches the fully mixed state. Note that region A also
transforms continuously to B via the lower two quadrants of
the phase diagram (Fig. 1). In this supercritical region [42] no
clear distinction between the two phases exist.

To complete the phase diagram, we employ numerical tech-
niques in order to study steady-state solutions that go beyond
a RSTSS description in Sec. V. The subregion of A labeled
C indicates a region of bistability where a second steady-state
solution (besides the normal spin-pumping Gaussian solution

described above) appears, featuring a non-Gaussian character
with large fluctuations of order J . Since this mode cannot be
described by the perturbative formalism developed in Sec. IV
(which by construction is only suited for low fluctuations
	J ) we use numerical methods to study this mode in Sec. V
for finite systems. We find that the non-Gaussian mode (in
contrast to the Gaussian mode of region A) is polarized in
the +z direction and features large fluctuations of the order of
J . Additionally this solution displays large electron-nuclear
connected correlations 〈SiIj 〉 − 〈Si〉〈Ij 〉. It emerges from the
anomalous spin-pumping mode coming from region B and the
system shows hysteretic behavior in region C closely related
to the phenomenon of optical bistability [43].

A fourth region is found in the lower half of the phase
diagram (D). In contrast to the previous regions, area D has
no effects on steady-state properties. Instead, the region is
characterized by an anomalous behavior in the low excitation
dynamics of the system. The elementary excitations in region
D are overdamped. Perturbing the system from its steady state
leads to a nonoscillating exponential return. This behavior is
discussed at the end of Sec. IV B3, where we study the low
excitation spectrum of the Liouvillian in this region within the
perturbative approach.

In summary, all the phases and transitions of the system
are displayed in Fig. 1. Across the whole phase diagram one
solution can be described as a RSTSS, a largely factorized
electron-nuclear state with rotated nuclear polarization and
Gaussian fluctuations. Phase A hereby represents a region
of normal spin-pumping behavior. The system is found in
a cold Gaussian state, where the nuclear spins are highly
polarized in the direction set by the electron dissipation and
the electron spin aligns with the external driving for increasing
field strength. In contrast, phase B displays anomalous spin-
pumping behavior. The nuclear system displays population
inversion (i.e., a polarization opposing the electron pumping
direction) while the electron aligns in opposite direction of
the driving field. Furthermore, the state becomes increasingly
noisy, quantified by a large effective temperature, which
results in a fully mixed state in the limit of large driving
strength � → ∞. Along segment x the state becomes pure and
factorizes exactly with a nuclear field that cancels the external
driving exactly. The nuclear state can be described using
approximate eigenstates of the lowering operator I− which
display diverging squeezing approaching the second-order
critical point �0. From this critical point a first-order phase
boundary emerges separating phases A and B. It is associated
with a region of bistability (area C), where a second solution
appears featuring a highly non-Gaussian character. The system
shows hysteretic behavior in this region. Region D is a phase
characterized by its dynamical properties. The system shows
an overdamping behavior approaching the steady state, which
can be inferred from the excitation spectrum of the Liouvillian.

Let us now describe the phases and transitions involving
the Gaussian mode in detail.

IV. PERTURBATIVE TREATMENT OF THE
GAUSSIAN MODE

As seen in the previous section along the segment x the
system settles in a factorized electronic-nuclear state, where
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the nuclear system can be described as a lowering operator
eigenstate up to second order in ε = J−1/2. Motivated by this
result, we develop in Sec. IV A a perturbative theory based on a
self-consistent Holstein-Primakoff transformation that enables
the description of a class of steady states, which generalizes
the squeezed coherent atomic state solution along x to finite
thermal fluctuations (RSTSS, Appendix C). A solution of this
nature can be found across the entire phase diagram and we
show that this treatment becomes exact in the thermodynamic
limit.

In Sec. IV B we discuss this Gaussian mode across the
whole phase diagram. Steady-state properties of the nuclear
fluctuations derived from a reduced second-order master
equation provide deep insights in the nature of the various
phases and transitions. Observed effects include criticality in
both the steady state and the low-excitation spectrum, spin
squeezing and entanglement, as well as altered spin-pumping
dynamics. Whenever feasible we compare the perturbative
results with exact diagonalization techniques for finite systems
and find excellent agreement even for systems of a few hundred
spins only. First, in Sec. IV B2 we apply the developed theory
exemplarily along the segment x to obtain further insights in
the associated transition at �0. In Sec. IV B3 we then give
a detailed description of the different phases that emerge in
the phase diagram due to the Gaussian mode. Thereafter,
in Sec. IV B4 we conduct a classification of the different
transitions found in the phase diagram.

A. The theory

In this section we develop the perturbative theory to derive
an effective second-order master equation for the nuclear
system in the vicinity of the Gaussian steady state.

For realistic parameters, the Liouville operator L of Eq. (1)
does not feature an obvious hierarchy that would allow for a
perturbative treatment. In order to treat the electron-nuclear
interaction as a perturbation, we first have to separate the
macroscopic semiclassical part of the nuclear fields. To this end
we conduct a self-consistent Holstein-Primakoff approxima-
tion describing nuclear fluctuations around the semiclassical
state up to second order.

The (exact) Holstein-Primakoff transformation expresses
the truncation of the collective nuclear spin operators to a total
spin J subspace in terms of a bosonic mode (b denotes the
respective annihilation operator):

I− =
√

2J − b†bb,
(7)

Iz = b†b − J.

In the following we introduce a macroscopic displacement√
Jβ ∈ C (|β| � 2) on this bosonic mode to account for a

rotation of the mean polarization of the state, expand the
operators of Eq. (7) and accordingly the Liouville operator
of equation Eq. (1) in orders of ε = 1/

√
J . The resulting

hierarchy in the Liouvillian allows for an perturbative treat-
ment of the leading orders and adiabatic elimination of the
electron degrees of freedom whose evolution is governed by
the fastest time scale in the system. The displacement β is
self-consistently found by demanding first-order stability of
the solution. The second order of the new effective Liouvillian
then provides complete information on second-order stability,

criticality, and steady-state properties in the thermodynamic
limit.

The macroscopic displacement of the nuclear mode,

b → b +
√

Jβ, (8)

allows for an expansion of the nuclear operators [Eq. (7)] in
orders of ε

I−/J =
√

k

√
1 − ε

βb† + β∗b
k

− ε2
b†b

k
(β + εb)

(9)
=

∑
i

εiJ −
i ,

where

J −
0 =

√
kβ, (10)

J −
1 = 1

2
√

k
[(2k − |β|2)b − β2b†], (11)

J −
2 = −

[
β∗b + βb†

2
√

k
b +

√
kβ

8

([
βb† + β∗b

k

]2

+ 4
b†b

k

)]
,

... (12)

and k = 2 − |β|2. Analogously, one finds

Iz/J =
2∑

i=0

εiJ z
i , (13)

J z
0 = |β|2 − 1, (14)

J z
1 = βb† + β∗b, (15)

J z
2 = b†b. (16)

This expansion is meaningful only if the fluctuations in the
bosonic mode b are smaller than O(

√
J ). Under this condition,

any nuclear state is thus fully determined by the state of the
bosonic mode b and its displacement β.

According to the above expansions master Eq. (1) can be
written as

ρ̇/J = [L0 + εL1 + ε2L2 + O(ε3)]ρ, (17)

where

L0ρ = γ
(
S−ρS+ − 1

2 {S+S−,ρ}+
) − i[S+(� + a/2J −

0 )

+ S−(� + a/2J +
0 ) + aS+S−J z

0 ,ρ], (18)

L1,2ρ = −i[a/2(S+J −
1,2 + S−J +

1,2) + (aS+S− + δω)J z
1,2,ρ].

(19)

The zeroth-order superoperator L0 acts only on the electron
degrees of freedom. This separation of time scales between
electron and nuclear degrees of freedom implies that for a given
semiclassical nuclear field (defined by the displacement β) the
electron settles to a quasisteady state on a time scale shorter
than the nuclear dynamics and can be eliminated adiabatically
on a coarse-grained time scale. In the following we determine
the effective nuclear evolution in the submanifold of the
electronic quasisteady states of L0.
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Let P be the projector on the subspace of zero eigenvalues
of L0, that is, the zeroth-order steady states, and Q = 1 −
P . Since L0 features a unique steady state, we find Pρ =
TrS(ρ) ⊗ ρss , where TrS denotes the trace over the electronic
subspace and L0ρss = 0. By definition it is PL0 = L0P = 0.
After a generalized Schrieffer-Wolff transformation [44], we
derive an effective Liouvillian within the zeroth-order steady-
state subspace in orders of the perturbation,

Leff = εPL1P + ε2
(
PL2P − PL1QL−1

0 QL1P
) + O(ε3).

(20)

After tracing out the electron degrees of freedom the dynamics
of the nuclear fluctuations b are consequently governed by the
reduced master equation

σ̇ := TrS(P ρ̇) = TrS(LeffPρ). (21)

The first-order term in ε of Eq. (20) can be readily
calculated,

Trs(PL1Pρ) = −i[〈A〉ssb + 〈A†〉ssb†,σ ], (22)

where A is an electronic operator,

A = β∗(aS+S− + δω) + a

4
√

k
[(2k − |β|2)S+ − (β∗)2S−].

(23)

〈A〉ss denotes the steady-state expectation value according to
L0, which depends on the system parameters γ and � and on
the semiclassical displacement β via optical Bloch equations
derived from L0 as described below. Equation (22) represents
a driving of the nuclear fluctuations to leading order in the
effective dynamics. Thus, for the steady state to be stable to
first order, we demand

〈A〉ss = 0. (24)

This equation defines self-consistently the semiclassical nu-
clear displacement β in the steady state in dependence on the
system parameters γ , �, and δω.

The calculation of the second-order term of Eq. (20) is more
involved and presented in Appendix E. We find the effective
nuclear master equation to second order,3

σ̇ = 2Ra

(
bσb† − 1

2 {b†b,σ }) + 2Rb

(
b†σb − 1

2 {bb†,σ })
+ c

(
bσb − 1

2 {bb,σ }) + c∗ (
b†σb† − 1

2 {b†b†,σ })
− i[(Ia + Ib + F )b†b + (α + B∗)b2 + (α∗ + B)(b†)2,σ ],

(25)

with

B = − aβ

16
√

k3
[(4k + |β|2)〈S−〉ss + β2〈S+〉ss], (26)

F = − a

8
√

k3
(4k + |β|2)(β〈S+〉ss + β∗〈S−〉ss)

+ a(〈S+S−〉ss + δω/a), (27)

3In [44] it has been shown that this type of master equation is of
Lindblad form.

and

Ra =
∫ ∞

0
dtRe[〈A†(t)A(0)〉ss],

Ia =
∫ ∞

0
dtIm[〈A†(t)A(0)〉ss],

Rb =
∫ ∞

0
dtRe[〈A(t)A†(0)〉ss],

(28)

Ib =
∫ ∞

0
dtIm[〈A(t)A†(0)〉ss],

c =
∫ ∞

0
dt〈{A(t),A(0)}〉ss ,

α = 1

2i

∫ ∞

0
dt〈[A(t),A(0)]〉ss .

For a given set of system parameters the coefficients
defining the nuclear dynamics [Eqs. (26), (27), and (28)]
depend only on the nuclear displacement β. After choosing
β self-consistently to fulfill Eq. (24) in order to guarantee
first-order stability, Eq. (25) contains all information of the
nuclear system within the Gaussian picture, such as second-
order stability as well as purity and squeezing of the nuclear
steady state. Also it approximates the Liouville operator’s low
excitation spectrum to leading order and thus contains infor-
mation on criticality in the system. Equation (25) therefore
forms the basis for the subsequent discussion of the RSTSS
mode and the corresponding phases and transitions in Sec. IV.

In order to calculate the coefficients of Eq. (28), we have
to determine integrated electronic autocorrelation functions of
the type

∫ ∞
0 dt〈Si(t)Sj (0)〉ss and

∫ ∞
0 dt〈Si(0)Sj (t)〉ss , where

i,j = +, − ,z. The dynamics of single electron operator
expectation values are governed by the optical Bloch equations
derived from L0,

d

dt
〈��S〉 = M〈��S〉, (29)

where ��S := �S − 〈�S〉ss and �S = (S+,S−,Sz)T and

M =

⎛
⎜⎝

−( γ

2 − iaLz
0) 0 −2i�̃∗

0 −(
γ

2 + iaLz
0

)
2i�̃

−i�̃ i�̃∗ −γ

⎞
⎟⎠ , (30)

where we defined �̃ = � + a
2

√
kβ and Lz

0 is given in Eq. (14).
The steady-state solutions can readily be evaluated:

〈S+〉ss = 2i
�̃∗(γ + 2iaLz

0

)
γ 2 + 4aLz2

0 + 8|�̃|2 , (31)

〈Sz〉ss = −1

2

γ 2 + 4aLz2
0

γ 2 + 4aLz2
0 + 8|�̃|2 . (32)

Defining the correlation matrix S = 〈��S��S†〉ss and St =
〈��St��S†〉ss , the quantum regression theorem [45] yields the
simple result

St = eMtS, (33)

S†
t = 〈��S��S†

t 〉ss = SeM†t . (34)
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Finally, the time-integrated autocorrelation functions reduce
to the simple expression

F1 =
∫ ∞

0
dtSt =

∫ ∞

0
dteMtS = −M−1S, (35)

F2 =
∫ ∞

0
dtS†

t = F†
1 = −S(M−1)†. (36)

These matrices straightforwardly define the coefficients of the
effective master equation of the nuclear fluctuations [Eq. (25)].
In Appendix E 1 we provide explicit formulas to calculate the
relevant coefficients.

B. Phase diagram of the Gaussian mode

In this section we use the theory developed above to study
the RSTSS mode across the phase diagram. As outlined in the
previous section we first determine self-consistently possible
semiclassical displacements β, which guarantee first-order
stability [Eq. (24)]. For each of these solutions we determine
the effective master equation for the nuclear fluctuations
[Eq. (25)], which in the thermodynamic limit contains all infor-
mation on the steady state and the low excitation dynamics and
we discuss properties like second-order stability, criticality, as
well as purity and squeezing of the nuclear steady state. Using
this information we provide a complete picture of the various
phases and transitions involving the RSTSS solution.

1. Methods and general features

In order to determine the semiclassical displacements β

which guarantee first-order stability, we show in Appendix D
that Eq. (24) is equivalent to the steady-state conditions derived
from the semiclassical Bloch equations of the system. Due to
a symmetry in the equation, the steady-state displacements
appear in pairs β−, β+. Any semiclassical displacement β can
be straightforwardly converted to the mean spin polarizations
up to leading order in ε according to Eqs. (10), (14), (31),
and (32). In the thermodynamic limit the two sets of steady-
state expectation values extracted from β− and β+ share
the symmetry (±〈Sx〉,〈Sy〉,〈Sz〉,〈Ix〉, ± 〈Iy〉, ± 〈Iz〉). In large
parts of the phase diagram the solution β− (β+) displays high
nuclear polarization in the same (opposite) direction as the the
electron spin pumping. We define the corresponding quantum
states as the normal (anomalous) spin-pumping mode.

The two solutions β± define two corresponding master
equations of the nuclear fluctuations around the respective
semiclassical expectation values according to Eq. (25). These
master equations are subsequently used to determine second-
order stability of the nuclear fluctuations and, if the dynamics
turn out to be stable, the steady-state properties of the nuclear
system. We emphasize that the effective master Eq. (25) not
only can be used to determine steady-state properties, but also
reproduces accurately the low excitation spectrum of the exact
Liouvillian. It thus also describes the system dynamics in the
vicinity of the steady state (increasingly accurate for large J ).

From Eq. (25) one readily derives a dynamic equation for
the first-order bosonic moments

˙( 〈b〉
〈b†〉

)
= �

( 〈b〉
〈b†〉

)
, (37)

with

� =
(−(Ra − Rb) − iχ −2iξ

2iξ ∗ −(Ra − Rb) + iχ

)
, (38)

χ = Ia + Ib + F, (39)

ξ = α∗ + B, (40)

where all parameters are functions of the semiclassical
displacements β±. This equation of motion—and thus the
corresponding master equation itself– - features a fixed point
if the eigenvalues of the matrix � have negative real part
(Re[λ1,2] < 0). Due to the symmetry between β+ and β− one
finds that the eigenvalues of the two � matrices corresponding
to β± fulfill Re[λ1,2(β+)] = −Re[λ1,2(β−)] such that across
the whole phase diagram only one solution is stable at a time
and defines the corresponding phase in the phase diagram.
Note, however, that the unstable solution decays at a rate
that is second order in ε. Preparing the system in this state
consequently leads to slow dynamics, such that this solution
exhibits metastability.

In the following we implicitly choose the stable β for
which the real parts of the eigenvalues of � are negative and
discard the unstable solution. Figure 2 displays a selection
of steady-state expectation values in the thermodynamic limit
across the phase diagram for the stable solution. Different
expectation values illustrate the different nature of phases A

and B and show distinct signatures of first- and second-order

(b) Sx

(d) Sz

(a) Iz/J

(c) Ix/J

FIG. 2. (Color online) The system observables of the RSTSS
solution in the thermodynamic limit show clear signatures of first- and
second-order transitions (γ = a). (a) The nuclear polarization in the
z direction 〈Iz/J 〉ss switches abruptly from minus to plus at the phase
boundary b. (b) The electron polarization in the x direction 〈Sx〉ss

shows a similar discontinuous behavior along b. (c) The nuclear
polarization in the x direction changes smoothly across the phase
boundary b. Along the segment x (ω = ω0,� < �0) the nuclear field
in the x direction builds up linearly to cancel the external driving.
(d) The electron polarization in the z direction also does not show
signatures of the first-order transition b. Along segment x the electron
is fully polarized in the −z direction up to the second-order critical
point (ω0,�0), where it changes nonanalytically (see also Fig. 6).
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FIG. 3. (Color online) Asymptotic decay rate (ADR, cf. text) for
γ = a within the perturbative framework. Along b the ADR vanishes
nonanalytically, indicating the stabilizing and destabilizing of the
modes of regions A and B, respectively. b is a first-order phase
boundary culminating in a second-order critical point at (ω0,�0).
From here region D opens, which is characterized by a nonanalyticity
in the ADR at a finite value. This indicates a change in the dynamic
properties of the system which cannot be detected in steady-state
observables. Within D the system shows an overdamped behavior in
the vicinity of the steady state.

phase transitions which will be discussed in greater detail in
Secs. IV B3 and IV B4. The approximate steady-state polariza-
tions found in this way coincide with the exact values found via
diagonalization techniques to an extraordinary degree (∼10−3

relative deviation for J = 150). Corrections to the perturbative
solutions are of the order 1/J since the first-order expectation
values of the bosonic mode vanish by construction, since
〈b〉 = 0 [compare Eqs. (9) and (13)]. In the thermodynamic
limit the perturbative solution becomes exact.

The two eigenvalues of � are typically of the form λ1,2 =
a ± ib (except in region D, which is discussed below) and
define the complex energy of the mode. In this case the matrix
� contains all information on the low excitation spectrum of
the Liouvillian, which is approximated by multiples of the
mode energies within the perturbative treatment.4 The low
excitation spectrum contains information about criticality of
the system and the dynamics in the vicinity of the steady state
and is used to discuss and classify the different transitions
in the phase diagram. In particular, the eigenvalue of � with
largest real part approximates the ADR in the thermodynamic
limit in those regions of the phase diagram where the Gaussian
mode is responsible for the lowest excitations in the Liouvillian
spectrum (only in the region of bistability C this is not the
case).

The ADR according to the perturbative descriptions based
on Gaussian modes is displayed in Fig. 3. It is used to study the
transitions involving the Gaussian mode in the thermodynamic
limit. The ADR vanishes along a line b indicating a phase
boundary separating the normal and anomalous spin-pumping

4The inset of Fig. 9 clearly shows these bosonic characteristics of
the exact spectrum for J = 150. Outside the region of bistability the
real part of the spectrum is approximately equidistant.

phase, which is described in Sec. IV B4. Furthermore, a
nonanalyticity of the ADR at a finite value defines region
D, which characterizes a dynamical phase and is explained in
Sec. IV B3.

The dynamical matrix of the first-order moments �

provides information on the stability of the semiclassical
solutions, the criticality of the Liouvillian, and the nonana-
lyticities of region D. In order to understand the character
of the solutions in the different regions of the phase diagram
we consider next the steady-state covariance matrix (CM) of
the bosonic system. For a quadratic evolution like the one of
Eq. (25) the steady-state CM contains all information on the
state. We deduce the effective temperature and the squeezing
of the nuclear spin system, which connects to criticality in the
system.

For a one-mode system with vanishing displacements 〈x〉
and 〈p〉 [in the steady state of Eq. (25) this is always the case]
the CM is defined as

� =
(

2〈x2〉 2〈xp〉 − i

2〈px〉 + i 2〈p2〉
)

, (41)

with the usual definitions x = 1√
2
(b + b†) and p = 1√

2i
(b −

b†). Using Eq. (25) we straightforwardly calculate the steady-
state CM �ss across the phase diagram. As � = �T > 0, � is
symplectically diagonalizable, with

� = DO

(
M2 0

0 M−2

)
O−1, (42)

where O is orthogonal with det(O) = 1. For a single mode,
D � 1 and M � 1 are real numbers. While D is a measure of
the purity of the state [Tr(ρ2) = 1/

√|�| = 1/D], the smallest
eigenvalue of �, λmin ≡ DM−2 determines the amount of
squeezing in the system [46]. λmin < 1 indicates squeezing
in the bosonic mode. For M = 1, the CM Eq. (42) describes
a thermal state of the bosonic mode and D can be straight-
forwardly associated to a dimensionless effective temperature

Teff = ln

[
2√

D − 1
+ 1

]−1

. (43)

This definition is also meaningful for M > 1, since the
squeezing operation is entropy-conserving. Teff is also a
measure for the entropy of the spin system, as to leading order
it is connected to the bosonic mode via an unitary (i.e., entropy-
conserving) transformation. The effective temperature of the
different phases will be discussed below in Secs. IV B2
and IV B3 [cf. Fig. 7].

We stress the point that all properties of the CM derived
within the second order of the perturbative approach are
independent of the system size J . In particular, the amount
of fluctuations (i.e., the purity) in the state does not depend
on the particle number. In order to self-consistently justify
the perturbative approach, D has to be small with regard
to J . This implies that in the thermodynamic limit J → ∞
the perturbative results to second (i.e., leading) order become
exact.

The inverse purity D is displayed in Fig. 4(a). Except for
for a small region around the Gaussian phase boundary b the
fluctuations are much smaller than J = 150, which justifies the
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FIG. 4. (Color online) Properties of the steady state CM �ss

[Eq. (42)]. (a) The fluctuations D are low in most parts of the
phase diagram except for a small wedge around the Gaussian
phase boundary. (b) Fluctuations D along the line ©l [green line
of (a)]. The phase boundaries separate a mode with low fluctuations
(enlarged in the inset), from a mode with large fluctuations. For
large � fluctuations increase, and the system eventually approaches
a fully mixed state. (c) The squeezing measure C (cf. text) in
the thermodynamic limit. C approaches 1 at (ω0,�0), indicating
diverging entanglement in the system. (d) C along the line ω = ω0

(solid line). The red circles indicate the the squeezing parameter
1 − ξ 2

êy
= 1 − √

1 − (�/�0)2 (cf. text).

validity of the perturbative approach and explains the excellent
agreement with the exact diagonalization for this system size.

The squeezing λmin in the auxiliary bosonic mode does not
necessarily correspond to spin squeezing in the nuclear system.
In order to deduce the spin squeezing in the nuclear system
from the squeezing of the bosonic mode a transformation
according to Eq. (11) and Eq. (15) is necessary. In Appendix
B 1 we show that for |β| < 1 Eq. (11) can be reformulated
to connect the spin fluctuations to a squeezed and rescaled
bosonic mode

J −
1 =

√
2(1 − |β|2)S†(r)bS(r), (44)

where S(r) = e(r∗b2−rb†2)/2 is the squeezing operator and
cosh(r) = μ = (2k − |β|2)/[2

√
2k(1 − |β|2)] and sinh(r) =

−ν = β2/[2
√

2k(1 − |β|2)].
Thus, squeezing λmin of the mode b does, in general, not

imply reduced spin fluctuations in a direction orthogonal to
the mean spin polarization since the transformation between
spin fluctuations and b involves a squeezing operation itself
and a scaling by a factor 0 <

√
2(1 − |β|2) �

√
2.

In general, we thus have to apply a more involved squeezing
criterion. In [38] it was shown that for systems of N spin- 1

2
particles and for all directions �n the quantity

C�n ≡ 1 − 2

J

〈
�I 2

�n
〉 − 1

J 2
〈I�n〉2 < 1, (45)

signals entanglement if C�n > 0 for some direction �n. More-
over, 〈�I 2

�n 〉 < J/2 indicates a generalized spin squeezing of
the state.5

In the following we use the quantity C = max{0,C�n|�n ∈
R3} to investigate squeezing and bipartite entanglement in the
nuclear system. In order to calculate C�n we reconstruct the
approximate nuclear operators according to Eqs. (9) and (14)
from the semiclassical displacement β and evaluate the
expectation values according to the steady-state CM Eq. (41).
Finally, we maximize C�n with regard to all possible directions
�n to obtain C. The results are discussed in Sec. IV B4.
As discussed in more detail in the next section, the fact
that C → 1 as � → �0 on the line segment x indicates a
diverging entanglement length in the sense that O(1/(1 −
C)) = O(

√
J )-particle entanglement is present [40].

2. A second-order phase transition: The segment x

The segment x at ω = ω0 (Fig. 1) represents a very peculiar
region in the phase diagram, where the solution below the
critical point can be constructed analytically as demonstrated
in Sec. III B. The electron and nuclear system decouple,
resulting in a zero entropy product steady state. A nuclear
polarization builds up to cancel the external driving up to
the point of maximal Overhauser field (�0). At this point
squeezing and entanglement in the system diverge, indicating a
second-order phase transition. In the following we exemplarily
employ the formalism developed above along this line to obtain
further insight about the criticality at (ω0,�0). We calculate
the analytical steady-state solution as well as the effective
master equation governing the nuclear fluctuation dynamics in
its vicinity. We find that here the spectrum of the Liouvillian
becomes continuous (implying a closing gap) and real. At the
same time the creation operators of the elementary excitations
from the steady state turn Hermitian, giving rise to diverging
spin entanglement.

The first-order stability condition Eq. (24) is fulfilled, if
�̃ = 0 [compare Eqs. (31) and (32)], which yields the possible
semiclassical steady-state displacements

√
kβ = −�/�0,

(46)

⇔ β± = −
√

1 ±
√

1 − (�/�0)2,

corresponding to a normal (“−”) and anomalous (“+”) spin-
pumping mode, respectively.

Next, we explicitly calculate the second-order corrective
dynamics of the nuclear degrees of freedom for the normal
mode. The vanishing of the effective driving �̃ = 0 forces
the electron in its dark state—implying 〈S+〉ss = 〈S−〉ss =
〈S+S−〉ss = 0—and directly yields B = F = 0 [Eqs. (26)
and (27)]. The remaining constants can be calculated as
described above and introducing new bosonic operators (for
the normal mode β = β− � 1)

d = μb + νb†, (47)

5In distinction to the criterion Eq. (6) the squeezed component J�n
is not necessarily orthogonal to the mean spin.
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FIG. 5. (Color online) The ADR (γ = a) for J = 50, 100, 150
(broken lines) in comparison with the perturbatively calculated (solid
line, cf. Sec. IV B2) along ω = ω0. For finite systems one finds an
avoided crossing at �0. The size of the gap reduces with the system
size until it closes in the thermodynamic limit (solid line). Below �0

the ADR in the thermodynamic limit is given by Eq. (52).

with

μ = 2k − |β|2
2
√

2k(1 − |β|2)
, (48a)

ν = − β2

2
√

2k(1 − |β|2)
, (48b)

one finds the effective evolution of the nuclear fluctuations
given as

σ̇ = �eff
(
dσd† − 1

2 {d†d,σ }) − i[�effd
†d,σ ], (49)

with

�eff = 2a2Re

(
1

γ + i2a(|β|2 − 1)

)
(1 − |β|2), (50)

�eff = a2Im

(
1

γ + i2a(|β|2 − 1)

)
(1 − |β|2). (51)

d and d† fulfill boson commutation relations, since Eq. (47)
defines a symplectic transformation (|μ|2 − |ν|2 = 1). The
eigenvalues of the dynamical matrix � associated to Eq. (49)
are straightforwardly given as λ1,2 = −�eff/2 ± i�eff .
The real part—representing the ADR of the system in
thermodynamic limit (compare Fig. 5)– -is always negative,
indicating the stability of the normal spin-pumping mode
(β−). In an analogous calculation one shows that the
semiclassical solution β+ > 1 is not stable to second order
since the eigenvalues of � have a positive real part, that is,
the fluctuations diverge, violating the initial assumptions that
the mode b has to be lowly occupied.

Selected steady-state expectation values derived from the
stable displacement β− to leading order in J (i.e., in the
thermodynamic limit) are displayed in Fig. 6.

Already for J = 150 we find excellent agreement between
the perturbative and exact mean polarizations. The nuclear
field builds up to exactly cancel the external magnetic field
�, forcing the electron in its dark state |↓〉 along x and thus
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FIG. 6. (Color online) Electron inversion 〈Sz〉 and the nuclear

field in the x direction 〈Ix〉 along ω = ω0 in the thermodynamic limit
according to the perturbative theory (circles) in comparison with
the numeric values from exact diagonalization for a finite system
of J = 150 (solid lines). The perturbative theory shows excellent
agreement with the numerical solutions. Further, the numerically
determined electron inversion and the expectation value of the
inhomogeneous nuclear operator 〈Ax〉 are displayed for a model
of two inhomogeneously coupled nuclear shells (g1 = 2g2) of size
J1,2 = 8 (dashed lines) and for five inhomogeneously coupled nuclear
spins (dotted lines) are displayed (discussion see Sec. VI).

realizing the model of cooperative resonance fluorescence [7]
even for weak dissipation γ � a [compare Eq. (5)]. This
solution is available only if � � �0 (defining segment x),
that is, up to the point where the nuclear field reaches its
maximum. At this point the system enters a new phase of
anomalous spin-pumping (described below) and the steady-
state properties change abruptly.

Inserting solution β− in the coefficients of master Eq. (49)
yields

�eff = 2a2Re

(
1

γ − i2a
√

1 − (�/�0)2

) √
1 − (�/�0)2,

(52)

�eff = a2Im

(
1

γ − i2a
√

1 − (�/�0)2

) √
1 − (�/�0)2.

(53)

In the close vicinity below the critical point �0 the real part of
the gap in the Liouvillian’s spectrum closes as

�eff ≈ 2
a2

γ

√
1 − (�/�0)2, (54)

and the imaginary part as

|�eff| ≈ 2
a3

γ 2
[1 − (�/�0)2], (55)

indicating criticality. Figure 5 displays the ADR along ω = ω0

in the thermodynamic limit [which is given on the segment x by
Eq. (52)] and for finite systems. It displays an avoided crossing
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at �0 with a gap that vanishes in the thermodynamic limit. This
closing of the gap coincides with diverging time scales in the
system, which renders the model more susceptible to potential
perturbing effects, a phenomenon well known in the context
of criticality [43].

In contrast to the general form Eq. (25), Eq. (49) contains
only one Lindblad term and the dynamics drive the system
into the vacuum |0d〉 of the squeezed mode d. As the system
approaches the critical value � = �0 (i.e., β− = −1) the mode
d adopts more and more a p̂ = 1√

2i
(b − b†)-like character and

thus the squeezing of this mode’s vacuum increases. The (in
general complicated) transformation between the squeezing of
the bosonic mode b and the spin operators (cf. Sec. IV B1) can
readily be established along x, since the operator d is trivially
related to the spin operators [cf. Eq. (11)]

J −
1 = 1

2
√

k
[(2k − |β|2)b − β2b†]

=
√

2(1 − |β|2)(μb + νb†)

=
√

2(1 − |β|2)d. (56)

The fluctuations in the y direction, for example, are conse-
quently given as

J y

1 =
√

(1 − |β|2)p̂d , (57)

where p̂d = 1√
2i

(d − d†). One readily shows that

〈
�I 2

y

〉 = J
〈
J y2

1

〉 = J (1 − |β|2)
〈
p̂2

d

〉
, (58)

up to order O(1) and we used 〈d〉 = 0 in the steady state. In
the p̂ vacuum |0p〉 it is 〈p̂2

d〉 = 1/2, such that we evaluate

ξ 2
êy

= 2
〈
�I 2

y

〉/|〈 �I 〉| (59)

= 2(1 − |β|2)
〈
p̂2

d

〉 =
√

1 −
(

�

�0

)2

,

where we used |〈 �I 〉| = J and inserted the semiclassical
displacement β−.

This is the same result we derived in Sec. III B and
Appendix B 1 by constructing approximate eigenstates of the
lowering operator I− and along x we find that C ≈ 1 − ξ 2

êy
,

as shown in Fig. 4(d). Note that here êy is orthogonal to the
direction of the mean spin 〈 �I 〉. This allows us to deduce that
O(

√
J ) nuclear spins must be entangled close to the critical

point, which establishes a “diverging entanglement length” in
this system. To see this, we employ a variant of the criterion
Eq. (6), as discussed in [39]. There, it was shown that ξ 2

êy
< 1/k

sets a lower bound of Nξ−2
êy

on the quantum Fisher information
FQ of the state. In [40] it was shown that for states containing
at most k-particle entanglement, FQ is upper bounded by Nk.
Consequently, the values of ξ 2

êy
obtained close to the critical

point [cf. Eq. (59) and Appendix B 1] imply that at least
O(

√
J )-particle entanglement must be present. Note that the

bosonic description does not make it possible to describe the
range ξ 2

êy
= O(1/J ), that is, k = O(J ), where the fluctuations

become larger than the expansion parameter.
The nuclear squeezing and entanglement in the system

diverges approaching the critical point, as the Lindblad

operator d (defining the steady state |0d〉) becomes more and
more p̂-like. The fluctuations in the y direction tend to zero,
while at the same time—due to the Heisenberg uncertainty
relation—the steady state is in a superposition of an increasing
number of Iz eigenstates. Since in a system with infinite range
interactions (as the one we are considering) there is no obvious
definition of a coherence length, the range of the involved Iz

eigenstates can be considered as an analogous concept.
At the critical value � = �0 the symplectic transformation

Eq. (47) becomes ill defined (d becomes a p̂-like operator)
while both the dissipation rate and the mode energy tend to
zero. While the coefficients in Eqs. (48) diverge, the total
master equation is well defined [due to the factors (1 − |β|2)
in �eff] and straightforwardly can be written as

σ̇ = a2

2γ

(
p̂σ p̂ − 1

2
{p̂2,σ }

)
. (60)

The Liouville operator’s spectrum is real and continuous with
Hermitian creation operators of the elementary excitations.

We stress the point that along segment x in the phase
diagram highly dissipative dynamics drive the system in a
pure and separable steady state with zero effective temperature
Teff = 0 [cf. Fig. 7(b)]. At the critical point �0 the steady
state changes its nature abruptly as the system enters a
high-temperature phase.

Furthermore, we remark that this steady state has no
relation to the system’s ground state. This is in contrast to the
extensively studied Dicke phase transition [15,47,48] where
the steady state is in close relation to the Hamiltonian’s ground
state (in fact, in the normal phase it is identical). In the present
model dissipation drives the system to a highly excited state
of the Hamiltonian and the observed critical phenomena are
disconnected from the Hamiltonian’s low excitation spectrum.

We have seen that at the critical point (ω0,�0) the gap of
the Liouville operator’s spectrum (in both real and imaginary
part) closes in the thermodynamic limit [Eqs. (54) and (55)].
Approaching the critical point the steady-state fluctuations
become more and more squeezed due to the increasing p̂-like
character of the mode d. The spin squeezing close to the
critical point [Eq. (59)] can be interpreted as a diverging
coherence length in a system with infinite range interactions
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FIG. 7. (Color online) Effective temperature Teff of the Gaussian
mode. Temperatures Teff > 6 are cut off, as the temperature diverges
along the phase boundary b. (a) The first-order phase boundary b

separates the low-temperature phase A from the high-temperature
phase B. (b) Teff along ω = ω0: On segment x the system is in a zero
entropy state (Teff = 0). Above the second-order critical point � >

�0 the system enters a high-temperature phase. Here the temperature
rises with increasing driving strength.

012116-12

Kessler et al., Phys. Rev. A 2012: “Dissipative Phase Transition in Central Spin Systems”

207

http://dx.doi.org/10.1103/PhysRevA.86.012116


DISSIPATIVE PHASE TRANSITION IN A CENTRAL . . . PHYSICAL REVIEW A 86, 012116 (2012)

(the electron mediates interactions between remote spins).
These are clear indications for a second-order phase transition,
which is formalized in Sec. IV B4.

3. Phases

In the present section we study the different phases of the
system, which involve the RSTSS solution (A, B, and D)
using the analytic tools developed above. By construction, the
RSTSS solution describes steady states where the electron
and nuclear states factorize to leading order in the system
size and the nuclear system is found in a fully polarized
and rotated state with Gaussian fluctuations, which are fully
characterized by their effective temperature and squeezing.
Figure 2 displays different steady state observables of the
Gaussian solution determined via the formalism described
above in the thermodynamic limit.

In phase A the system is characterized by normal spin-
pumping behavior. Only the semiclassical displacement β−
(normal mode) leads to a dynamical matrix � that has negative
real parts of its eigenvalues, while for β+ the eigenvalues have
positive real parts, indicating the instability of that mode in
second order. The nuclear system in the normal mode settles
in a state highly polarized in the −z direction following the
direction of the electron spin pumping [Fig. 2(a)]. Meanwhile,
increasing the external driving � and approaching the phase
boundary b, a nuclear field in the x direction builds up, but
only along x it can fully cancel the external driving [Fig. 2(c)].
Therefore, in general, the electron spin aligns more and more
with the external field [Figs. 2(b) and 2(d)]. Furthermore, the
effective temperature (and thus the entropy) of the phase is
low, as displayed in Fig. 7(a).

In region B, in contrast, β+ is the only stable solution,
defining the phase of anomalous spin-pumping behavior. The
nuclear system now shows strong population inversion; that is,
the nuclear polarization is found in the direction opposite to the
external pumping (z). In the same way the electron now aligns
in opposite direction to the external driving field (x). Also, in
contrast to phase A, the RSTSS now is in a high-temperature
state. For larger electron driving the temperature increases until
eventually the Gaussian description breaks down (as D ∝ J )
and for � → ∞ the system is found in a completely mixed
state [compare Fig. 4(b)].

In the upper half of the phase diagram (ω > ω0) phase A

changes abruptly into phase B at the boundary b and certain
steady-state spin observables [〈Iz〉, 〈Sx〉 [Figs. 2(a) and 2(b)]
and 〈Iy〉 (not displayed)] show distinct features of a first-order
phase transition, changing sign as the normal (anomalous)
mode destabilizes (stabilizes). This transition is discussed in
greater detail in the following Sec. IV B4. Following this
boundary toward the critical point (ω0,�0) the two phases
become progressively more similar. Below the critical point
(ω < ω0) there is no clear distinction between the normal
and anomalous spin-pumping mode anymore, a phenomenon
known from thermodynamics as supercriticality. Phase A

transforms continuously to phase B in this region. Close to
the critical point, supercritical media typically respond very
sensitively to the external control parameters of the phase
diagram (e.g., temperature or pressure) [42]. In our system

we observe that small changes in the parameter ω leads to
large changes in electron spin observables.

Next, we consider the third region associated with the
RSTSS solution, region D. We will find that this region differs
from the previous ones by the fact that it cannot be detected in
the system’s steady state but rather in dynamical observables.

The eigenvalues of the dynamic matrix � can be cal-
culated as λ1,2 = −(Ra − Rb) ± 2

√
4|ξ |2 − χ2 and provide

information on the approximate low excitation spectrum of the
Liouvillian. We can distinguish two cases for the low excitation
spectrum, which differ only in the Hamiltonian properties of
Eq. (25) (fully determined by χ and ξ [Eqs. (39) and (40)].
In the first case the quadratic bosonic Hamiltonian can be
symplectically transformed to be diagonal in a Fock basis (i.e.,
to be of the form ∝b̃†b̃). This is the case if χ2 > 4|ξ |2. As a
consequence the two eigenvalues of � have an identical real
part and imaginary parts ±2

√
χ2 − 4|ξ |2. In the second case

the Hamiltonian transforms symplectically into a squeezing
Hamiltonian ∝(b̃†2 + b̃2). Here one finds χ2 < 4|ξ |2, such
that the eigenvalues become real and symmetrically distributed
around −(Ra − Rb). In region D in Fig. 1 we find the effective
Hamiltonian for the nuclear fluctuations to be symplectically
equivalent to a squeezing Hamiltonian.

Figure 8 shows the ADR exemplarily along the line
ω = 0.5ω0(©II in Fig. 1) calculated according to the per-
turbative theory and via exact diagonalization, respectively.
The perturbative theory approximates accurately the low
excitation spectrum of the Liouvillian. We find that in region
D the ADR splits up when the coherent part of Eq. (25)
changes to a squeezing Hamiltonian. As mentioned above,
this nonanalyticity occurs at a nonzero value of the ADR and
thus does not leave signatures in the steady state behavior.
The steady state transforms smoothly along ©II. However,
the nature of dynamical observables change within region
D as the system displays anomalous behavior approaching
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FIG. 8. (Color online) The ADR and the imaginary part of the
respective eigenvalue (γ = a) for J = 150 (solid lines) in comparison
with the perturbatively calculated value (dots) along ©II . In the region
where the coherent part of Eq. (25) is a squeezing Hamiltonian, the
ADR (i.e., real part of the lowest Liouvillian eigenvalue pair) splits.
At the same time the imaginary part of the lowest eigenvalue pair
vanishes (black lines), indicating that the system is overdamped.
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the steady state. The splitting of the ADR coincides with
the vanishing of the imaginary part of the lowest nonzero
Liouvillian eigenvalues. Thus, the system is overdamped in
D. Perturbing the system from its steady state will not lead
to a damped oscillatory behavior, but to an exponential,
oscillation-free return to the steady state.

The blue area in the vicinity of region D in Fig. 3 does
not represents a new phase but is another interesting feature of
the system. Here, the ADR exceeds the value at � = 0 by a
factor of ∼3. For � = 0 the model describes the standard spin-
pumping setting. Large gaps in the low excitation spectrum
indicate the possibility to improve the effective spin-pumping
rate (remember that also in this region the steady state
is fully polarized, however, not in the −z direction, as is
the case for the normal spin-pumping configuration � = 0).
Indeed, simulations show that starting from a fully mixed
state, the system reaches the steady state faster than in the
standard setting (� = 0). This feature becomes more distinct
in systems, where the electron pumping rate γ is limited. For
γ = 0.1a the time to reach the fully polarized steady state
from a fully mixed state is shortened by a factor of ∼6.

4. Transitions

In this section we consider the transitions involving the
RSTSS solution in greater detail providing a classification
in analogy to quantum phase transitions in closed systems
(compare Sec. II).

As seen in the previous section, certain steady-state observ-
ables show clear signatures of a first-order phase transition at
b (Fig. 2). In order to understand this sharp transition we
consider the ADR exemplarily along path ©I in Fig. 9.
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FIG. 9. (Color online) The ADR (γ = a) for J = 50, 100, 150
(broken lines) in comparison with the perturbatively calculated (solid
line) along ©l . The vertical black lines indicate the asymptotic
boundaries of the region of bistability. In the whole region the ADR
tends to zero in the thermodynamic limit due to the appearance of
a non-Gaussian stable mode. (Inset) The next-higher excitations in
the spectrum for J = 150 display equidistant splittings in regions far
from the region of bistability. This is an indication for the bosonic
character of the steady state, which is exploited in the perturbative
approach.

The broken lines represent numeric results of exact di-
agonalization of the Liouvillian for J = 50, 100, and 150,
while the solid line indicates the result of the perturbative
approach. As described in Sec. IV B1, we implicitly choose
the semiclassical displacement β− (for � < 1.5�0) or β+ (for
� > 1.5�0) for which the ADR is negative, indicating a stable
solution. For increasing system size the ADR is increasingly
well approximated by the perturbative solution.

We stress the point that the red line represents the first
Gaussian excitation energy only. However, within the region
of bistability (indicated by two vertical bars and discussed
below in Sec. V), a non-Gaussian mode is responsible for
additional excitations in the exact spectrum. The Gaussian
mode eigenvalue (red line) in this region is reproduced
approximately by higher excitations of the exact spectrum (not
displayed). The perturbative theory is still correct within the
region of bistability but, as expected, it misses all non-Gaussian
eigenstates of the exact Liouvillian.

At the boundary b (� ≈ 1.5�0) the gap in the real part of the
spectrum of the Liouvillian closes nonanalytically, indicating
critical behavior. This observation is supported by the effective
temperature (and thus the fluctuations in the system), which is
increased in the vicinity of the boundary b, and diverges at the
boundary [Figs. 7(a) and 4(a)]. The vanishing of the ADR at b

(i.e., the vanishing due to the RSTSS solution) can be observed
at finite J (dashed lines in Fig. 9) and is not a feature appearing
in the thermodynamic limit only. The position of this closing
of the gap—which in the thermodynamic limit (solid line) is
found at � ≈ 1.5�0—is shifted for finite system sizes to lower
drivings �.

The origin of this closing of the Liouvillian gap becomes
more transparent if we take the mode energy of the respective
metastable solution into account.

In Fig. 10(a) the complex energy of both the stable and the
unstable mode are displayed (i.e., the first eigenvalue of the
matrix � [Eq. (37)]).

The normal spin-pumping mode (β−; blue lines) is stable
(Re[λ(β−)] < 0) up to the critical point where it destabilizes
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FIG. 10. (Color online) Complex energy of the two modes
corresponding to the semiclassical solutions β± for γ = a. The
solid line in the nonshaded area represents the ADR of Fig. 9 and
Fig. 5, respectively. (a) Along ©l (ω = 1.5ω0). The eigenvalues miss
each other in the complex plane. The real parts cross directly. (b)
ω = ω0. The eigenvalues degenerate asymptotically (in both real and
imaginary parts) at the critical point. This closing of the gap originates
from an avoided crossing in finite systems with the relevant gap
vanishing in the thermodynamic limit (see also Fig. 5).
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and the anomalous mode appears (β+; red lines). At the critical
point the two solutions are macroscopically different β− �= β+
and their energy (i.e., Im[λ(β±)]) is distinct across the
transition [dotted lines in Fig. 10(a)]. Although the projection
of the eigenvalues on the real axis vanishes at the critical point
for both modes (indicating the stabilizing/destabilizing of the
modes) the eigenvalues pass each other in the complex plane
at large distance. There is no degeneracy in the spectrum of
the Liouvillian at the critical point and consequently there
can be no mixing of the two modes; the real parts of the
eigenvalues cross directly without influencing each other.
Except for the change in stability the modes do not change
their character approaching the phase boundary and no
diverging correlations (indicated by the squeezing parameter
C) can be observed. Together with the discontinuous change
in system observables such as mean polarizations we classify
this Gaussian transition as of first order.

Second, we consider the transition along ω = ω0 (including
the line segment x). In contrast to the situation before we
find that the semiclassical displacements β+ and β− merge
approaching the critical point such that the two modes
become asymptotically identical at �0 [Eq. (46)]. Approaching
the critical point, the eigenvalues of the two modes tend to
zero (both the real and the imaginary parts), causing the gap
of the Liouvillian’s spectrum to close [Fig. 10(b), Eqs. (54)
and (55)]. As we have seen in Sec. IV B2 at (ω0,�0) the
spectrum becomes real and continuous, signaling criticality.
The perturbative treatment intrinsically is a description in the
thermodynamic limit. If we consider the exact spectrum we
indeed find an avoided crossing due to the mode mixing at the
critical point with a gap that is closing for J → ∞ (cf. Fig. 5).
As we discussed in Sec. IV B2 the elementary excitations
become p̂-like, causing a diverging coherence length in the
system [indicated by the diverging squeezing parameter C in
Figs. 4(c) and 4(d)]. Together with the continuous but non-
analytical change of the mean polarizations these properties
classify the point (�0,ω0) as a second-order transition.

V. REGION OF BISTABILITY: NON-GAUSSIAN SOLUTION

As noted in Sec. III B along the Gaussian boundary b

extends a region of bistability [C in (Fig. 1)]—culminating in
the critical point (�0,ω0)—in which a second stable solution
appears. Within the perturbative framework from Sec. IV this
highly non-Gaussian solution could not be detected because
it features large fluctuations of the order of the system size
J . In the following we use numerical techniques to construct
and study this mode for finite systems. In the thermodynamic
limit the ADR tends to zero within C, such that there exists
a two-dimensional subspace of steady states. Here we find
two independent, physical solutions within the kernel of the
Liouvillian, one of which will turn out to be the Gaussian
normal spin-pumping mode described in Sec. IV. We analyze
the nature and properties of the other, non-Gaussian solution,
exemplarily along the line ω = 1.5ω0(©I in Fig. 1).

Figure 9 displays the ADR for different particle numbers.
Within the indicated region of bistability (the black vertical
lines represent the boundaries c and b, respectively) the ADR
tends to zero with increasing particle number. Already for J =
150 one finds a small region, where the ADR is small enough

(of the order of 10−6a) that one can construct two linearly
independent (quasi) steady-state solutions. Although we find
the eigenmatrix ρ1 associated with the ADR to be nonpositive
and traceless (the latter being a consequence of L being the
generator of a trace-preserving map) we can linearly combine it
with the true steady state ρ0 to obtain two linear independent,
positive solutions with trace one, ρlo (corresponding to the
normal spin-pumping mode) and ρup. These solutions span the
two-dimensional space of steady states in that region.

Figure 11 illustrates the solutions ρlo and ρup around the
bistable region in an equally weighted mixture. The density
matrices are represented by their diagonal elements in the
Iz basis. In the plane the blue dots (red diamonds) represent
the polarization in the z direction 〈Iz〉 of the lower (upper)
solution ρlo (ρup). Coming from below the critical region
(� < 1.15�0) the nuclear system is found in the Gaussian
normal spin-pumping mode, fully polarized, slightly rotated
away from the −z direction and with fluctuations of the order
of

√
J . This Gaussian solution persists within the critical

region where it becomes noisier until eventually—approaching
the right boundary b at � = 1.5�0—it destabilizes. In the
thermodynamic limit the lower solution is stable up to the
right boundary, where a first-order transition occurs and
the anomalous spin-pumping mode appears. Approaching
boundary b from above (� > 1.5�0) this mode transforms into
a non-Gaussian solution, which—in contrast to the coexisting
normal mode—features fluctuations of the order of J and is not
fully polarized. It shows large electron-nuclear and nuclear-
nuclear connected correlations 〈SiIj 〉 − 〈Si〉〈Ij 〉, and can con-
sequently not be approximated by the semiclassical solutions,
which rely on negligibility of these correlations (cf. Appendix
D). Approaching the left boundary c at � = 1.15�0 this mode
destabilizes eventually as the ADR becomes finite again and
the normal mode is the only stable solution in the system.
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FIG. 11. (Color online) Diagonal elements p(m) = 〈m| ρ |m〉 of
the nuclear density matrix in the z basis (Iz |m〉 = m |m〉) across the
region of bistability for ω = 1.5ω0 (J = 150, γ = a). In the bistable
region two stable modes– -the Gaussian normal spin-pumping mode
(lower branch; ρlo) and a non-Gaussian (upper branch; ρup)—coexist.
At the boundary b the latter transforms into the anomalous spin-
pumping mode, which is the sole stable solution above b. The blue
dots (red diamonds) in the plane indicate the average polarization in
the z direction 〈Iz〉 for the lower (upper) solution.
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The bistable behavior of the system in region C bears
close resemblance to the phenomenon of optical bistability
for saturable absorbers [49], where connections to phase
transitions have been established [43]. In this region the system
displays strong hysteretic behavior. Recent experiments in
quantum dots, realizing a setting close to our model system
display distinct signatures of hysteresis upon application of an
external driving field on the electronic spin [26,27]. Our results
suggest the observed optical bistability in central spin systems
as a possible pathway to understand these experimental results,
which will be a subject of further studies.

VI. IMPLEMENTATIONS AND EXTENSIONS
OF THE MODEL

In the present section we discuss potential physical real-
izations of the master Eq. (1) and address certain aspects
of an extension of the model for inhomogeneous hyperfine
couplings.

As mentioned above, the model we study is a generic
central spin model with various potential physical implemen-
tations. The most prominent ones represent singly charged
semiconductor quantum dots, where the electron spin couples
to the nuclear spins of the host material [25,37], and diamond
nitrogen vacancy (NV) centers coupled to either nuclear (13C
spins of the host material) or electron (e.g., nearby nitro-
gen impurities) spin ensembles [50,51]. Recently, diamond
nanocrystals containing single NV centers coated with organic
molecule spin labels, which are dipole coupled to the NV
center spin have been manufactured [52].

NV centers represent a natural realization of the Master
Eq. (1). Their ground state consists of three spin sublevels (of
spin projection quantum number m = 0, ± 1) featuring a zero
field splitting due to anisotropic crystal fields of 2.88 GHz [50].
In a static magnetic field this zero field splitting can be
compensated for and one of the transitions (e.g., m = 0 ↔ 1)
is brought into near hyperfine resonance with the ancilla
spin system, defining an effective two-level system. Since the
m = 0 level does not carry a magnetic moment, the hyperfine
interaction of the effective two-level system and the ancilla
system takes the anisotropic form of Eq. (4). Potential coun-
terrotating terms of the dipole-dipole interaction are neglected
in the static magnetic field in a rotating wave approximation.
Optical pumping of the electron spin in the m = 0 spin state
and resonant driving (either by optical Raman transitions or
radio frequency fields) realizes master Eq. (1) [32].

In general, the hyperfine interaction in such a setting will not
be homogeneous and the truncation to a symmetric subspace
of total spin J is not justified. In the following we consider an
extension of the model taking into account the inhomogeneous
nature of the hyperfine coupling in a shell model. Along
x we show that up to the critical point steady states can
be constructed analytically as electron-nuclear product states
involving nuclear eigenstates of the (inhomogeneous) lowering
operator. In analogy to the homogeneous case, such solutions
cease to exist after the critical point at which we find diverging
nuclear squeezing. These results are supported by numerical
simulations that confirm the analytical considerations and
provide further indications that other features of the phase

diagram aside from the second order transition can be found
in the inhomogeneous model.

In order to take into account inhomogeneities in the hyper-
fine coupling, we replace the homogeneous spin operators of
Eq. (4) with inhomogeneous operators Iα → Aα (α = x,y,z).
We approximate the actual distribution of coupling strengths
by n shells of spins with identical coupling

Aα =
n∑

i=1

giA
(i)
α , (61)

where A(i)
α represent homogeneous spin operators within the

ith shell. Each homogeneous shell is assumed to be in a
symmetric subspace Ji .

In analogy to the homogeneous case we can construct
approximate eigenstates of the lowering operator A− |α〉 =
α |α〉. To this end we perform a Holstein-Primakoff transfor-
mation on the homogeneous spin operators within each shell
and displace the respective bosonic mode bi by βi and expand
the resulting operators in orders of 1/

√
Ji . As we demonstrate

in Appendix B 2 the choice of a particular displacement
βi uniquely defines the squeezing of the respective mode
bi if we demand that the corresponding state is an A−
eigenstate to second order in the expansion parameters, that
is, of order O(

∑
i 1/Ji). The corresponding eigenvalue is then

given as α = ∑n
i=1 gi

√
kiβi (ki = 2 − |βi |2). As discussed in

Sec. III B, |ψ〉 = |↓〉 ⊗ |α〉 is a steady state of the evolution to
second order, if α = ∑

i gi

√
kiβi = −J�/�0. In contrast to

the homogeneous case (n = 1) the latter condition does not de-
termine the steady state uniquely. Several sets of displacements
within the different shells can fulfill the steady-state condition.
However, all these microscopic realizations lead to the same
macroscopic behavior of the system such as the locking of
the electron inversion 〈Sz〉 = 0. Furthermore, at the critical
point, the solution is unique again (βi = 1 for all shells) and
the considerations on entanglement of Appendix B 1 can be
straightforwardly generalized to the inhomogeneous case with
the result that also here at the critical point the entanglement in
the system diverges, indicating a second-order phase transition.
Obviously, above the critical point no such solution can be con-
structed and the system observables change nonanalytically.

Figure 6 shows numerical results which confirm the above
considerations. We find numerically the exact steady-state
solution for a model of two inhomogeneously coupled shells
(g1 = 2g2) of size J1,2 = 8 (broken lines), as well as for
a system of five nuclear spins with coupling strengths
({gi}i=1,...,5 = {0.67,0.79,0.94,1.15,1.4}, dotted lines). For
low driving strengths � we find the Overhauser field building
up linearly, as expected. The emergence of the thermodynamic
phase transitions can be anticipated already for these low
particle numbers.

These analytical and numerical arguments for the emer-
gence of a second-order phase transition in the inhomogeneous
case, suggest the possibility to find other features of the
homogeneous phase diagram also in inhomogeneous systems,
such as NV centers in diamond.

Another attractive realization of a central spin system is
provided by singly charged semiconductor quantum dots: Up
to several 104 nuclear spins are coupled to a central spin- 1

2 elec-
tron; driving and spin pumping of the electronic state have been
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demonstrated experimentally with high efficiency [31,53]. In
this setting, however, the inhomogeneity of the hyperfine
coupling and the absence of an m = 0 central spin state lead to
a situation in which the effective nuclear Zeeman term HI in
Eq. (1) becomes inhomogeneous [it is composed of a Knight
field, nuclear Zeeman energy, and the (homogeneous) detun-
ing] and does not vanish for any choice of parameters. There-
fore, the above argument for a persistence of the second-order
phase transition does not apply. However, critical phenomena
similar to the ones described above were observed in optically
driven quantum dots [26]. The adaptation of our model to this
and other more general settings is subject to future studies.

VII. CONCLUSIONS

In analogy to closed systems where critical phenomena
arise from nonanalyticities of the Hamiltonian low-energy
spectrum, in open systems critical phenomena are intimately
related to the low excitation spectrum of the Liouville operator.
We investigated a generic driven and damped central spin
model and its rich steady-state behavior, including critical
effects such as bistabilities, first- and second-order phase
transitions, and altered spin-pumping dynamics. We developed
a two-step perturbative theory involving the expansion of
nuclear fluctuations up to second order in a self-consistent
Holstein-Primakoff transformation and the subsequent adia-
batic elimination of the electron degrees of freedom in the
vicinity of the steady state, which enabled us to provide
a complete picture of the system’s phase diagram. Linking
common ideas from closed-system phase transitions to the
dissipative scenario, we were able to introduce a classification
of the different transitions in the phase diagram.

The relevance of the considered model involves two aspects.
On the one hand, Eq. (1) describes a simple yet rich model,
which displays a large variety of critical phenomena. The
limitation to symmetric states allows for an efficient (and in the
thermodynamic limit exact) perturbative treatment that gives
deep insights into the nature of dissipative critical phenomena
from a fundamental point of view. On the other hand, the cen-
tral spin model is general enough to have realizations in a large
variety of physical systems (e.g., quantum dots, NV centers).
Our understanding of the critical phenomena in this model
could provide insight into recent observation of critical behav-
ior in related systems [26,27]. Furthermore the main features
of the phase diagram discussed above can also be found if the
central (two-level) spin is replaced by a different physical sys-
tem, for example, a larger spin or a bosonic mode. The theory
developed in Sec. IV can straightforwardly be adapted to dif-
ferent scenarios and opens the possibility to study dissipative
critical effects in a variety of different physical systems [15].

Finally, we showed that in a more realistic adaptation of the
model incorporating an inhomogeneous hyperfine coupling,
the second-order phase transition persists, indicating the pos-
sibility that the phase diagram remains qualitatively correct in
this experimentally more realistic case. A more thorough anal-
ysis of the effects of inhomogeneities is subject to future work.
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APPENDIX A: PHASE DIAGRAM FOR ALTERNATIVE
DISSIPATION STRENGTHS γ

In the main text of this article we discussed the steady-
state phase diagram of the master Eq. (1) exemplarily in the
case γ = a. However, we stress the point that the features
we describe do not depend critically on this particular value,
but rather prevail qualitatively for all dissipation strengths of
this order of magnitude. Most importantly, we noted before
the interesting phenomena that all considerations concerning
the segment x, including the second-order phase transition
at (ω0,�0) are entirely independent of the value of γ . In the
following we briefly discuss the remaining regions of the phase
diagram by means of two examples of a lower (γ = 0.2a) and
higher (γ = 5a) dissipation strength.

The case of low dissipation (γ = 0.2a) bears strong
resemblance to the case we discussed in the main text (γ = a),
which is shown exemplarily in Fig. 12(a) for the nuclear
steady-state polarization in the z direction 〈Iz/J 〉ss [compare
Fig. 2(a)]. The first-order boundary is only slightly shifted
toward lower driving strength �, and all the other features
prevail, qualitatively. One finds a region of bistability, as
well as a high- and low-temperature phase (not displayed).
However, one finds that with decreasing dissipation strength
the steady state becomes increasingly noisy.

The situation for higher dissipation is slightly different.
First, we note that as the dissipation is increased the first-
order boundary is rotated clockwise until in the limit γ 
 a

[where the electron can be trivially adiabatically eliminated;
compare Eq. (5)] it coincides with the line (ω0,� > �0). This
behavior can already be seen for γ = 5a in Fig. 12(b), which
displays the nuclear steady state polarization in the z direction.
Interestingly, with increasing dissipation, the system’s steady
state becomes more pure and the region of bistability shrinks
in size. At the same time, the distinction in a high- and
low-temperature phase becomes less clear. However, a second
criterion characterizing the phases emerges in the form of the

FIG. 12. (Color online) (a) The nuclear polarization in the z

direction 〈Iz/J 〉ss of the RSTSS solution in the thermodynamic limit
for (a) γ = 0.2a and (b) γ = 5a. In the first case [(a)] the phase
diagram bears strong resemblance with the case γ = a (compare
Fig. 2). In the case of large dissipation [(b)] the first-order boundary
is rotated clockwise toward the line (ω0,� > �0) and the distinction
of the phases according to their nuclear polarization in the z direction
becomes less prominent. Instead, other criteria like the polarization
in the y direction (not displayed) emerge.
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nuclear polarization in the y direction. In phase A (B) the
system is highly polarized in the −y direction (y direction). A
more detailed analysis of this regime with the tools we have
developed is an interesting subject for future studies.

APPENDIX B: APPROPRIATE EIGENSTATES OF THE
LOWERING OPERATOR

1. Homogeneous case

In Sec. III B we have seen that we can construct the exact
steady state along segment x if we assume the nuclear system
to be in an eigenstate of the spin-lowering operator I− |α〉 =
α |α〉. Although it readily can be shown that this operator
exactly features only the eigenvalue α = 0, we can construct
approximate eigenvalues in an expansion in 1/J .

We stress the point that in the bosonic analog eigenstates
of the annihilation operator are coherent minimum uncer-
tainty states that display no squeezing. As we will see, the
eigenvectors of the atomic lowering operator in contrast are
squeezed coherent atomic states (on the southern hemisphere
of the Bloch sphere), where the squeezing parameter depends
uniquely on the rotation angle of the Bloch vector.

As noted in Sec. IV the Holstein-Primakoff transformation
[Eq. (7)] provides an exact mapping between spin operators
and a bosonic operator in the subspace of total spin quantum
number J . In the following we show that approximate
eigenstates of the lowering operator I− can be expressed as a
squeezed and displaced vacuum of the bosonic mode b

D(β)S( − r(β)) |0〉 =: |β〉 , (B1)

where D(β) = e
√

Jβb†−√
Jβ∗b and S(r) = e(r∗b2−rb†2)/2 are the

displacement and squeezing operators, respectively, and |0〉 ≡
|J − J 〉 the fully polarized nuclear state. We find the squeezing
parameter uniquely defined by the displacement r = r(β).

Without loss of generality we assume β ∈ R (and thus r ∈
R); that is, the Bloch vector lies in the x-z plane. General states
β ∈ Cwith arbitrary Bloch vectors on the southern hemisphere
can straightforwardly be derived by a rotation around the z axis.
Note that the corresponding states on the northern hemisphere
can be constructed accordingly as eigenstates of the ascending
operator I+.

In order to show that Eq. (B1) defines an approximate
eigenstate of I− we first consider the transformation of
the nuclear operator under the displacement and squeezing
operator. Recall that according to Eq. (9) the displaced nuclear
operators can be expanded in orders of ε = 1/

√
J ,

D†(β)I−D(β) =
√

2J − (b† +
√

Jβ∗)(b +
√

Jβ)(b +
√

Jβ)

= JJ −
0 +

√
JJ −

1 + O(1), (B2)

where

J −
0 =

√
kβ, (B3)

J −
1 =

√
2(1 − β2)(μb + νb†)

=
√

2(1 − β2)S†(r)bS(r), (B4)

and cosh(r) = μ = 2k−β2

2
√

2k(1−β2)
and sinh(r) = −ν =

β2

2
√

2k(1−β2)
, which defines r = r(β) [the generalization

to complex β is straightforward and leads to Eq. (44)]. Thus,
it follows that

S†(−r)D†(β) I−D(β)S(−r)|0〉 = JJ −
0 |0〉 + O(1), (B5)

since b |0〉 = 0.
Multiplying both sides by D(β)S(−r) yields the desired

approximate eigenvalue equation

I− |β〉 = J
√

kβ |β〉 + O(1). (B6)

In the thermodynamic limit the term O(1) is negligible and the
eigenvalue equation is exact.6

Using the above representation we study the spin properties
of the states |α〉. In the following all expectation values are
understood to be evaluated in the squeezed coherent state |β〉:
〈O〉 ≡ 〈β| O |β〉.

Straightforwardly, one derives the nuclear mean polariza-
tions

〈Ix〉 = 1
2 〈β| (I+ + I−) |β〉 = J

√
kβ + O(1), (B7)

〈Iy〉 = 1
2i

〈β| (I+ − I−) |β〉 = 0 + O(1), (B8)

〈Iz〉 = J (β2 − 1) + O(1), (B9)

where in the last equation we used the expansion Eq. (14).
Note that the Bloch vector is orthogonal [up to order O(1)]
to the y direction for all (real) α and of length |〈 �I 〉| =√〈Ix〉2 + 〈Iy〉2 + 〈Iz〉2 = J + O(1).

Using Eq. (B6) and the angular momentum commutation
relations one readily calculates

〈�I 2
y 〉 = −1

2
〈Iz〉 + O(1),

= 1

2
J (1 − β2) + O(1),

= 1

2
J

√
1 − (

√
kβ)2 + O(1), (B10)

where, as usual, 〈�O2〉 := 〈O2〉 − 〈O〉2 and we used the
identity 1 − (

√
kβ)2 = (1 − β2)2.

Thus, we find for the squeezing parameter in the y direction,

ξ 2
y = 2

〈
�I 2

y

〉/|〈 �I 〉| =
√

1 − (
√

kβ)2 + O(1/J ). (B11)

The squeezing diverges for the state that realizes the maximal
eigenvalue of the lowering operator (

√
kβ = 1). This corre-

sponds to a state fully polarized in the x direction.

2. Inhomogeneous case

We approximate a system of inhomogeneous hyperfine
coupling by grouping the nuclear spins into n shells. Within
a shell i the nuclear spins have identical coupling gi and the
respective (homogeneous) spin operators A(i)

α (α = x,y,z) are
truncated to a symmetric subspace Ji . The total spin operators

6This is true even for β → 0 since all terms in the expansion Eq. (B2)
that do not vanish upon application on |0〉 contain at least one factor
β as well.
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can then be written as

Aα =
n∑

i=1

giA
(i)
α . (B12)

We define collective displacement and squeezing operators

D = �n
i=1e

√
J iβib

†
i −

√
J iβ

∗
i bi , (B13)

S = �n
i=1e

(r∗
i b2

i −rib
†2
i )/2, (B14)

where the bi is the respective bosonic operator for shell i. Also
here the squeezing parameter ri depends uniquely [with the
same functional dependence as before; cf. Eq. (B4)] on the
displacement βi within the shell, if we demand the first order
in the eigenvalue equation to vanish,

A−DS |0〉 =
(∑

i

Ji

√
kiβi

)
DS |0〉 + O(1), (B15)

where ki =
√

2 − β2
i and |0〉 ≡ |0〉⊗n is the vacuum of the

shell modes.
We emphasize that, in general, the eigenvalues are highly

degenerate. For a given eigenvalue α there are infinitely
many microscopic realizations (i.e., sets of βi) that fulfill α =∑

i Ji

√
kiβi . Only the maximal eigenvalue α = J features a

unique steady state that displays diverging squeezing as one
readily shows analogous to the homogeneous case.

APPENDIX C: ROTATED SQUEEZED THERMAL
SPIN STATES

A key concept of the paper are RSTSSs, a generalization of
squeezed coherent spin states to mixed states, parametrized
via an effective temperature. They describe nuclear states
which are fully polarized and rotated and feature fluctuations
which can be described by a bosonic mode in a thermal
(potentially squeezed) Gaussian state. In Sec. IV A we show
that the truncation of every nuclear operator to a subspace of
total spin J can be expressed in terms of a bosonic mode
b and its displacement β ∈ C, using a Holstein-Primakoff
transformation [compare Eqs. (9) and (13)],

Iα/J =
∑

n

εnJ α
n , (C1)

where ε = 1/
√

J , and the bosonic operators J α
n contain

combinations of products of n bosonic operators b,b†. J α
0 ∈ C

describes the semiclassical expectation value which is fully
determined by the displacement β. β quantifies a rotation of the
fully polarized nuclear state on the Bloch sphere. The higher
order operators J α

n (n > 0) describe quantum fluctuations
around this semiclassical nuclear state. RSTSSs are those
states where the mode b is in an undisplaced (〈b〉 = 0),
squeezed thermal state, which is fully determined by its CM �

[Eq. (41)]. These bosonic states constitute the natural steady
states of the quadratic master Eq. (25), and we find in Sec. IV B
that across the whole phase diagram one steady state of the
system can always be described as a RSTSS.

Note that in the limit where the effective temperature of
the Gaussian state is zero, we recover the class of squeezed

coherent spin states [36], which constitute the solution along
segment x.

APPENDIX D: SOLVING EQ. (24)

In order to find the solutions to Eq. (24) (which are
numerically difficult to find) we first note that

〈A〉ss = 0 ⇔ 〈ḃ〉 = 〈ḃ†〉 = 0 ⇔ 〈J̇ −
1 〉 = 〈J̇ +

1 〉 = 0, (D1)

where the time derivative is understood with respect to the
first-order Liouvillian

L1ρ = −i
[
a
(
SxJ x

1 + SyJ y

1

) + (aS+S− + δω)J z
1 ,ρ

]
, (D2)

and in the usual way we define

J x
1 = 1

2 (J +
1 + J −

1 ), (D3)

J y

1 = 1
2i

(J +
1 − J −

1 ). (D4)

Using the relation [J i
1,J

j

1 ] = iεijkJ
k
0 one finds the equations

0 = 〈
J̇ x

1

〉 = a
(〈Sy〉ssJ z

0 − 〈Sz〉ssJ y

0

) − ωJ y

0 , (D5)

0 = 〈
J̇ y

1

〉 = −a
(〈Sx〉ssJ z

0 − 〈Sz〉ssJ x
0

) + ωJ x
0 , (D6)

0 = 〈
J̇ z

1

〉 = a
(〈Sy〉ssJ x

0 − 〈Sx〉ssJ y

0

)
. (D7)

Furthermore, from the definitions of the J i
0 ’s one finds

1 = (
J x

0

)2 + (
J y

0

)2 + (
J z

0

)2
. (D8)

The steady-state expectation values 〈Si〉ss are found directly
via [cf. Eq. (18)],

L0ρ = γ
(
S−ρS+ − 1

2 {S+S−,ρ}+
)

− i
[
Sx

(
2� + aJ x

0

) + aSyJ y

0 + aS+S−J z
0 ,ρ

]
, (D9)

by solving the resulting optical Bloch equations,

0 = −γ

2
〈Sx〉 + aJ y

0 〈Sz〉 − aJ z
0 〈Sy〉, (D10)

0 = −γ

2
〈Sy〉 − (

2� + aJ x
0

)〈Sz〉 + aJ z
0 〈Sx〉, (D11)

0 = −γ (〈Sz〉 + 1/2) + (
2� + aJ x

0

)〈Sy〉 − aJ y

0 〈Sx〉. (D12)

This set of coupled equations for the six variables {〈Si〉,J j

0 }
can be solved analytically and corresponds to the semiclassical
Bloch equations (derived from a brute force factorization:
〈SiIj 〉 → 〈Si〉〈Ij 〉, for i,j = x,y,z in the equations of motion).
The solutions which feature second-order stability (see Section
IV B1) are displayed in Fig. 2. Via Eqs. (10) and (14) β can be
deduced unambiguously from a given set {〈Si〉,J j

0 }.

APPENDIX E: DERIVING THE SECOND-ORDER
TERM OF EQ. (20)

The first term of the second order of Eq. (20) is of the same
form as the first order and can readily be calculated:

TrS(PL2Pρ) = −i
[
a/2(〈S+〉ssJ −

2 + 〈S−〉ssJ +
2 )

+ (a〈S+S−〉ss + δω)J z
2 ,σ

]
,

= −i[B∗b2 + B(b†)2 + Fb†b,σ ], (E1)

with the β-dependent coefficients (remember that also the
electron steady-state expectation values are functions of β)
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B = − aβ

16
√

k3
[(4k + |β|2)〈S−〉ss + β2〈S+〉ss], (E2)

F = − a

8
√

k3
(4k + |β|2)(β〈S+〉ss + β∗〈S−〉ss) (E3)

+ a(〈S+S−〉ss + δω/a).

Next, we consider the second term of the second-order
perturbative master equation

−Trs(PL1QL−1
0 QL1Pρ)

= −Trs[PL1(1 − P )L−1
0 (1 − P )L1Pρ]

=
∫ ∞

0
dτTrs(PL1e

L0τL1Pρ)

−
∫ ∞

0
dτTrs(PL1PL1Pρ), (E4)

where we used the Laplace transform −L−1
0 = ∫ ∞

0 dτeL0τ and
the property eL0τP = PeL0τ = P .

Noting that

Trs(PL1X) = −iTrs([bA + b†A†,X]), (E5)

and using Eq. (22) we find

−
∫ ∞

0
dτTrs(PL1PL1Pρ) =

∫ ∞

0
dτ 〈Aα〉ss〈Aβ〉ss[bα,[bβ,σ ]],

(E6)

where α,β = †, “void”, and the Einstein sum convention is
used.

In the same fashion we find∫ ∞

0
dτTrs(PL1e

L0τL1Pρ)

= −
∫ ∞

0
dτ 〈Aα(τ )Aβ(0)〉ss[bα,[bβ,σ ]]

−
∫ ∞

0
dτ 〈[Aα(τ ),Aβ(0)]〉ss[bα,σbβ]. (E7)

Here we defined the autocorrelation func-
tions 〈Aα(τ )Aβ(0)〉ss = Trs(AαeL0τAβρss) and
〈[Aα(τ ),Aβ(0)]〉ss = Trs(AαeL0τ [Aβ,ρss]) (cf., e.g., [54],
pp. 22).

Putting together the results Eq. (E4) reduces to

−Trs(PL1QL−1
0 QL1Pρ)

= −
∫ ∞

0
dτ 〈�Aα(τ )�Aβ(0)〉ss[bα,[bβ,σ ]] (E8)

−
∫ ∞

0
dτ 〈[�Aα(τ ),�Aβ(0)]〉ss[bα,σbβ],

�O := O − 〈O〉ss . Since we choose the displacement β such
that 〈Aα〉ss = 0 [Eq. (24)] it is �Aα = Aα . Merging Eqs. (E1)

and (E8), and regrouping the terms, one readily derives
Eq. (25).

1. Calculation of the coefficients

In order to determine the coefficients Eq. (28) we have
to calculate terms of the kind

∫ ∞
0 dτ 〈�Aα(τ )�Aβ(0)〉ss and∫ ∞

0 dτ 〈�Aα(0)�Aβ(τ )〉ss . Exemplarily, we calculate the two
terms for α = β = “void”.

First, defining �v = [ a

4
√

k
(2k − |β|2), − a

4
√

k
β2,βa]T we can

write �A = �v∗ · ��S (and with �w = [− a

4
√

k
(β∗)2, a

4
√

k
(2k −

|β|2),β∗a]T we find �A† = �w∗ · ��S). Likewise, it is �A† =
��S† · �v (�A = ��S† · �w).

Consequently we compute∫ ∞

0
dτ 〈�Aτ�A〉ss = �v∗

(∫ ∞

0
dτ 〈��Sτ��S†〉ss

)
�w

= �v∗
(∫ ∞

0
dτeMτ 〈��S��S†〉ss

)
�w

= �v∗(−M−1〈��S��S†〉ss) �w = �v∗F1 �w,

(E9)

where we applied the quantum regression theorem in the
second step and used the definitions of Sec. (IV A).

Noting that∫ ∞

0
dτ 〈��S��S†

τ 〉ss =
(∫ ∞

0
dτ 〈��Sτ��S†〉ss

)†

= (−M−1〈��S��S†〉ss)†
= −〈��S��S†〉ssM−† = F2 = F†

1 ,

(E10)

we write ∫ ∞

0
dτ 〈�A�Aτ 〉ss = �v∗F2 �w. (E11)

Analogously, we find the relations∫ ∞

0
dτ 〈�A†

τ�A〉ss = �w∗F1 �w,∫ ∞

0
dτ 〈�A†�Aτ 〉ss = �w∗F2 �w,

(E12)∫ ∞

0
dτ 〈�Aτ�A†〉ss = �v∗F1�v,∫ ∞

0
dτ 〈�A�A†

τ 〉ss = �v∗F2�v,

...

such that all coefficients of the effective master Eq. (20) can
be calculated by simple matrix multiplication.
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We study abrupt changes in the dynamics and/or steady state of fermionic noise-driven systems produced by
small changes in the system parameters. Specifically, we consider fermionic systems whose dynamics is described
by master equations that are quadratic (and, under certain conditions, quartic) in creation and annihilation
operators. We analyze phase transitions in the steady state as well as “dynamical transitions.” The latter are
characterized by abrupt changes in the rate at which the system asymptotically approaches the steady state. We
illustrate our general findings with relevant examples of fermionic (and, equivalently, spin) systems and show
that they can be realized in ion chains.

DOI: 10.1103/PhysRevA.87.012108 PACS number(s): 03.65.Yz, 05.30.Rt

I. INTRODUCTION

Motivated by the impressive experimental control over
many-body quantum states and dynamics [1], open many-
body quantum systems have received increasing experimental
and theoretical attention in recent years. On one hand, the
decoherence introduced by coupling to an environment or by
quantum noise is a major challenge to quantum information
processing [2], on the other hand, it can play a constructive
role for quantum computing [3,4], state preparation [5–8],
entanglement generation [9,10], quantum memories [11], or
quantum simulation [12–16].

These exciting possibilities drive the interest in under-
standing the steady-state phase diagram of open systems in
detail [17]. Of particular interest are points of transitions
between different phases of the system. For closed systems
at zero temperature, the phase diagram and quantum phase
transition can be understood by studying the low-lying energy
eigenstates of the system’s Hamiltonian [18]. In particular, the
nonanalyticity of certain expectation values as a function of
an external parameter, that characterizes the quantum phase
transition, can only occur if the gap of the Hamiltonian closes,
i.e., the energy difference between ground state and first
excited state vanishes. Quantum phase transitions are, thus,
determined by the low-energy spectrum of the Hamiltonian
governing the dynamics of wave functions,

∂t |�〉 = − i

h̄
H|�〉. (1)

In this paper, we study abrupt changes in the physical
properties of a many-body quantum system whose dynamics
is described by a master equation,

∂tρ = Sρ. (2)

This equation describes the dynamics of an open system
coupled to a Markovian reservoir where ρ is the system’s
density operator. The superoperator S contains two parts: One
is related to the system Hamiltonian (possibly renormalized
due to the interaction with the environment), and the other
is related to the quantum noise induced by the environment.
Under the appropriate conditions, the system evolves to a
steady state ρss, which corresponds to a (right) eigenstate of S

with eigenvalue 0. Note that this eigenvalue may be degenerate,
or there may be other eigenvalues with zero real parts. In case
this does not happen, the steady state is unique. Then, the other
eigenvalues λ of S have a negative real part, and the smallest
absolute value of them � determines the asymptotic decay rate
(ADR), that is, the rate at which the steady state is reached.
A phase transition in the steady state, where its properties
abruptly change when one slightly changes a parameter in
the master equation, is accompanied by the vanishing of �.
This situation has recently been studied by many authors (see,
for example, Refs. [3,5,17,19,20]) and is typically referred to
as a “dissipative quantum phase transition” or “noise-driven
quantum phase transition.” There is a natural analogy between
noise-driven and (closed-system) quantum phase transitions:
A unique ground state of the Hamiltonian is analogous to a
unique steady state. The appearance of a phase transition is
signaled by the vanishing of the gap or �, respectively.

Apart from its role in reflecting the appearance of a phase
transition, the quantity � can play an additional role. It also
represents a physical property of the system, namely, the rate
at which the steady state is approached asymptotically or the
system’s response to perturbations in the steady state. This
quantity may change abruptly itself. In that case, we can talk
about a dynamical transition since a small change in the system
parameters may lead to an abrupt change in the dynamics of
the system. Actually, such a transition may, in principle, occur
even if � remains finite, and thus, it is a different property than
the transitions generally studied in this context.

In this paper, we investigate both kinds of transitions for
simple fermionic systems. We concentrate on systems that are
described by master equations and for which the Hamiltonian
is, at most, quadratic in fermionic creation and annihilation
operators. Specifically, we consider two kinds of noise terms:
(i) general quadratic in the fermionic operators and (ii) quartic,
but with some conditions (namely, that they correspond to
Hermitian Lindblad operators). In the first case, the dynamics
can be exactly solved [21–24], which has been exploited in
several recent papers to study the interplay of noise and critical
Hamiltonians in one-dimensional (1D) fermionic systems
[19,23,25]. In the second case, even though the full dynamics
cannot be obtained, we show that it is, nevertheless, possible to
exactly determine the dynamics of certain expectation values
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from which dynamical and steady-state properties can be
obtained. In this last case, we present analytical examples
where dynamical transitions occur [26]. This situation has
also been studied in Refs. [27–29] with particular regard to
transport through a dephasing spin chain where exact solutions
of the associated master equation could be obtained.

The formalism we develop is relatively general, and we
illustrate it with explicit examples. In particular, we consider
Hamiltonians which are intimately connected to physical
situations that can be obtained in the laboratory, namely,
anisotropic XY spin chains in transverse magnetic fields and
that are mapped to a fermionic Hamiltonian by a Jordan-
Wigner transformation. This family of Hamiltonians displays
the prototype of a continuous phase transition [18]. The noise
terms we consider can also be understood as particular physical
processes occurring in the spin chain through its interaction
with an environment [30]. Note that our framework also applies
to the systems studied in Refs. [21,22,27,28] and, for the
quadratic noise terms, is related to Refs. [19,23] where generic
noise-driven phase transitions are analyzed.

This paper is structured as follows. In Sec. II, we introduce
the Lindblad master equation, which allows describing deco-
herence due to the weak interaction with a Markovian bath and
presents the covariance matrix (CM) formalism, which allows
the exact treatment of quadratic fermionic systems. In Sec. III,
we extend this formalism to decoherent systems with linear
and Hermitian quadratic Lindblad operators. Then, we come
to the calculation of the steady states and the ADRs for relevant
interesting examples in this framework in Secs. IV–VI. Here,
we explicitly demonstrate the presence of noise-driven phase
transitions. In Sec. VII, we propose a possible implementation
with cold ions before concluding in Sec. VIII.

II. NOTATION AND METHODS

In this section, we introduce our tools and notation,
namely, the Lindblad master equation and the fermionic CM
formalism, which is ideally suited for describing quasifree
fermionic systems (see Sec. II C).

A. Lindblad master equation

We consider systems whose interaction with an environ-
ment leads to a time evolution governed by a Lindblad master
equation [31],

∂tρ = Sρ = − i

h̄
[H,ρ] +

∑
α

(
LαρLα† − 1

2
{Lα†Lα,ρ}

)
,

(3)

where ρ is the density matrix of the system, H is its Hamilto-
nian, and the Lindblad operators Lα determine the interaction
between the system and the bath. This dynamical equation for
an open system can be derived from two different points of
view [32]: First, it can be derived from the full dynamics of
system and bath. Here, three major approximations have to
be used: The states of system and environment are initially
uncorrelated, the coupling between system and bath is weak
(Born approximation), and the environment equilibrates fast
(Markov approximation). Second, any time evolution given by

a quantum dynamical semigroup (i.e., a family of completely
positive trace-preserving maps εt , which is strongly continuous
and satisfies εtεs = εt+s) is generated by an equation of the
form Eq. (3).

We characterize the decoherence dynamics with the steady
state and the asymptotic decay rate. A steady-state density
matrix ρ0 of the master equation (3) fulfills

∂tρ0 = Sρ0 = 0, (4)

and is the (generically unique) eigenvector with eigenvalue
0 of the Liouvillian superoperator S. The approach to the
steady state is then governed by the nonzero eigenvalues (and
eigenvectors) of S, all of which have nonpositive real parts
for Liouvillians of Lindblad form. Of particular interest is
the eigenvalue with the largest real part since it governs the
long-term dynamics. We refer to the absolute value of this
largest real part as the ADR and denote it by �,

�(S) = max{|Re λ| �= 0: ∃ρλ: S(ρλ) = λρλ}. (5)

B. Quasifree fermions and spins

We consider systems with N fermionic modes described by
creation and annihilation operators a

†
j and aj . These operators

obey the canonical anticommutation relations,

{aj ,ak} = 0, {a†
j ,ak} = δjk. (6)

Equivalently, we can use Hermitian fermionic Majorana
operators,

cj,0 = a
†
j + aj , cj,1 = (−i)(a†

j − aj ), (7)

which, as generators of the Clifford algebra, satisfy the
anticommutation relations,

{cj,u,ck,v} = 2δjkδuv. (8)

We consider fermionic Hamiltonians that are quadratic in
the Majorana operators. They describe quasifree fermions and
are known to be exactly solvable. We parametrize them with
the real antisymmetric matrix H ,

H = i

4
h̄
∑
jkuv

Hjk,uvcj,uck,v. (9)

The 2 × 2 matrix Hjk ≡ (Hjk,uv)uv describes the coupling
between modes j and k.

All eigenstates and thermal states of such a quadratic
fermionic Hamiltonian are Gaussian, i.e., they have a density
operator, which is the exponential of a quadratic form in the
Majorana operators. Gaussian states remain Gaussian under
the evolution with quadratic Hamiltonians.

In the following, we will mostly be concerned with transla-
tionally invariant systems and nearest-neighbor interactions.
In terms of the matrix H , the former means that Hjk depends
only on the difference j − k, and for short, we write

Hjk ≡ Hj−k, (10)

whereas, the latter implies that Hs = 0 for s > 1. We work with
periodic boundary conditions, so j − k is understood mod N .

An important reason to study one-dimensional fermionic
systems with quadratic Hamiltonians is their intimate relation
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to certain types of spin chains: The Jordan-Wigner transforma-
tion [33] maps fermionic operators onto Pauli spin operators
via

cj,0 ↔
j−1∏
k=1

σ k
z σ j

x , cj,1 ↔
j−1∏
k=1

σ k
z σ j

y . (11)

Under this transformation, some spin chains are mapped to
spinless quasifree fermionic systems, which can be solved
exactly. A prominent example is the anisotropic XY chain in
a transverse magnetic field [18] with the Hamiltonian,

H = −J

N∑
j=1

[
(1 + γ )σ j

x σ j+1
x + (1 − γ )σ j

y σ j+1
y

]
+B

N∑
j=1

σ j
z , (12)

where B is the magnetic field, J is the ferromagnetic coupling,
and γ is the anisotropy parameter. Closed systems governed by
this Hamiltonian show a quantum phase transition at B = 2J

in the thermodynamic limit, and the behavior in the presence
of noise is studied in Sec. VI B.

We are interested in noise-driven open fermionic systems
with dynamics described by a Lindblad master equation,
characterized by a set of Lindblad operators Lα . We consider
two classes of Lindblad operators: first, those given by
arbitrary linear combinations of the Majorana operators (linear
Lindblad operators),

Lα =
∑
ju

Lα
j,ucj,u, Lα

j,u ∈ C, (13)

and second, those represented by quadratic expressions in
the Majorana operators, which are, in addition, Hermitian
(Hermitian quadratic Lindblad operators),

Lα = i

4

∑
jkuv

Lα
jk,uvcj,uck,v, (14)

with the real and antisymmetric matrix Lα .

C. Covariance matrix formalism

Now, we present a framework in which the noise-driven
dynamics of the Lindblad master equation (3) can be solved
exactly.

For every state of a fermionic system, its real and antisym-
metric CM is defined by

�jk,uv = tr

(
ρ

i

2
[cj,u,ck,v]

)
. (15)

The magnitudes of the imaginary eigenvalues of � are smaller
than or equal to unity (�2 � −1).

For Gaussian states, the correlation functions of all orders
are related to the CM through Wick’s theorem [34]. In
particular, pure Gaussian states ρ = |〉〈| satisfy �2 = −1.
In our notation, �jk denotes a 2 × 2 matrix that describes the
covariances between sites j and k.

III. LINDBLAD MASTER EQUATION IN THE
COVARIANCE MATRIX FORMALISM

The CM formalism is especially useful if the operative
dynamics leads to closed equations for the CM, which is the
case for the two kinds of Lindblad operators Eqs. (13) and (14)
that we study in the following.

A. Linear Lindblad operators

We consider a system with a quadratic Hamiltonian given
by the antisymmetric matrix H [cf. Eq. (9)] and linear Lindblad
operators as defined in Eq. (13). Using the anticommutation
relations (8), we determine the dynamical equation for the CM
� from Eq. (3) and obtain

∂t� = [H,�] −
∑

α

{|Lα〉〈Lα| + |Lα∗〉〈Lα∗|,�}

− 2i(|Lα〉〈Lα| − |Lα∗〉〈Lα∗|), (16)

where |Lα〉 denotes the vector formed by the coefficients Lα
j,u

in Eq. (13) and |Lα∗〉 denotes its complex conjugate. In terms
of |�〉, the vector of components of �, this equation becomes

∂t |�〉 = S|�〉 − |V〉 = (H − M) |�〉 − |V〉, (17)

with the superoperators,

H = (H ⊗ 1 − 1 ⊗ HT ), (18)

M =
∑

α

[|Lα〉〈Lα| ⊗ 1 + 1 ⊗ (|Lα〉〈Lα|)T + c.c.], (19)

|V〉 = 2i
∑

α

(|Lα〉 ⊗ |Lα〉 − c.c.). (20)

Note that H is anti-Hermitian and M is Hermitian and positive
semidefinite. The steady-state CM [see Eq. (4)] satisfies

(H − M)|�0〉 = |V〉. (21)

Deviations |δ�〉 = |�〉 − |�0〉 then obey

∂t |δ�〉 = (H − M)|δ�〉, (22)

and the approach to the steady state is governed by the the right
eigenvalues of the superoperator S = H − M, satisfying

S|�i〉 = λi |�i〉. (23)

The eigenvalues whose real parts are closest to zero, thus,
determine the asymptotics of the decoherence process. In the
following, we refer to

� = max{|Re λi | �= 0: ∃�i such that (S − λi)|�i〉 = 0},
(24)

i.e., the asymptotic decay rate on the level of CMs simply as
ADR.

B. Quadratic and Hermitian Lindblad operators

The second class of master equations, leading to closed
equations for the CM, is of the form Eq. (3) with Lindblad
operators that are quadratic and Hermitian as in Eq. (14). Lind-
blad equations with Hermitian Lindblad operators describe the
dynamics of systems in contact with a classical bath. Let us
choose a fluctuating external field as the source of decoherence
(see Sec. VII). If, additionally, the Lindblad operators are
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quadratic, the fluctuating Hamiltonian is quadratic. Thus, in
this case, Gaussian states evolve into mixtures of Gaussian
states under such evolutions, and we can expect a closed
equation for the CM.

Before discussing the master equation in the CM formalism,
let us first determine, in general, the steady-state density
matrices [see Eq. (4)] of a master equation with only Hermitian
Lindblad operators. In that case, we can rewrite the master
equation in terms of |ρ〉, the vector of components of ρ as

∂t |ρ〉 = S|ρ〉 =
(

H − 1

2

∑
α

(Lα)2

)
|ρ〉, (25)

with the superoperators,

H = −i(H ⊗ 1 − 1 ⊗ HT ), (26)

Lα = Lα ⊗ 1 − 1 ⊗ LαT . (27)

We observe that the superoperator H is anti-Hermitian and
that the superoperators Lα are Hermitian so that the (Lα)2 are
Hermitian and non-negative.

We consider all complex-valued vectors |ρ〉 instead of just
the ones corresponding to positive density matrices with trace
1. Therefore, we have to check, after the calculation, if our
results correspond to physically meaningful states. The steady
states satisfy

〈ρ0|
(

H − 1

2

∑
α

(Lα)2

)
|ρ0〉 = 0. (28)

As stated above, H is anti-Hermitian, and all (Lα)2 are
Hermitian. Applying these properties, we can conclude from
Eq. (28) that

〈ρ0|
∑

α

(Lα)2|ρ0〉 = 〈ρ0|H|ρ0〉 = 0 (29)

holds. It follows from the non-negativity of (Lα)2 that

(Lα)2|ρ0〉 = 0 ∀ α. (30)

Because the Lα can be diagonalized, this implies Lα|ρ0〉 = 0.
It follows that H|ρ0〉 vanishes identically. In terms of matrices
ρ0, we can summarize these conditions for steady states,

[H,ρ0] = [Lα,ρ0] = 0 ∀ α. (31)

It can be verified, with Eq. (3), that this condition for steady
states is not only necessary, but also is sufficient. To summa-
rize, steady states for Hermitian Lindblad operators correspond
to density matrices commuting with the Hamiltonian and
all Lindblad operators. Therefore, they are the identity up
to symmetries shared by the Hamiltonian and the Lindblad
operators.

Let us now return to exactly solvable systems in the CM
formalism. For quadratic and Hermitian Lindblad operators
and quadratic Hamiltonians, the master equation (3) becomes

∂t� = [H,�] + 1

2

∑
α

[Lα,[Lα,�]]. (32)

We can again reformulate this equation for the vector of
components |�〉,

∂t |�〉 = S|�〉 =
(

H − 1

2

∑
α

(Lα)2

)
|�〉, (33)

with H as in Eq. (18) and Lα = Lα ⊗ 1 − 1 ⊗ Lα .
Since we found that steady states are trivial for Hermitian

Lindblad operators, we concentrate on the asymptotics of the
decoherence process. It is studied through the eigenvalues λi

of the superoperator S and, in particular, its ADR as defined
in Eq. (24).

C. Translationally invariant Hamiltonians

Naturally, translationally invariant systems are best treated
in a Fourier-transformed picture. Any real antisymmetric
matrix can be transformed into a real and antisymmetric
block-diagonal matrix by an orthogonal transformation O. For
the Hamiltonian matrix H , this means

H ′
mn,uv = (OHOT )mn,uv, H ′

mn = δmn

(
0 εm

−εm 0

)
, (34)

where the real number εm is the energies of the elementary
excitations. We, however, transform the Hamiltonian matrix
with the unitary Fourier transform,

H̃mn,uv = (UHU †)mn,uv, Umn,uv = 1√
N

e(2πi/N)mnδuv.

(35)

The resulting matrix H̃ is anti-Hermitian but not real. For
translationally invariant systems, for which the 2 × 2 matrices
Hjk in Eq. (9) depend only on j − k, the matrix H̃ is block
diagonal with

H̃mn = δmn

N−1∑
s=0

Hse
−(2πi/N)sm. (36)

The block diagonal is parametrized according to

H̃nn =
(

ikn hn

−h∗
n iln

)
, kn,ln ∈ R, hn ∈ C. (37)

For later use, we observe the properties,

h−n = h∗
n, k−n = −kn, l−n = −ln, (38)

which follow directly from Eq. (36) for real Hs .
For a system that is also invariant under reflections (in real

space), Hs = −HT
s holds (in addition to H−s = −HT

s implied
by antisymmetry). In that case, we have H̃nn = −H̃nn, and
therefore,

kn = ln = 0. (39)

The spectrum of the Hamiltonian matrix determines the
elementary excitation energies,

εn =
∣∣∣∣kn + ln

2
±
√(

kn − ln

2

)2

+ |hn|2
∣∣∣∣. (40)

It will be necessary to transform the CM � accordingly,
defining

�̃ = U�U †. (41)
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By minimizing the energy expectation value,

〈E〉 = Tr(HT �) = Tr(H̃ †�̃), (42)

we find the CM for the ground state. In the case of knln < |hn|2,
it is

�̃0
mn = δmn{[(kn−ln)/22]+|hn|2}−1/2

(
i kn−ln

2 −hn

h∗
n −i kn−ln

2

)
, (43)

and, otherwise,

�̃0
mn = −iδmnsgn (kn + ln) 12. (44)

For translationally invariant and reflection symmetric systems,
knln = 0 holds, thus, knln < |hn|2 is fulfilled in such systems.
Since the XY chain Eq. (12) is reflection symmetric, we can
concentrate on the case of Eq. (43). Specifically, we obtain,
for the Hamiltonian Eq. (12), that

hn = −2B + 2J [(1 + γ )e(2πi/N)n + (1 − γ )e−(2πi/N)n],

(45)

kn = ln = 0, (46)

which contains a continuous quantum phase transition at B =
2J where the gap closes and an elementary excitation energy
εn = |hn| = 0 exists. This Hamiltonian will be discussed
further in Sec. VI.

IV. LINEAR LINDBLAD OPERATORS

Now, we apply the formalism introduced in the previous
sections to some simple cases of physical interest. Here, we
choose the simplest examples, i.e., linear Lindblad operators
(see Sec. III A). We study two settings. In Sec. IV A, we
look at systems without any unitary evolution, observing
dynamic transitions when tuning the strength of competing
decoherence processes. Here, we enrich our presentation with
an example for noise-driven state engineering. In Sec. IV B, we
consider systems governed by a Hamiltonian, which describes
a quantum phase transition itself and are subject to noise and
show that the noise-driven system undergoes a transition for
the same values of the system parameters.

A. Purely noise-driven systems

The simplest example of two competing decoherence
processes generated by linear Lindblad operators is

Lα
− = gμaα, Lα

+ = gνa†
α, (47)

acting on site α ∈ {1, . . . ,N}. It describes the competition
between particle-loss and particle-gain processes. We observe
that the master equation (16), without the Hamiltonian (H =
0), is diagonal in real space,

∂t� = −g2(μ2 + ν2)� − g2(μ2 − ν2)
N⊕

α=1

(iσy). (48)

In this simple case, the master equation is already diagonal,
and we read off the single decoherence rate � = g2(μ2 + ν2).
Solving the master equation for ∂t�0 = 0 gives the unique

steady-state CM,

�0 = −μ2 − ν2

μ2 + ν2

N⊕
α=1

(
0 1

−1 0

)
, (49)

which is block diagonal. This state is characterized by
the particle number 〈a†

αaα〉 = ν2/(μ2 + ν2) at all sites. For
pure particle-loss processes (ν = 0), all sites are unoccupied
〈a†

αaα〉 = 0 in the steady state, whereas, for pure particle-gain
processes (μ = 0), all sites are occupied 〈a†

αaα〉 = 1. At
μ = ν, the steady state is the unpolarized completely mixed
state. Not surprisingly, the system does not display any phase
transition.

More interesting may be the case in which noise can also
induce correlations. A simple example of this kind is provided
by the Lindblad operators,

Lα = g(μaα + νa
†
α+1), (50)

acting on nearest neighbors. This set of Lindblad operators
generates a master equation, which is diagonal after the Fourier
transform (35),

∂t �̃ = −g2(μ2 + ν2)�̃ − g2μν

{
N⊕

n=1

cos(2πn/N )σz,�̃

}

− g2(μ2 − ν2)
N⊕

n=1

iσy − 2g2μν

N⊕
n=1

i sin(2πn/N )σx.

(51)

In this case, a spectrum of decoherence rates g2{μ2 + ν2 ±
2μν[cos 2πn

N
+ cos 2πm

N
],μ2 + ν2 ± 2μν[cos 2πn

N
− cos 2πm

N
]}

exists with a gap g2(μ − ν)2. The unique steady state is

�̃0 = −μ2 − ν2

μ2 + ν2

N⊕
n=1

iσy − 2μν

μ2 + ν2

N⊕
n=1

i sin(2πn/N )σx.

(52)

This state is a paired fermionic state according to the definition
of Kraus et al. [35]. Paired states show two-particle quantum
correlations that cannot be reproduced by separable states
(mixtures of Slater determinants). In Ref. [35], it is proven
that Gaussian states are paired iff Qkl = 〈 i

2 [ak,al]〉 �= 0. This
condition expresses the fact that separable states are convex
combinations of states with a fixed particle number. For the
CM (52), we get

Qkl =
{

1
2

μν sgn(k−l)
μ2+ν2 , if |k − l| = 1,

0, if |k − l| �= 1.
(53)

We conclude that (50) generates paired states, except for the
trivial cases μ = 0 or ν = 0. Note that, even though the gap
closes at μ = ν (where maximal pairing is created), there is
no phase transition at this point.

B. Noise-driven systems with Hamiltonians

A different form of transitions can arise in the presence of a
Hamiltonian when tuning the parameters of the Hamiltonian.
To show this, we solve the evolution of the Lindblad master
equation (16) with a general quadratic and translationally
invariant Hamiltonian [see Eqs. (9) and (37)]. We choose
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the local Lindblad operators (47), again, because they are the
simplest example. The diagonal master equation in Fourier
space becomes

∂t �̃ =
[

N⊕
n=1

(
ikn hn

−h∗
n iln

)
,�̃

]
− g2(μ2 + ν2)�̃

− g2(μ2 − ν2)
N⊕

n=1

iσy. (54)

The corresponding steady-state CM in the weak-coupling limit
g → 0 is [36]

�̃0 = −μ2 − ν2

μ2 + ν2

N⊕
n=1

Re (hn)

(kn − ln)2/4 + |hn|2

×
(

i(kn − ln)/2 hn

−h∗
n −i(kn − ln)/2

)
. (55)

Transforming back to �0 [and using Eq. (38)], we can read off
the particle number 〈2a

†
j aj − 1〉 = (�0)jj,01 as

(�0)jj,01 = 1

2

μ2 − ν2

μ2 + ν2

1

N

N∑
n=1

Re (hn)2

(kn − ln)2/4 + |hn|2 . (56)

Based on this result, we can now discuss how nonanalytic
behavior in the steady state correlates with critical points of
the system. A vanishing denominator in Eq. (56) is not a
priori a sufficient condition for nonanalytic behavior because
the numerator might vanish at the same point. This is relevant
for interesting examples with kn − ln = 0, e.g., the XY chain
in Eq. (45). We give a rigorous discussion in the following.
In the thermodynamic limit, the sums over expectation values
in Eq. (56) can be replaced by a loop integral around the
origin of the complex plane with radius 1 where the integration
variable is z = exp( 2πi

N
n). This is possible because hn, kn, and

ln are Fourier series. For local interactions, the denominator
of the integrand is a polynomial in z [see Eq. (35)] and,
thus, has a finite number of distinct roots. Applying the
residue theorem, a nonanalyticity in 〈a†

j aj 〉 is possible only
if a residue of the integrand, i.e., a root of its denominator,
moves through the integral contour in the complex plane as
a function of some external parameters. This happens for
a vanishing denominator |hn|2 + (kn − ln)2/4 = 0 for some
real n ∈ [0,N ). In the special case of a reflection symmetric
system kn + ln = 0, this coincides with a vanishing energy
gap εn = 0 [see Eq. (40)], a signature for a quantum phase
transition. To summarize, for a reflection symmetric system
with |hn|2 + (kn − ln)2/4 = 0 in the weak-coupling limit, a
quantum phase transition occurs in the noise-driven system
for the same parameter values as in the corresponding closed
system and is signaled by a nonanalyticity in 〈a†

j aj 〉. This
calculation is explicitly performed in Sec. VI A for the XY

chain [37].

V. QUADRATIC AND HERMITIAN
LINDBLAD OPERATORS

In this section, we turn to the dynamical properties of
the Lindblad master equation with quadratic and Hermitian
Lindblad operators as introduced in Sec. III B. In the study

of closed systems, quantum phase transitions are signaled
by nonanalyticities in ground-state expectation values. In the
noise-driven case, the steady state is the analog of the ground
state. However, in Sec. III B, we have shown that, in the case
of Hermitian Lindblad operators, the steady states are trivial
and, thus, cannot evidence a phase transition. Therefore, we
turn to the ADR, which determines the long-time dynamics of
the decoherence process. We identify nonanalytical behavior
of this rate both in the absence of any Hamiltonian (see
Sec. V A) for competing decoherence processes and for the
nonzero Hamiltonian, in which case, phase transitions of the
corresponding closed system are reflected in a dynamical
transition of this rate (see Sec. V B).

A. Purely noise-driven systems

A particular simple set of local and quadratic Lindblad
operators is

Lα
z = gμ

i

2
[cα,1,cα,0], (57)

Lα
x = gν

i

2
[cα+1,0,cα,1]. (58)

In this case, the Lindblad equation (32) becomes

∂t�kl,uv = −4g2μ2�kl,uv(1 − δkl)

− 4g2ν2�kl,uv(1 − δ2k+u+1,2l+vδk+1,l

− δ2k+u−1,2l+vδk−1,l). (59)

We can read off the decoherence rates −4g2(μ2 + ν2),
−4g2μ2, and −4g2ν2. Thus, the ADR

� =
{

4g2μ2, if μ � ν,

4g2ν2, if ν < μ
(60)

undergoes a dynamical transition as a function of μ/ν at
μ = ν.

B. Noise-driven systems with Hamiltonians

Now, we add a quadratic Hamiltonian and calculate the
asymptotic decay rate � in the limit of small couplings to
the environment g → 0. First, we derive it for the quadratic
Lindblad operators from Eqs. (57) and (58) for ν = 0 and
μ = 1. Later, we will present the results for the case of arbitrary
μ and ν. For translationally invariant systems, the Fourier
transformed master equation (59) is

∂t �̃kl ≡ (S̃�̃)kl = [H̃ ,�̃]kl

− 4g2

(
�̃kl − 1

N

N∑
r,s=1

�̃rsδr−s,k−l

)
, (61)

with the unitarily transformed superoperator S̃ to

S̃ = (U ⊗ U )S(U ⊗ U )†, (62)

with U from Eq. (35). For weak couplings between system
and bath g → 0, the eigenvalues of S̃ (and, thus, of S) can be
determined by first-order perturbation expansion. To this end,
we first diagonalize the unperturbed Hamiltonian part of S̃ ,

[H̃ ,�̃]kl = H̃kk�̃kl − �̃klH̃ll
!= λ�̃kl, (63)
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where we use the notation introduced in Eq. (36) for the Hamil-
tonian H̃ . The 4N2 eigenvalues λmna (m,n = 1, . . . ,N, a =
1, . . . ,4) are

λmn1 = i(αm − αn + βm − βn), (64)

λmn2 = i(αm − αn − βm + βn), (65)

λmn3 = i(αm − αn + βm + βn), (66)

λmn4 = i(αm − αn − βm − βn), (67)

with

αm = |km + lm|/2, (68)

βm =
√

|hm|2 + (km − lm)2/4. (69)

The corresponding eigenmatrices are denoted as �̃mna with
nonzero elements �̃mna

kl only for m = k and n = l, i.e., �̃mna
kl =

δmkδnl�̃
mna
mn . Perturbation theory demands calculating the ma-

trix elements of the perturbative part of S̃, − 4g2(δmkδnlδab −
P mna

klb /N ) [see Eq. (61)], with

P mna
klb = N

4g2
〈�̃mna|1

2

∑
α

(Lα)2|�̃klb〉 + Nδmkδnlδab

=
N∑

q,r,s,t=1

δq−r,s−tTr
[(

�̃mna
st

)†
�̃klb

qr

]
= δm−n,k−lTr

[(
�̃mna

mn

)†
�̃klb

kl

]
. (70)

Thus, the eigenvalues of S̃ are determined by those of the
Hermitian matrix P , and the largest eigenvalue smaller than
N of P (restricted to a space of degenerate eigenvalues λmna

of [H̃ ,·]) determines the ADR. We denote it by �P and, thus,
have that the asymptotic rate is � = 4g2(1 − �P

N
). To find �P ,

note that the matrix elements of P fulfill |P mna
klb | � 1. Thus,

an N -fold degeneracy of λmna is required for �P = �(N ).
Generically, this is possible only for the eigenvalue λmna = 0,
i.e., m = n and a = 1,2. The corresponding eigenmatrices are

�̃mm1
kl = δmkδml

1√
2βn

(
i km−lm

2 −hm

h∗
m −i km−lm

2

)
, (71)

�̃mm2
kl = δmkδml

1√
2

(
1 0
0 1

)
. (72)

As the eigenmatrices �̃mm2 give eigenvalues equal to N and 0
only, have no overlap with physical CMs, and yield P mn2

kl1 = 0,
we focus on the matrices �̃mm1. The corresponding part of the
perturbation matrix is

Pmn = P mm1
nn1 = 2hmh∗

n + 2h∗
mhn − (km − lm)(kn − ln)

4βmβn

.

(73)

We diagonalize this matrix by introducing the three vectors
|a〉,|b〉,|c〉 ∈ CN with the components,

am = km − lm

2βm

, bm = Im(hm)

βm

, cm = Re(hm)

βm

, (74)

and writing Pmn in terms of these un-normalized vectors,

P = |c〉〈c| + |b〉〈b| − |a〉〈a|. (75)

We now exploit the symmetries of hn, kn, and ln stated in
Eq. (38). First, we observe that |c〉 is orthogonal to |a〉
and |b〉. We have chosen the CMs corresponding to the
three vectors (74) to be anti-Hermitian since this matrix
remains anti-Hermitian even in the complex vector space. After
transforming back into real space, the ones corresponding to
|a〉 and |b〉 are purely imaginary so that they have no overlap
with any physically meaningful real and antisymmetric CM.
Only the matrix corresponding to |c〉 is real and antisymmetric
and is given by

�� =
(

N∑
m=1

|hm|2
2β2

m

)−1 ∑
n

Re(hn)

βn

U †�nn1U. (76)

Therefore, it determines the ADR. We get

�P =
N∑

m=1

Re(hm)2

β2
m

=
N∑

m=1

Re(hm)2

|hm|2 + (km − lm)2/4
, (77)

and thus,

� = 4g2

N

N∑
m=1

4 Im(hm)2 + (km − lm)2

4|hm|2 + (km − lm)2
, (78)

as the general form of the ADR.
We can extend our analysis to systems with the general

Lindblad operators Eqs. (57) and (58) and find, in an analogous
way, the two lowest decay rates,

�±
4g2

= μ2 + ν2 − εz + εx

2
±
√(

εz − εx

2

)2

+ ε2, (79)

with

εz = μ2

N

N∑
m=1

Re(hm)2

β2
m

,

εx = ν2

N

N∑
m=1

Re[hm exp(−2πim/N )]2

β2
m

, (80)

ε = μν

N

N∑
m=1

Re(hm)Re[hm exp(−2πim/N )]

β2
m

.

We can now argue that the ADR itself reflects the criticality
of the system. The argument is completely analogous to
the one given in Sec. IV B. If the denominator becomes
zero, we can expect nonanalyticity expressions Eqs. (80).
In particular, in the reflection symmetric case kn + ln = 0
where the denominator agrees with the elementary excitation
energies [ε2

n = |hn|2 + (kn − ln)2/4 = 0, see Eq. (40)], the
nonanalyticity in the ADR signals the presence of a quantum
phase transition in the Hamiltonian itself.

VI. EXAMPLE HAMILTONIANS

In this section, we will revisit the results obtained for
the steady state and the ADR for linear and quadratic
Lindblad operators in Secs. IV B and V B for the specific
Hamiltonian (12) of the quantum XY chain.

The energies of the elementary excitations of this Hamil-
tonian are εn = |hn|. Thus, for the XY chain in Eq. (45), the
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gap closes at B = 2J in the thermodynamic limit, and the
quantum XY chains exhibit a phase transition at this point.
In fact, these models constitute the archetypal example of a
continuous quantum phase transition [18]. In this section, we
want to find properties of the noise-driven dynamics signaling
this phase transition.

A. Linear Lindblad operators

Let us now apply the findings from Sec. IV B and Eq. (56)
to the example system defined in Eq. (45), which contains
a quantum phase transition at B = 2J . Then, the particle
numbers become, for kn = ln = 0,

〈2a†
nan − 1〉 = 1

2

μ2 − ν2

μ2 + ν2

(
1 + 1

N

N∑
n=1

h∗
n

hn

)
. (81)

For γ = 0, we easily obtain � = 0 [since, by Eq. (45), hn is
real in that case and then, by Eq. (78), � is zero for kn = ln =
0]. For γ �= 0, we evaluate the sum 1/N × ∑N

m=1 h∗
m/hm in

the thermodynamic limit by introducing the complex variable
z = exp(−2πim/N ),

lim
N→∞

1

N

N∑
m=1

h∗
m

hm

= 1

2πi

∮
|z|=1

dz

z

2J (1 − γ )z2 − 2Bz + 2J (1 + γ )

2J (1 + γ )z2 − 2Bz + 2J (1 − γ )
, (82)

where the integration contour is a circle of radius |z| = 1
around z = 0 in the complex plane. The complex integrand
is analytic except for three distinct poles at

z0 = 0, z± = 1

2J (1 + γ )
[B ±

√
B2 − 4J 2(1 − γ 2)]. (83)

The contour integral is determined by the sum over the
residues at those poles, which are inside the contour (|z| <

1). z0 is always inside this contour. In the case of γ > 0, z+ is
inside the contour for 0 � B < 2J and is outside for B > 2J ,
whereas, z− is always inside the contour. In the case of γ <

0, z− is inside the contour for B > 2J and is outside for 0 �
B < 2J , whereas, z+ is always outside the contour. So residues
cross the contour at the quantum phase transition B = 2J

(because, then, hn = 0 for some n), leading to a nonanalytical
behavior in the particle density of the steady state (see Fig. 1).

After applying the residue theorem, we get the particle
number of the steady state,

〈2a†
nan − 1〉

= μ2 − ν2

μ2 + ν2

⎧⎨⎩
1

1+|γ | , B � 2J,

1
1−γ 2

(
1 − γ 2√

1−( 2J
B )2(1−γ 2)

)
, B � 2J

(84)

for all γ , which does not depend on the sign of γ . For
B < 2J , the particle number in the steady state does not vary
with the magnetic field, whereas, its magnitude approaches
(μ2 − ν2)/(μ2 + ν2) for large magnetic fields ∼ (J/B)2. To
summarize, the steady state undergoes a noise-driven phase
transition at B = 2J signaling the phase transition in the
system.

FIG. 1. (Color online) The poles z0,z± [see Eq. (83)] are plotted
for J = 1, γ = ±0.1. As B is changed from 0 to 20, the poles z+(z−)
for positive anisotropy γ = +0.1 move along the blue (red) solid
curves, and z+ crosses the contour at the critical value B = 2J .
For negative γ = −0.1, z− crosses at B = 2J . At the crossing, the
integral Eq. (82) changes nonanalytically.

B. Quadratic and Hermitian Lindblad operators

As an example, we study the anisotropic XY chain in
a transverse magnetic field with the Hamiltonian given in
Eq. (12). This translationally invariant Hamiltonian is Jordan-
Wigner transformed to a quadratic fermionic Hamiltonian with
Hamiltonian matrix H given by

H0 =
(

0 −2B

2B 0

)
, (85)

H1 =
(

0 2J (1 − γ )
−2J (1 + γ ) 0

)
, (86)

H−1 =
(

0 2J (1 + γ )
−2J (1 − γ ) 0

)
. (87)

After Fourier transforming [see Eq. (35)], this Hamiltonian
matrix assumes the form given in Eq. (37) with parameters
hn,kn,ln given by Eq. (45).

We now apply the results from Sec. V B to the Hamiltonian
Eq. (85) and the Lindblad operators,

Lα = gμ
i

2
[cα,1,cα,0] ↔ gσα

z . (88)

After a brief discussion of the steady states and a derivation
of the ADR in the thermodynamic (N → ∞) and in weak
coupling (g → 0) limits, we present numerical results of the
system dynamics for finite N and g and compare them with
our analytic predictions.

First, we discuss the steady states of these systems (see
Sec. III B). From Eq. (31), we have concluded that the steady-
state density matrix is the identity up to symmetries shared
by the Lindblad operators and the Hamiltonian. A rigorous
derivation of the steady states for this example could start from
the ansatz that the steady-state density matrix is diagonal in the
Fock basis, following from [σα

z ,ρ] = 0. Then, the commutator
[H,ρ] = 0 must be exploited to get the steady state.

As the Lindblad operators correspond to local particle
number operators, the important compatible symmetries for
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the XY chains are the parity P = σ 1
z · · · σN

z , discriminating
between an odd and an even number of particles, and the total
particle number N = (1 + ∑

σ
j
z )/2. For truly asymmetric XY

chains γ �= 0.5, the parity is the highest symmetry compatible
with the Lindblad operators. In these cases, the steady-state
density matrix is given by the identity in the two sectors of
even and odd parities; the relative weight of these sectors
is determined by the initial state. For the symmetric chain
γ = 0.5, the steady-state density matrix is the identity only in
the sectors with a constant total number of particles. Thus, for
γ �= 0.5, the steady-state magnetization is 〈σ j

z 〉 = 0 regardless
of the initial state, whereas, the magnetization of the initial
state is conserved for γ = 0.5.

Second, we calculate the ADR (78) for the XY chains with
Eq. (45) analogous to the integration in Sec. VI A.

After applying the residue theorem, we get the ADR,

� = 4g2

{ |γ |
1+|γ | , B � 2J,

γ 2

1−γ 2

{[
1 − (

2J
B

)2
(1 − γ 2)

]−1/2 − 1
}
, B � 2J

(89)

for all γ in the case of μ = 1. It does not depend on the sign
of γ and is shown in Fig. 2 for several values of γ ∈ [0,1].
For B < 2J , the ADR does not vary with the magnetic field,
whereas for large magnetic fields its magnitude decreases to
zero and scales as (J/B)2. The same behavior was found for the
variance in the particle number in these models in a previous
paper [38]. To summarize, the ADR undergoes a noise-driven
phase transition at B = 2J signaling the phase transition in
the system.

The final result for the ADR (89) is valid in the limits
N → ∞ and g → 0. In this section, we perform a numerical
diagonalization of the Lindblad master equation superoper-
ator S to compare the analytic result with the values for
finite N and g. Furthermore, we extract the ADR from a
simulation of the system dynamics and compare it with our
prediction.

FIG. 2. (Color online) Asymptotic decay rate � [see Eq. (78)] of
the XY chain (12) for different anisotropy parameters γ as a function
of the magnetic field in the limits N → ∞ and g → 0. A phase
transition in � is visible at B = 2J for γ �= 0.

0
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0 2 4 6 8 10
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0.5
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g/(J/h)0.5

B/J

Δ/
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FIG. 3. (Color online) Asymptotic decay rate � [see Eq. (78)]
of the XY chain (12) for different coupling strengths g, γ = 1, and
N = 100 as a function of the magnetic field B. For g � 0.1(J/h̄)0.5,
the results agree with the limit of weak coupling g → 0 [see Eq. (89)].

In Fig. 3, we present the ADR for finite coupling strengths
g. For g2 � 0.01J/h̄, the result of perturbation theory is in
excellent agreement with the numerical diagonalization of
the Lindblad master equation superoperator. Deviations are
strongest at small magnetic fields for which the finite g is no
longer a small perturbation. The nonanalytic behavior at the
critical field value B/J = 2 is clearly visible. The additional
structure in the ADR for finite g and small B/J arises from
level crossings in the spectrum of the Liouvillian. At B = 0,
the steady state becomes highly degenerate. The ADR (the
largest nonzero real part) jumps to a finite value indicating a
finite gap above the steady-state manifold.

We show the ADR � for different (finite) system sizes in
Fig. 4. Even in small systems with N = 10 spins, the same
qualitative behavior is found as in thermodynamic limit, i.e.,
the ADR signals the quantum phase transition in the system at

FIG. 4. (Color online) Asymptotic decay rate � [see Eq. (89)]
of the XY chain (12) for different system sizes N and γ = 1, g =
0.01(J/h̄)0.5 as a function of the magnetic field B. For N � 50, the
thermodynamic limit is reached, except for small variations at the
phase transition B = 2J .
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FIG. 5. (Color online) Evolution of the magnetization 〈σ j
z 〉 in

time starting from the system ground state of the XY chain (12)
for different magnetic fields B, g = 0.01(J/h̄)0.5, and γ = 1. The
magnetization decreases exponentially in time.

B = 2J . However, finite values of g and N lead to a smearing
out of the phase transition.

We have defined the ADR through a diagonalization of the
master equation, trying to describe the long-time dynamics
of the system. To demonstrate the deep relation between �

and the noise-driven dynamics, we extract the decoherence
rate from a dynamical calculation (see Fig. 5). Here, we start
from the ground state of the system and study the decay of the
magnetization in time after the system is brought into contact
with a Markovian bath. In this example, the exponential decay
expected after long evolution times is nicely visible. In Fig. 6,
we compare the extracted decay rates for different magnetic
fields with the result of the diagonalization. We find an exact
agreement with the ADR numerically calculated with the same
finite parameters.

We can calculate the ADR for the XY chain for general
values of μ and ν in a similar way. In the spin picture, the

FIG. 6. (Color online) The ADRs � [see Eq. (89)] of the XY

chain (12) for γ = 1, for g = 0.01(J/h̄)0.5, and for g → 0 (result
of perturbation theory) as a function of the magnetic field B are
compared with the late-time decoherence rates extracted from Fig. 5.
The agreement between the ADR and the late-time decoherence rate
shows the validity of our calculations for finite times.

Lindblad operators are

Lα
z = gμσz

α = gμ
i

2
[cα,1,cα,0], (90)

Lα
x = gνσ x

α σ x
α+1 = gν

i

2
[cα,0,cα+1,1]. (91)

We find for the constants in Eq. (79) in the case γ = 1,

εz/μ
2 =

{ 1
2 , B � 2J,

1 − 1
2

(
2J
B

)2
, B � 2J,

(92)

εx/μ
2 =

{
1 − 1

2

(
B
2J

)2
, B � 2J,

1
2 , B � 2J,

(93)

ε/(μν) =
{

− B
2J

, B � 2J,

− 2J
B

, B � 2J.
(94)

In the symmetric case μ = ν, the ADR is constant (� =
−4g2μ2). However, the next larger decoherence rate changes
nonanalytically,

�− =
{

−2g2μ2
[
3 + (

B
2J

)2]
, if B < 2J,

−2g2μ2
[
3 + (

2J
B

)2]
, if B > 2J.

(95)

VII. EXPERIMENTAL REALIZATION

We now discuss an experiment suited for the measurement
of the asymptotic decoherence rate in spin systems. The quan-
tum simulation of spin systems with trapped ions was proposed
in Ref. [39] where the spin degree of freedom is represented
by two hyperfine levels. The magnetic field can be simulated
either by directly driving Rabi oscillations of the hyperfine
transition or with position-independent Raman transitions
induced by suitably aligned lasers. The spin-spin interaction is
mediated via motional degrees of freedoms. State-dependent
optical dipole forces (compare with state-dependent optical
lattices) are generated by coupling the two hyperfine levels
to electronically excited states with off-resonant laser beams.
These dipole forces change the distance and, consequently,
the Coulomb repulsion between two ions dependent on their
internal states. This state-dependent Coulomb repulsion can be
designed to give the required spin-spin interaction. The spin
state can be measured by fluorescence imaging of the ions.

In this way, the quantum Ising chain [40,41] and frustrated
Ising models [42] have been realized in recent experiments. In
these experiments, the ions were first cooled to their zero-point
motional ground state and optically pumped into a certain
spin configuration representing the ground state of the system
without spin-spin interactions. Then, the spin-spin interactions
were adiabatically increased such that the system underwent
a phase transition. Finally, it was checked that the final state
represented the ground state of the simulated Hamiltonian.
A large noncritical two-dimensional Ising system has been
simulated with ions in a Penning trap [43]. In the digital ap-
proach to quantum simulation with trapped ions, the elements
of a general toolbox, including Hamiltonian and noise-driven
dynamics, have been demonstrated [44,45].

In the following, we describe how to extend analog
quantum simulation to include an incoherent evolution.
The Lindblad master equation (3) with Hermitian Lind-
blad operators Lα = gσα

z (see Sec. V B) can be realized
by introducing fluctuations in the simulated magnetic field
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Bα(t) = Bα + δBα(t) [46] as shown in the following. The
local magnetic fields δBα(t) should be uncorrelated between
different sites δBα(t1)δBβ(t2) = δαβδBα(t1)δBα(t2). We re-
strict our derivation to a single Lindblad operator without loss
of generality. Let, for example, δB(t) constitute a Gaussian
stochastic process of zero mean δB(t) = 0 with the time
correlations,

δB(t1)δB(t2) = δB2

√
2π

exp

[
− (t1 − t2)2

2T 2

]
. (96)

The correlation time T has to be much shorter than every pro-
cess in the system (Markovian limit), i.e., ‖H‖T < ωT � 1

with the spectral width ω of the Hamiltonian (difference
between largest and smallest eigenvalues) and the superop-
erator H from Eq. (26). The averaged density matrix evolves
like |ρ(t)〉 = U (t)|ρ(0)〉 where the bar denotes the statistical
average over the fluctuating magnetic field. The time-evolution
operator U (t) consists of contributions from H and

V(t) = δB(t)

h̄
V = − i δB(t)

h̄
(V ⊗ 1 − 1 ⊗ VT ), (97)

with V = σz. We can evaluate the statistical average of the
time-evolution operator in the interaction picture for the
superoperators,

U (t) = eHtT exp

(∫ t

0
dτ e−HτV(τ )eHτ

)
= eHt

∞∑
n=0

∫
t�t1�···�tn�0

dt1 · · · dtne−Ht1V(t1)eHt1 · · · e−HtnV(tn)eHtn

= eHt

∞∑
m=0

(
1

h̄2

∫ ∞

0
δB(0)δB(τ )dτ

)m

×
∫

t�t1�···�tm�0
dt1 · · · dtme−Ht1V2eHt1 · · · e−HtmV2eHtm

(98)

= eHt

∞∑
m=0

(
δB2

h̄2 × T

2

)m

×
∫

t�t1�···�tm�0
dt1 · · · dtme−Ht1V2eHt1 · · · e−HtmV2eHtm ,

U (t) = exp

(
Ht + 1

2

δB2T

h̄2 V2t

)
,

with the time-ordering operator T . Between the second and
the third lines, we keep only even summation indices m = 2n

(zero-mean Gaussian process), evaluate the statistical average
at adjacent times t2n−1 − t2n � T (correlation time T ; that
only adjacent times need to be considered is a consequence
of time ordering, the Gaussian factorization of higher-order
correlations, and the very short correlation times), and neglect
the terms exp[H(t2n−1 − t2n)] � 1 (Markovian limit). To
summarize, we have shown that the described fluctuations of
the magnetic field generate Markovian dynamics [see Eq. (25)]
with Lindblad operators Lα = gσα

z = gV and decoherence
strength,

g2 = δB2T

h̄2 . (99)

In the case of the anisotropic XY chain [see Eq. (12)], the cor-
relation time T is bounded by the width of the single-particle
excitation spectrum T −1 � max(4B/h̄,8J/h̄). In the recent
experiment [40], 2J/h̄ ≈ B/h̄ = 2π × 4.4 kHz was used,
but experimentally available laser intensities allow 2J/h̄ ≈
B/h̄ ≈ 2π × 40 kHz. We propose creating fluctuations in
the magnetic field with frequency T −1 = 2π × 1.6 MHz and
variance δB2/h̄2 = (0.2B/h̄)2 ≈ (2π × 8 kHz)2. This would
result in the decoherence strength g2 ≈ 2 × 10−3 J/h̄ and
would require coherence times on the order of 2π/g2 ≈ 25 ms.
These coherence times can, in principle, be achieved in systems
of trapped ions [47].

VIII. CONCLUSION

We have investigated the dynamics of noise-driven open
quantum systems with regard to their steady states and

asymptotic decay. We have shown that insight into different
phases can be gained by spectral analysis of the Liouvil-
lian in analogy to how the spectrum of the Hamiltonian
reveals critical behavior in zero-temperature quantum phase
transitions.

To illustrate this point, we have analyzed, in detail, the
Liouvillian of fermionic systems under a translationally invari-
ant quadratic Hamiltonian, coupled to a Markovian bath. We
treat master equations with linear or quadratic and Hermitian
Lindblad operators. In both cases, the master equation leads
to a closed equation for the CM from which the steady-state
CM and the rates at which it is approached can be obtained
exactly (see also Ref. [19] for an elegant and comprehensive
treatment of both fermionic and bosonic linear open systems
and their critical properties and Ref. [28] for a detailed study
of transport in spin chains under dissipation and dephasing).
These results apply as well to a large class of 1D spin systems
that can be mapped to quasifree fermions by a Jordan-Wigner
transformation. We have proposed an experimental realization
of this quantum simulation with trapped ions. Numerical
calculations show that our results for the weak decoherence
limit do apply to such finite systems.

We have focused on the limit of weak decoherence (g → 0)
and have shown how to deduce information about critical
points from the spectrum of the Liouvillian. In particular,
the ADR �, i.e., the smallest nonzero eigenvalue of the
Liouvillian, can serve as an indicator of phase transitions even
if the steady state of the system is trivial and steady-state
expectation values, thus, cannot yield such information (as
in the case of Hermitian Lindblad operators). Depending on
the decoherence process considered, the critical point can
be reflected in the spectrum of the system’s Liouvillian in
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TABLE I. Different noise-driven systems studied, characterized by their Lindblad operators and Hamiltonian H . Relevant properties of the
ADR � and the steady state are listed. xc denotes critical points of the Hamiltonian H .

Lindblad operator ADR and gap Steady state

Hamiltonian H = 0
μaα,νa†

α Gapped, no phase transition Thermal
μaα + νa

†
α+1 Gap closes at μ = ν, no phase transition Paired

iμ

2 [cα,0,cα,1], iν

2 [cα+1,0,cα,1] Degenerate at μ = ν ∝1

Hamiltonian H �= 0: translationally invariant, critical at xc

μaα,νa†
α Degenerate at xc 〈a†a〉 nonanalytic at xc

iμ

2 [cα,0,cα,1], iν

2 [cα+1,0,cα,1] Nonanalytic at xc ∝1

the form of a closing gap (� → 0), a degeneracy of �, or
nonanalytic behavior of �. These results are summarized in
Table I.

With this paper, we suggest the possibility to detect certain
system properties through an observation of the decoherent
dynamics: Phase transitions in closed systems can be reflected
in nonanalytic changes in the ADR [25,26,28]. More generally,
since the ADR and other decay rates represent physical
properties of the system, such nonanalyticities can be seen
as the signature of a transition to a different dynamical
regime. This suggests studying the phase diagram of steady-

state correlation functions 〈A(t)B(t ′)〉, which reflect these
dynamical transitions.
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We propose a quantum optical implementation of a class of dissipative spin systems, including the XXZ

and Ising model, with ultracold atoms in optical lattices. By employing the motional degree of freedom of the
atoms and detuned Raman transitions, we show how to obtain engineerable dissipation and a tunable transversal
magnetic field, enabling the study of the dynamics and steady-states of dissipative spin models. As an example
of effects made accessible this way, we consider small spin chains and weak dissipation and show by numerical
simulation that steady-state expectation values display pronounced peaks at certain critical system parameters.
We show that this effect is related to degeneracies in the Hamiltonian and derive a sufficient condition for its
occurrence.

DOI: 10.1103/PhysRevA.87.022110 PACS number(s): 03.65.Yz, 03.67.Lx

I. INTRODUCTION

Quantum spin models play a fundamental role for the
theoretical and experimental study of quantum many-body
effects. They represent paradigmatic systems exhibiting, e.g.,
quantum phase transitions and peculiar forms of matter [1].
They also provide toy models for description of many solid
state systems. Ultracold atoms in optical lattices [2] have
emerged as a system that is especially suited to study the
low-energy sector of quantum spin systems with the promise
to eventually simulate theoretical models in large, controlled
quantum systems.

To observe these effects, coupling to uncontrolled degrees
of freedom has to be kept to a minimum, since it leads to
dissipation and decoherence [3,4] which can mask or destroy
the quantum effects. But in recent years, it has been shown how
the coupling to an environment can be harnessed to generate
useful quantum states [5–9] or perform quantum information
tasks [9,10]. Moreover, the study of the phase diagram of
open quantum systems has turned into a fruitful direction itself
[11–16].

Our aim in the present work is twofold: In the first part
of the paper, we propose a scheme to realize a quantum spin
system using ultracold atoms in an optical lattice in which
both coherent interaction and dissipation can be engineered
and controlled, enabling the study the nonequilibrium and
steady-state physics of open and driven spin systems. In the
second part, we highlight a peculiar feature of the steady-state
diagram for small spin chains: in the limit of weak dissipation,
abrupt changes of steady-state expectation values for certain
critical values of the system parameters are observed. We
explain this feature and relate it to degeneracy properties of
the system Hamiltonian and derive a sufficient condition for
the occurrence of sharp peaks at critical system parameters.

II. PHYSICAL IMPLEMENTATION OF
ONE-DIMENSIONAL SPIN CHAIN

UNDER DISSIPATION

Ultracold bosonic atoms in optical lattices are ideal can-
didates to simulate spin Hamiltonians. Different theoretical
and experimental approaches [17] have been employed to

simulate quantum spin chains in optical lattices; for example,
by optical driving of two hyperfine levels of cold bosons in the
Hubbard regime [18]. Recently, a one-dimensional chain of
interacting Ising spins has been implemented experimentally
using a Mott-Insulator of spinless bosons in a tilted optical
lattice [19].

In the following, we show theoretically how to add
engineered dissipation to the toolbox of these systems [20,21].
Specifically, we show how to implement a system with the
following properties: (i) dissipative dynamics of Lindblad
form, (ii) a tunable magnetic field in x direction and (iii) an
effective spin Hamiltonian such as, e.g., the XXZ, Heisenberg,
or Ising model. In the next sections, we first introduce the
setup and explain qualitatively how such a one-dimensional
spin chain in a tunable magnetic field under engineerable
dissipation can be realized with cold atoms in optical lattices.
In the subsequent sections we give specific requirements and
parameters and details of the derivation for (i)–(iii).

A. Setup and qualitative description

The system we consider is an optical lattice populated
with a single atomic bosonic species. We assume to be in
the Mott-insulator regime with filling factor 1, where the
on-site interaction is much larger than the tunneling (hopping)
between neighboring lattice sites. In this regime, the atoms
are localized such that each lattice potential is occupied with
one atom. We aim to use the motional ground and first-excited
state of the atom (denoted by |0〉 and |1〉 [22], respectively)
to realize an effective spin- 1

2 system in each lattice site. To
access the motional degree of freedom optically, we work in the
Lamb-Dicke regime where the motion of the atom is restricted
to a region small compared with the laser wavelength. We
make use of the anharmonicity of the lattice potential and,
as explained in the following, of decay of the atoms that
leads to cooling of the system, to restrict the dynamics to the
two-dimensional subspace of {|0〉,|1〉} [23] (see Fig. 1). For the
optical manipulation, we assume that the atoms have internal
degrees of freedom that can be addressed with laser fields. We
consider a � scheme with two ground states |g〉 and |r〉 (both
trapped by the same optical lattice potential) and an excited
state |e〉. The level scheme of the internal states of the atoms
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HEIKE SCHWAGER, J. IGNACIO CIRAC, AND GÉZA GIEDKE PHYSICAL REVIEW A 87, 022110 (2013)

Γ

γ

|e

⊗
|0
|1

⊗
|0
|1Ωeff

δr

ν

ν

Ωre

Ω1

Ω2

δre

FIG. 1. (Color online) Relevant level structure and coupling and
decay terms of single atom trapped at a lattice site. The upper-left
part shows the internal levels of the atom: � system |g〉, |r〉, |e〉,
off-resonantly driven by lasers. The right part shows motional states
in the lattice potential. Lower part: After adiabatic elimination of |e〉,
an effective two-level system with tunable decay rate � and dephasing
rate γ is obtained.

is shown in Fig. 1. Off-resonant laser fields drive transitions
between the two ground states |g〉 and |r〉 and the excited state
|e〉. The system decays fast into the ground states and, as we
show below, effectively decays into the state |g〉. Therefore,
the atoms are optically pumped to the state |g〉 ⊗ |0〉 and the
states |r〉 and |e〉 can be adiabatically eliminated. Eliminating
the excited state |e〉 leads to the effective two-level system in
the lower part of Fig. 1 with designable decay rates. Further
elimination of the state |r〉 leads to an effective description in
the internal ground state |g〉 (see Fig. 2). The optical couplings
by laser fields give rise to effective Hamiltonians and effective
dissipation (cooling) in the ground state |g〉 at each lattice
site. Details are given in Sec. II B. In summary, we obtain
an effective two-level system at each lattice site with Hilbert
space spanned by |g〉 ⊗ |0〉 and |g〉 ⊗ |1〉 as depicted in Fig. 3.

In the following sections, we show that engineering the
optical couplings as above leads to an effective master equation

|0 ⊗ |r

|0 ⊗ |g

|1 ⊗ |g
Γ

γ

Ωeff

δr

FIG. 2. (Color online) Effective two-level system |g〉-|r〉 in the
optical lattice potential with motional states |0〉 and |1〉. Choosing
resonance conditions as explained in Sec. II B, the atoms are selec-
tively excited from |g〉 ⊗ |1〉 to the state |r〉 ⊗ |0〉 and spontaneously
decay into |g〉 ⊗ |0〉.

|0
|1

A−|g

FIG. 3. (Color online) Decay of the effective two-level system
{|0〉},{|1〉} as described by the effective master equation derived in
Sec. II B. The dissipation strength A− is given in Eq. (7).

for the two-level system |0〉, |1〉 that describes (i) decay from
|1〉 to |0〉 and (ii) an effective magnetic field in x direction.
In the Mott insulator regime, tunnel couplings between
neighboring lattice wells can be treated as a perturbation,
which (iii) leads to an effective spin Hamiltonian. The resulting
master equation [24] is given by

ρ̇t =
∑

k

A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k ,ρt }+) − i[H,ρt ]. (1)

Here, σ+
k = |1〉〈0|k is the operator that excites an atom at lattice

site k from the motional state |0〉 to state |1〉 and σ−
k = (σ+

k )†.
The sum runs over all N sites of the optical lattice potential.
The first part in Eq. (1) describes decay from state |1〉 into state
|0〉 as depicted in Fig. 3. It is derived in Sec. II B. The decay
parameter A− can be tuned by changing the Rabi frequencies
of the lasers and the detunings and is given by Eq. (18) in
Sec. II E. The Hamiltonian is given by H = HB + Hspin, where
HB describes the magnetic field in x direction given by

HB =
∑

k

Bx(σ+
k + σ−

k ), (2)

where Bx is proportional to an effective magnetic field in the
x direction. It is derived in Sec. II C. The Hamiltonian Hspin

describes the spin Hamiltonian

Hspin =
∑

k

α1
(
σx

k σ x
k+1 + σ

y

k σ
y

k+1

) + α2σ
z
k σ z

k+1, (3)

as derived in Sec. II D. The parameters α1 and α2 depend on
the properties of the optical lattice potential and can be tuned.
Therefore, the Hamiltonian Hspin describes the XXZ model,
the Ising model, or the Heisenberg model. In the following
three sections, we employ a perturbative approach to derive a
master equation comprising dissipation of Lindblad form (i) as
in Eq. (1), a magnetic field in x direction (ii) as in Eq. (2), and
an effective spin Hamiltonian (iii) as in Eq. (3). For the sake of
clarity, we derive (i)–(iii) in three separate steps employing the
approximation of independent rates of variation as explained
in Ref. [25].

B. Optical couplings of internal atomic states:
dissipation of Lindblad form

In this section, we show that optically addressing the atoms
with suitably tuned lasers allows to engineer decay as in
Eq. (1).

We consider the internal levels |g〉, |r〉, |e〉 of an atom at site
k. The ground states |g〉 and |r〉 can be coupled via the excited
state |e〉 by a detuned Raman transition of two standing-wave
laser fields with Rabi frequencies �1 and �2. Eliminating the
excited state |e〉 leads to an effective coupling between |g〉
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and |r〉 (see Fig. 1) with �eff = �1�2/δre where δre is the
detuning with respect to |e〉 (for details see Appendix A). To
induce controlled dissipation, we couple |r〉 and |e〉 by an
additional off-resonant laser field (indicated by a red arrow) in
Fig. 1. Then adiabatic elimination of the excited state |e〉 leads
to an effective two-level system (as shown in the lower part of
Fig. 1) with states |r〉 and |g〉 which has designable decay rates
� and γ as derived in [26] (see also Appendix A). Thereby, the
excited state |e〉 that is broadened by spontaneous emission is
eliminated, and the effective two-level system |g〉-|r〉 allows
the motional states |0〉 and |1〉 of the lattice potential to be
resolved (note that we are in the Lamb-Dicke regime), as can
be seen in Fig. 2. Under appropriate resonance conditions that
will be specified in the following, the atoms are excited from
state |1〉 ⊗ |g〉 to state |0〉 ⊗ |r〉 and spontaneously decay into
the state |0〉 ⊗ |g〉 as shown in Fig. 2. Adiabatically eliminating
the state |r〉, this corresponds to an effective decay from state
|1〉 ⊗ |g〉 into |0〉 ⊗ |g〉. Thus the atoms effectively remain in
the internal ground state |g〉, such that the decay can be written
as an effective decay from state |1〉 to |0〉 as depicted in Fig. 3.

In Appendix A, we derive in a perturbative approach (that
corresponds to an adiabatic elimination of the state |r〉) a
master equation that describes the dynamics of the two-level
system |0〉, |1〉 of the atom. Assuming that the driving of level
|r〉 is sufficiently weak such that

|�eff| � �,γ,ν,|δr |, (4)

and that the level broadening remains small

� + γ < ν, (5)

the master equation is given by

ρ̇t =
∑

k

A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k ,ρt }+)

+ A+(2σ+
k ρtσ

−
k − {σ−

k σ+
k ,ρt }+) − i

[
H

(1)
eff ,ρt

]
. (6)

Here, A+ determines the strength of the heating terms and
A− the strength of the decay terms. For simplicity, A± are
chosen to be independent of the lattice site k. A± can be made
dependent on the lattice site k by choosing different phases
of the driving lasers as explained in Appendix A. Note that
A+ � A− is required for the validity of the approximation
that restricts to the |0〉 and |1〉 subspace. A− and A+ are given
by

A± = �2
effη

2
1

(� + γ )

(� + γ )2 + (δr ± ν)2
. (7)

Here, δr is the effective detuning given by Eq. (A5) in
Appendix A, η1 = k1/

√
2Mν is the Lamb-Dicke parameter

where k1 is the wave number of the laser with Rabi frequency
�1, M is the atomic mass, and ν denotes the energy difference
between the motional state |0〉 and |1〉 of the lattice potential.
The Hamiltonian H

(1)
eff in the last term in Eq. (6) is given by

H
(1)
eff =

∑
k

ν|1〉〈1|k + HS, (8)

where HS describes ac Stark shifts on the motional levels that
are �ν and are given in more detail in Appendix A. Now we
have everything at hand to implement dissipation. If

δr ≈ ν,

which can be achieved by choosing the laser frequency ωl

in δr = ωr − ωl accordingly, the strength of the dissipation is
much larger than the strength of the heating:

A+ � A−. (9)

Then, the master equation has only decaying terms and is of
the form

ρ̇t =
∑

k

A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k , ρt }+) − i

[
H

(1)
eff ,ρt

]
. (10)

It describes decay of the atoms from state |1〉 into |0〉, while the
atoms effectively remain in the internal state |g〉. By adiabatic
elimination of the internal state |r〉, we have thus shown that
a master equation can be derived that can be tuned such that it
describes almost pure decay.

C. Optical couplings of internal atomic states:
Effective magnetic field in x direction

To derive the effective magnetic field in x direction, we
consider a detuned Raman transition. Two standing-wave laser
fields with Rabi frequencies �a and �b couple the internal
ground state |g〉 and the excited state |e〉 of the atoms, as de-
picted in Fig. 4. The coupling is described by the Hamiltonian

Hab =
∑

k

�a cos (kaxk)|e〉〈g|k

+ �b sin (kbxk)|e〉〈g|k + H.c., (11)

where ka , kb denote the wave numbers of the lasers and xk is
the displacement from the equilibrium position of the atom at
lattice site k. As we are in the Lamb-Dicke regime, sin (kbxk) ≈
ηb(σ−

k + σ+
k ) [27] and cos (kaxk) ≈ 1. Under the condition

|�a|, |�b| � |δe|, (12)

where δe is the detuning of the driving lasers, as depicted in
Fig. 4, the excited state |e〉 can be adiabatically eliminated
and we get an effective Hamiltonian

H
(2)
eff = HB =

∑
k

Bxσ
x
k , (13)

which describes a tunable magnetic field in x direction, where
Bx is proportional to the effective magnetic field strength in
x direction, which is given by

Bx = 2�a�bηb

δe

.

|0 ⊗ |g
|1 ⊗ |g

|e

ΩbΩa

δe

|0 ⊗ |g
|1 ⊗ |g

Bx

FIG. 4. (Color online) Level scheme and transitions used to
implement the transverse magnetic field. Left: A detuned Raman
transition couples the internal ground state |g〉 and the excited state
|e〉 of the atom. Right: Adiabatic elimination of the excited state |e〉
leads to an effective magnetic field in x direction (see Sec. II C),
which drives transitions between the motional states |0〉 and |1〉.
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|0
|1

t0

t1

FIG. 5. (Color online) Tunneling between neighboring lattice
wells with tunnel amplitudes t0 and t1. States with two atoms per
lattice well are treated in perturbation theory in Sec. II D, as the
on-site interaction is much larger than the tunneling amplitudes.

Thus, we have derived an effective magnetic field in x

direction that drives transitions between the motional states
|0〉 and |1〉 (as depicted on the right side of Fig. 4), while the
atoms remain in the internal ground state |g〉.

D. Effective spin Hamiltonian

In the Mott-insulator regime, bosonic atoms trapped by
a lattice potential with two motional states are described by
the two-band Bose-Hubbard model [28] (see Appendix B).
We denote the on-site interaction by U01, U00, and U11 [29]
and by t0 (t1) the amplitudes for atoms in state |0〉 (|1〉) to
tunnel to neighboring lattice sites. We assume that the on-site
interaction U01, U00, U11 � t0, t1 such that tunneling between
neighboring wells, which leads to states with two atoms in one
lattice well, can be treated as a perturbation (see Fig. 5). Using
second-order perturbation theory [25] (for a detailed derivation
see Appendix B), we derive an effective spin Hamiltonian Hspin

given by

H
(3)
eff = Hspin + Bz

∑
k

|1〉〈1|k, (14)

with

Hspin =
∑

k

α1
(
σx

k σ x
k+1 + σ

y

k σ
y

k+1

) + α2σ
z
k σ z

k+1, (15)

where α1 = −4t0t1/U01, α2 = 2[(t2
0 + t2

1 )/(2U01) − t2
0 /U00 −

t2
1 /U11], and the magnetic field in z direction is

Bz = t2
0 /U00 − t2

1 /U11, (16)

using the Pauli spin matrices σx
k , σ

y

k with σx
k = (|0〉〈1|k +

|1〉〈0|k)/2. The Hamiltonian given by Eq. (14) is an effective
spin Hamiltonian that is tunable by changing the lattice
properties. If α1, α2 > 0, H (3)

eff corresponds to the XXZ model
with a magnetic field in z direction. If the lattice properties
can be tuned such that one of the tunneling constants t0 or
t1 → 0, Hspin is an Ising Hamiltonian with a magnetic field in
z direction. For α1 = α2, Hspin corresponds to the Heisenberg
model.

E. Dissipative one-dimensional spin chain in magnetic field

In the previous sections, we showed—for the sake of clarity
in separate steps—that optical couplings of the internal levels
can be engineered such that we obtain a master equation of
Lindblad form [Eq. (6)] fulfilling the demands (i)–(iii) of
tunable dissipation, spin-interaction, and tunable transverse
field. Combining these results, one has to carefully consider

the order of magnitude of each term. Doing so, we find that the
magnetic field Bz in z direction in Eq. (14) and the Stark shifts
in Eq. (8) can be of the same order of magnitude as ν. Stark
shifts and Bz lead to an effective energy difference between
the motional states |0〉 and |1〉 given by

ν̃ = ν + Bz + s− − s+,

where Bz is defined in Eq. (15) and s−, s+ are the ac Stark shifts
in Eq. (8) (see Appendix A). Therefore, combining all results,
the laser detuning δr that enters in A± has to be adjusted to δ̃r

such that δ̃r − ν = δr − ν̃, which means that δ̃r = δr ± (Bz +
s− − s+).

Then, combining the results from Eqs. (6), (13), and (14),
the master equation reads

ρ̇t =
∑

k

A+(2σ+
k ρtσ

−
k − {σ−

k σ+
k ,ρt }+)

+ A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k ,ρt }+) − i[H,ρt ], (17)

where the rates A± are modified by the renormalized δ̃r :

A± = �2
effη

2
1

(� + γ )

(� + γ )2 + (δ̃r ± ν)2
. (18)

The Hamiltonian part of the master equation is given by

H = Hspin + HB + ν̃
∑

k

|1〉〈1|k, (19)

where Hspin is given by Eq. (15) and HB by Eq. (13). The
magnetic field in z direction and Stark shifts have been
included in ν̃. For δ̃r ≈ ν, as shown before, decay dominates
over heating: A− � A+. Then, the master equation has only
decaying terms and Eq. (17) describes a dissipative XXZ

spin chain in a magnetic field with both x and z components.
However, only Bx is fully tunable, while Bz is large (compared
to Bx,A

±) and required to be so by the conditions for adiabatic
elimination, cf. Eq. (4). However, an effective dissipative XXZ

chain without any field in z direction would be advantageous
for observing critical behavior in the steady-state dynamics
that we study in the next sections. Therefore, we transform to
a frame rotating with ν̃. In the rotating frame, HB becomes time
dependent. To obtain a time-independent field in x direction,
the detuned Raman lasers that lead to the effective magnetic
field Bx have to be chosen time dependent, adapted to the
rotating frame (i.e., suitably detuned from the two-photon
resonance). This then yields a time-independent transversal
magnetic field, and the master equation in the rotating frame
is then given by

ρ̇t =
∑

k

A−(2σ−
k ρtσ

+
k − {σ+

k σ−
k ,ρt }+)

− i[Hspin + HB, ρt ]. (20)

It corresponds to the master equation given by Eq. (1). In
summary we have shown how to implement a one-dimensional
spin chain with nearest-neighbor interaction described by the
XXZ or the Ising model and a tunable effective magnetic
field in x direction under dissipation. This system is an ideal
test bed for studying steady-state dynamics of dissipative spin
models, as discussed in the next section. Note that since we
are in a rotating frame, observables other than the collective
spin operator 〈Jz〉 become explicitly time dependent.
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FIG. 6. (Color online) XXZ model with 4 spins, α1 = 1
4 α2 and

open boundary conditions under local dissipation of form given by
Eq. (20). Upper part: Steady-state expectation value 〈J x〉 plotted
versus the magnetic field Bx/α2. Peaks are observed that narrow for
decreasing the dissipation strength. Lower part: Spectrum of XXZ

chain in the magnetic field Bx plotted versus Bx/α2. Peaks in the
steady-state expectation value (upper part) appear at crossing points
of the Hamiltonian that are marked with black circles.

F. Steady-state behavior: Discontinuous steady-state behavior
related to spectrum of Hamiltonian

A particular important characterization of dissipative dy-
namics is through their steady state: if it is unique (or
distinguished by some conserved quantity) it allows for robust
preparation of these states. Abrupt changes in the steady
state as system parameters are varied may signal dissipative
quantum phase transitions [12–16,30,31]. We study the steady-
state behavior of short spin chains under dissipation in a
magnetic field in the x direction by numerical simulations.
We find that the one-dimensional XXZ model with four
spins, as given by Eq. (15) where we chose as a typical
example α1 = 1

4α2, shows a surprising behavior: Changing
the external magnetic field in the x direction makes peaks
occur in the steady-state expectation values of the collective
spin operators J x/z = ∑

k σ
x/z

k for weak dissipation; see
Fig. 6. Here, we considered dissipation as in Eq. (20) with
equal dissipation strength on each spin. We find that, upon
decreasing the strength of the dissipation, the peaks become
more narrow and each peak height approaches a finite value.
For small γ we observe very narrow peaks. This indicates a
discontinuity in the steady-state expectation values of the spin
operators. We find that these narrow peaks appear exactly
at points where the Hamiltonian becomes degenerate. In
the following section we study this phenomenon in more
generality.

III. DISCONTINUITIES IN STEADY-STATE DYNAMICS OF
GENERAL CLASS OF ONE-DIMENSIONAL SPIN

MODELS UNDER DISSIPATION

In the previous section we saw that, for the one-dimensional
XXZ model, peaks in the steady-state expectation values of
the collective spin operators appear, that are closely related to
the spectrum of the Hamiltonian. In the following, we study in
more generality and independent of a physical implementation
local one-dimensional spin Hamiltonians under dissipation of
different kinds. We present a condition that elucidates the
discontinuous behavior of the steady state at degeneracy points
of the Hamiltonian. Next, we study and explain this condition
in more detail for Ising Hamiltonians.

A. Numerical studies of discontinuous behavior in steady state

We numerically simulate short spin chains. First, we
study the one-dimensional Ising model with open boundary
conditions, described by the Hamiltonian

H = Hzz + HB, (21)

with

Hzz = α3

∑
k

σ z
k σ z

k+1, (22)

and HB as in Eq. (2) subject to local or collective decay with
Lindblad operators ∝σ−

k or
∑

k σ−
k , respectively. The master

equation describing the full system with local dissipation is
given by

ρ̇t =
∑

k

γk(2σ−
k ρtσ

+
k − {σ+

k σ−
k , ρt }+) − i[H,ρt ]. (23)

Changing the magnetic field Bx , we find that for weak dissi-
pation the steady-state expectation values of the spin operators
〈J x〉 and 〈J z〉 change abruptly at particular values of Bx ; see
Fig. 7. Here, we considered dissipation as in Eq. (23) with equal
dissipation strength on each spin, γk = γ . Upon decreasing the
strength of the dissipation, i.e., decreasing γ , the peaks become
more narrow and their height converges to some finite value,
while the expectation value vanishes elsewhere. For γ → 0,
we observe very narrow peaks, which indicates discontinuities
in the steady-state expectation values of the spin operators. We
find that these narrow peaks appear only at degeneracy points
of the spectrum of the Hamiltonian. That is, for every peak
found at some value of Bx = x0 for γ → 0, at least one pair
of degenerate eigenvalues λ1,λ2 of the local spin Hamiltonian
Hzz can be found, i.e., λ1(x) = λ2(x) at x = x0. Note that the
discontinuities in the steady state at critical system parameters
are only observed for γ �= 0. That is, the (weak) dissipation al-
lows us to gain information about the Hamiltonian’s properties
that is not readily accessible in the case of γ = 0.

This effect can be observed for different kinds of spin
Hamiltonians such as, for example, the XXZ model (see
Fig. 6), both for periodic and open boundary conditions.
Moreover, changing the type of dissipation, the observed
behavior does not change qualitatively. For example, collective
dissipation, which describes the dynamics of spins all coupled
to the same bath and leads to the master equation

ρ̇t = γ (2J−ρtJ
+ − {J+J−, ρt }+) − i[H,ρt ], (24)
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FIG. 7. (Color online) Ising model with 4 spins with open
boundary conditions in a transverse magnetic field Bx and under
local dissipation of form given by Eq. (23). Upper part: Steady-state
expectation value 〈J x〉 plotted versus Bx/α3. Peaks are observed
that become more narrow for decreasing dissipation strength. Lower
part: Spectrum of the Hamiltonian plotted versus Bx/α3. Peaks in
the steady-state expectation value (upper part) appear at degeneracy
points of the Hamiltonian that are marked with black circles.

where J± = ∑
k σ±

k also leads to discontinuous behavior in
the steady-state expectation values, as shown in Fig. 8 for the
Ising model. Choosing an “inhomogeneous” dissipation which
is of the form of the dissipative part in Eq. (23), where now the
strengths of the dissipation γk are different for each spin, peaks
can be observed for an even larger class of spin Hamiltonians:
For γk = γ and H = HH + HB , where HH is the Heisenberg
spin Hamiltonian, we do not observe any peaks. However, if
we choose different dissipation strengths γk for each spin, we
find peaks at the degeneracy points of the Hamiltonian, as can
be seen in Fig. 9.

B. General condition for discontinuities in steady state

Since the Liouvillian depends smoothly on the system
parameters, the observed discontinuities must be related to
degeneracies in the spectrum of L. As we shall see, in the
weak-dissipation limit they are directly related to degeneracy
points of the Hamiltonian.

We consider a system described by the master equation

ρ̇(t) = Lρ ≡ [L0(x) + γL1]ρ(t), (25)

where

L0(x)(ρ) = −i[H (x), ρ],

with a Hamiltonian H (x) depending (analytically) on a
parameter x. For simplicity, we consider the case in which
H0(x) is nondegenerate for x �= x0. The term L1 contains
dissipative terms and is independent of x. We are interested in

0.02
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0 0.4 0.6 0.8 1 1.2 1.4
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
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FIG. 8. (Color online) Ising model with 6 spins with periodic
boundary conditions in a magnetic field Bx and under collective
dissipation of the form given by Eq. (24) in the translation and
reflection symmetric subspace T = R = 1. Upper part: Steady-state
expectation value 〈J x〉 plotted versus Bx/α3. Lower part: Spectrum
of the Hamiltonian plotted versus Bx/α3.

the limit of weak dissipation (γ → 0) and in the change of the
steady state at the degeneracy point x = x0.

The steady state ρss(x) is determined by L(x)ρss(x) = 0 and
can be determined perturbatively. The kernel of L0(x) is highly
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FIG. 9. (Color online) Heisenberg model with 4 spins with open
boundary conditions in a magnetic field Bx and under local dissipation
as given by Eq. (23) with different dissipation strengths γk . Upper
panel: steady-state expectation value 〈J x〉 plotted versus the Bx/α3.
Lower part: Spectrum of the Hamiltonian plotted versus Bx/α3.
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degenerate, being spanned by all eigenprojectors |λi(x)〉〈λi(x)|
of the (nondegenerate) H0(x). This degeneracy is lifted by L1

and the steady state for γ → 0 is for x �= x0 given by

PD(x)L1PD(x)ρss(x) = 0, (26)

where

PD(x)ρ =
∑

i

|λi(x)〉〈λi(x)|ρ|λi(x)〉〈λi(x)|. (27)

The possibility of discontinuous behavior of ρss(x) at
x = x0 arises from the enlargement of the kernel of L0(x)
at this point: if λi and λj become degenerate at x = x0

then coherences between the corresponding eigenvectors [i.e.,
|λi(x)〉〈λj (x)|,i �= j ] become stationary at x = x0. We denote
by P � the projector on these additional elements in the kernel
of L0(x0) [32]. As we show in Appendix C, a discontinuity
ρss(x0) �= limx→x0 ρss(x) arises if

P�L1 lim
x→x0

ρss(x) �= 0, (28)

i.e., if L1 couples the steady state to the newly available
subspace P � in the kernel of L0. For simplicity, we made
the assumption that the Hamiltonian is nondegenerate for
x �= x0. If the Hamiltonian does have degeneracies outside
x0, but additional eigenvectors become degenerate at x = x0

the argumentation follows identical lines, as also in this
case, L1 can couple the steady state to a newly available
subspace P �.

Let us have another look at Figs. 6–9 in the light of the
previous paragraph. Clearly, all the sharp isolated peaks occur
for values of Bx (which plays the role of the parameter x), at
which a degeneracy occurs, satisfying a necessary condition
for Eq. (28). However, not all degeneracy points lead to
discernible peaks, e.g., in Fig. 6. This can show that L1 does
not couple the steady state to P � or that the discontinuity
is not witnessed by the expectation value of J x . For most
peaks studied here, however, the reason is simply that the
corresponding peaks are too small and sharp to be resolved in
the plot.

These points are illustrated in Fig. 10, which shows that the
steady state changes abruptly at all degeneracy points of H for
the four-spin XXZ model with local dissipation except for two
such points (at Bx ≈ 0.16, 0.24), where L1 does not couple to
the coherences. To measure how quickly ρss changes with
Bx we use (in analogy to the ground-state fidelity introduced
in Ref. [33] for the study of quantum phase transitions)
the “steady-state infidelity” IδB (Bx) ≡ 1 − F (ρ(Bx), ρ(Bx +
δB)). Here F (ρ,σ ) = tr[(σ 1/2ρσ 1/2)1/2]2 ∈ [0,1] denotes the
Uhlmann fidelity [34] between two density matrices, which
measures how similar ρ and σ are. Peaks in IδB(Bx) (for small
δB) indicate that the steady state changes abruptly with Bx . For
weak dissipation this happens close to all degeneracy points
of the Hamiltonian when Eq. (28) holds.

Note also that, in Figs. 6–9, a large feature appears in the
steady-state expectation value 〈J x〉 around Bx = 0. It narrows
for decreasing γ , but is not a sharp peak for any of the
parameters used for γ . This broad peak represents the effect
of one (or several, cf. Figs. 6 and 9) unresolved degeneracies
around Bx = 0: Note that for all spin models considered, the
degeneracy of their respective Hamiltonian is very high at

FIG. 10. (Color online) (Upper part) Steady-state infidelity
IδB (Bx) (see text) for the four-spin XXZ model in transverse field
Bx with local dissipation (cf. Fig. 6) for δB = 3 × 10−6 and weak
dissipation γ = 0.5 × 10−4. (Lower part) Spectrum of Hspin, dashed
vertical lines indicate degeneracy points (encircled). Peaks in IδB

line up with degeneracy points of H (Bx), except for two (colored
green) for which condition (28) does not hold. The inset shows the
vicinity of Bx ≈ 0.25, where three crossings of eigenvalues occur:
(λ5,λ6), (λ1,λ2), and (λ13,λ14). The dash-dotted horizontal lines show
the 2-norm (scaled by 7 × 10−7) of the left-hand side of Eq. (28)
Ci,j = ‖P�i,j L1 limx′→x ρss(x ′)‖2 for the three relevant projectors
P�i,j , (i,j ) = (1,2) (green), = (5,6) (blue), and = (13,14) (magenta).
C5,6 vanishes at the crossing of (λ5,λ6), hence there is no peak in IδB ,
while the other two lead to a peak in IδB , since Ci,j is finite.

Bx = 0 and is lifted slowly (certain eigenvalues touch and do
not cross as Bx → 0). Therefore, the finite values of γ used
in the plots are not much smaller than all energy differences
and we are not in the weak-dissipation limit. As γ is reduced,
additional peaks are resolved (cf. Fig. 9).

C. Steady-state behavior for Ising Hamiltonians

To get a better insight into how the condition given by
Eq. (28) explains the peaks seen in Fig. 8, we now specialize
to the Ising model under collective dissipation given by
Eq. (24). Then we see that the steady state apart from the
degeneracy points and the condition for discontinuity becomes
very simple. For a detailed derivation of what follows, see
Appendix C.

The Hamiltonian in Eq. (21) with periodic boundary
conditions is in general degenerate due to translational and
reflection symmetry. To obtain a nondegenerate H , we restrict
our consideration to a specific subspace with eigenvalue 1
for the translation operator T and the reflection operator
R [35]. Note that the Hamiltonian is also symmetric under
the spin-flip operation F = σ⊗N

x , i.e., FHF † = H . Using
the properties of L1 and F invariance of H , we find that,
if the system has a unique steady state of L(x), it is, in the
limit of weak dissipation, given by the maximally mixed
state ∝1: plugging 1 into Eq. (26) we obtain PDL1(1) =∑

i |λi(x)〉〈λi(x)|J z|λi(x)〉〈λi(x)| and flip invariance of H

implies 〈λi(x)|J z|λi(x)〉 = 0 for the eigenstates of a nonde-
generate Hamiltonian H (see Appendix C).
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Thus if the steady state is unique, it is always maximally
mixed outside degeneracy points and we see a discontinuity at
x = x0 if for the degenerate eigenstates |λ1(x0)〉,|λ2(x0)〉 we
have

〈λ1|J z|λ2〉 �= 0. (29)

This can be checked to hold for the points at which peaks are
observed in Fig. 8.

For the Ising model in a transverse magnetic field, for larger
N the peaks decrease in height and disappear in the limit
N −→ ∞. The spectrum for the Ising model in a transverse
field is known analytically [36]. For large N , the spectrum
is very dense and degeneracy points are so closely spaced
that peaks are no longer resolvable (and vanish in the thermo-
dynamic limit as bands develop). Nevertheless, for small spin
systems, these features provide a method to dissipatively study
degeneracies of the applicable Hamiltonian—anywhere in the
spectrum, not just in the ground state. To the extent that L1 is
tunable, it even provides access to the nature of the degenerate
states via Eq. (28).

IV. CONCLUSIONS

We have shown that using cold atoms in an optical lattice
in the Mott-insulator regime, dissipative spin chains with
Hamiltonians such as the XXZ model, the Ising model, or the
Heisenberg model can be realized. Optical driving of internal
atomic states allows for the realization of a tunable transversal
magnetic field and engineered dissipation.

This system is an ideal test bed for studying steady-state
dynamics of dissipative spin models. We have discovered a
peculiar feature of the steady-state diagram for small spin
chains: in the limit of weak dissipation, the expectation values
of the collective spin operators exhibit abrupt changes that
hint at discontinuities in the steady state. These discontinuities
occur at degeneracy points of the Hamiltonian. We have
studied this phenomenon for different spin models with open
and periodic boundary conditions subject to individual and
collective dissipation. Finally, we have presented conditions
that elucidate the discontinuous behavior of the steady state
at degeneracy points of the Hamiltonian. Therefore, measure-
ments of the steady-state dynamics of cold atoms in optical
lattices would allow us to draw conclusions about the spectrum
of the respective spin model.
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APPENDIX A: DERIVATION OF EFFECTIVE DISSIPATIVE
MASTER EQUATION

The internal levels of the atom that we consider are |g〉, |r〉,
|e〉. Adiabatically eliminating the excited state |e〉 as discussed
in Sec. II B, we get an effective two-level system |g〉 and |r〉 that
is coupled with the effective Rabi frequency �eff , as depicted
in Fig. 1.

In the following, we derive in detail the master equation
given by Eq. (6) in Sec. II B. The internal levels of the atom
that we consider are |g〉, |r〉, |e〉, as depicted in the upper part
of Fig. 1. The states |g〉-|r〉 are coupled by a detuned Raman
transition via the excited state |e〉 by two standing-wave laser
fields. The coupling is described by the Hamiltonians

Hl1 =
∑

k

�1 cos (k1xk)(|e〉〈g|k + H.c.), (A1)

and

Hl2 =
∑

k

�2 sin (k2xk)(|r〉〈g|k + H.c.), (A2)

where �1 and �2 are the Rabi frequencies of the two lasers and
k1 and k2 are the wave numbers of the lasers and k denotes the
lattice site. xk is the displacement from the equilibrium position
x0

k of the atom at lattice site k. The phase of the lasers is,
for simplicity, chosen such that cos [k1(xk + x0

k )] = cos (k1xk)
and cos [k2(xk + x0

k )] = sin (k2xk). Choosing different phases
of the lasers makes A± in Eq. (7) dependent on the lattice site
k. Adiabatic elimination of the excited state |e〉 leads to an
effective coupling

H1 =
∑

k

�effη1(σ−
k + σ+

k )(|r〉〈g| + H.c.), (A3)

with �eff = �1�2/δre where δre is the detuning with respect
to |e〉 and η1 is the Lamb-Dicke parameter. Here, we have
expressed the deviation from the equilibrium position xk

in terms of harmonic oscillator operators truncated to the
two lowest-lying levels sin(k1xk) ≈ η1(σ−

k + σ+
k ) where σ+

k =
|1〉〈0|k and σ−

k = |0〉〈1|k and cos (k2xk) ≈ 1. The effective
coupling with Rabi frequency �eff between states |r〉 and |g〉
is shown in Fig. 1.

Coupling the state |r〉 to the excited state |e〉 with a third
standing-wave laser field with Rabi frequency �er , depicted
with a red arrow in Fig. 1, we can derive an effective two-level
system |g〉-|r〉 with designable decay rates as done in Ref. [26].
Here, we briefly review this result. Following Ref. [26], the
upper level |e〉 can be adiabatically eliminated if the saturation
parameter for the transition |r〉 and |e〉 is small:

sr,e = (�re/2)2

δ2
re + (�er + �eg)2/4

� 1. (A4)

According to Ref. [26], the effective detuning and the effective
decay rates are given by

δr = δgr − δre

(�re/2)2

[(�eg + �er )/2]2 + δ2
re

, (A5)

� = (�re/2)2

[(�eg + �er )/2]2 + δ2
re

�eg, (A6)

γ = (�re/2)2

[(�eg + �er )/2]2 + δ2
re

�eg + �er

2
; (A7)

see also the lower part of Fig. 1. The effective two-level system
|g〉-|r〉 with the effective decay rates �, γ and the effective
detuning δr is the starting point of the following discussion.
The full Hamiltonian describing the system is given by

Hfull = H1 + H0, (A8)
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where H1 describes the atom-light interaction given by
Eq. (A3) and H0 defines the energies of the system

H0 =
∑

k

δr |r〉〈r|k + ν|1〉〈1|k. (A9)

The effective dynamics of the system can be derived
considering contributions to the Liouvillian up to second order
in a perturbative approach. The full system is described by a
Liouvillian given by

ρ̇(t) = (L0 + L1)ρ(t), (A10)

where L0 is given by

L0ρ(t) =
∑

k

� (2|g〉〈r|kρ(t)|r〉〈g|k − {|r〉〈r|k,ρ(t)}+)

+ γ (2|r〉〈r|kρ(t)|r〉〈r|k − {|r〉〈r|k,ρ(t)}+)

− i[H0, ρ(t)]. (A11)

The first part of the Liouvillian is the decay part with the
effective decay rate � from state |r〉 to |g〉 and the dephasing
rate γ . The projector

Pg = |g〉〈g| ⊗ (|0〉〈0| + |1〉〈1|) (A12)

is stationary under L0. The perturbative part of the Liouvillian
is given by

L1ρ(t) = −i[H1, ρ(t)], (A13)

where H1 is given by Eq. (A3) and describes the interaction
of the two-level system with the effective laser field. Treating
L1 as a perturbation, we derive an effective Liouvillian in the
stationary subspace of L0. The projection onto this subspace
reads

P ρ̇(t) = PLPρ(t) + PLQρ(t), (A14)

where Pρ = |g〉〈g| ⊗ (|0〉〈0| + |1〉〈1|)ρ|g〉〈g| ⊗ (|0〉〈0| +
|1〉〈1|) and Q = 1 − P . Projecting onto the subspace we want
to eliminate, we get

Qρ̇(t) = QLρ(t). (A15)

In the following, we integrate Eq. (A15) to get the time
evolution of the density matrix in the fast space, Qρ(t). We
insert the result in Eq. (A14) to get an equation of motion for
the density matrix in the slow space. Therefore, we first go
into the interaction picture, where the density matrix is given
by ρ̃(t) = e−L0t ρ(t). The equation of motion in the fast space
reads

Q ˙̃ρ(t) = QWI (t)ρ̃(t), (A16)

with WI (t) = eL0tL1e
L0t . Solving this equation by iteration

[37], we get

Qρ(t) =QeL0t

[∫ t

0
dsWI (s)P ρ̃(0)

+
∫ t

0
ds1

∫ s1

0
ds2WI (s1)WI (s2)P ρ̃(0)

]
. (A17)

At time t = 0, ρ̃(0) = ρ(0) and we assume that at t = 0, the
population is in the ground state, i.e., ρ̃(0) = P ρ̃(0). Higher-
order integrals are neglected with the assumption that

|�eff| � �, γ, |δr |, ν. (A18)

We denote the first integral in Eq. (A17) by R1(t) and the
second integral by R2(t) such that

Qρ(t) = R1(t) + R2(t). (A19)

Inserting in Eq. (A14) leads to

P ρ̇(t) = PLPρ(t) + PL0R1(t) + PL1R1(t)

+ PL0R2(t) + PL1R2(t). (A20)

The term PL0R1(t) = 0, and PL1R2(t) is a third-order
term and can be neglected. Neglecting terms rotating with
exp(±iνt) we get the master equation given by Eq. (6) with ac
Stark shifts given by

HS = s−σ+
k σ−

k + s+σ−
k σ+

k , (A21)

where

s± = �2
effη

2
1

(δr ± ν)

(� + γ )2 + (δr ± ν)2
.

APPENDIX B: DERIVATION OF SPIN HAMILTONIAN

In the Mott-insulator regime, bosonic atoms trapped by a
lattice potential with two motional states are described by the
two-band Bose-Hubbard model

HBH = H0 + Ht. (B1)

Here, the sum runs over the N sites k of the optical lattice. The
unperturbed Hamiltonian H0 is given by

H0 =
∑

k

(
U01

2
n̂k0n̂k1 +

∑
x=0,1

Uxx

2
n̂kx(n̂kx − 1) + νn̂k1

)
,

where Uxx ′ is the on-site repulsion of two atoms on lattice site
k, where one atom is in motional state |x〉 and the other one is in
|x ′〉 with x, x ′ = 0, 1, respectively. The operator n̂kx = |x〉〈x|k
counts the number of atoms at lattice site k in the motional
states x = 0, 1 and ν is the energy difference between ground
and first-excited motional states. We assume the system to be
prepared in the ground state |0〉. Due to the anharmonicity of
the potential, we do not leave the subspace of n = 0 and n = 1
excitations.

The perturbative part of the Hamiltonian describes the
tunneling between neighboring lattice sites and is given by

Ht =
∑

k

t0c
†
k,0ck+1,0 + t1c

†
k,1ck+1,1 + H.c. (B2)

Here, the operators ckx with x = 0, 1 are bosonic destruction
operators for atoms in the two motional states |0〉 and |1〉 at
lattice site k. t0 (t1) are the tunneling amplitudes from state |0〉
(|1〉) at lattice site k to state |0〉 (|1〉) at k + 1.

As the on-site interaction Uxx ′ � t0, t1, tunneling between
neighboring wells that leads to states with two atoms in one
lattice well can be treated as a perturbation. For that, we
consider two neighboring lattice sites k and k + 1 and write
the effective Hamiltonian in the basis of eigenvectors of H0,
|xk,yk+1〉, where for example |0k,1k+1〉 is the notation for the
state with one particle in well k in state |0〉, and one particle
in well k + 1 in state |1〉. In perturbation theory [25], the
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second-order effective Hamiltonian can be evaluated in the
following way:

〈xk,yk+1|H (3)
eff |x ′

k,y
′
k+1〉

= 1

2

∑
χ

〈xk,yk+1|Ht |χ〉 1

E′ 〈χ |Ht |x ′
k,y

′
k+1〉, (B3)

where

1

E′ = 1

Exy − Eχ

+ 1

Ex ′y ′ − Eχ

,

and |χ〉 are eigenstates of H0 with two particles in one well
(and no particle in the other one). Exy = 〈xk,yk+1|H0|xk,yk+1〉
and Eχ = 〈χ |H0|χ〉 are the unperturbed energies. Evaluating
Eq. (B3) leads to the effective spin Hamiltonian H

(3)
eff given by

H
(3)
eff = Hspin + Bz

∑
k

|1〉〈1|k, (B4)

with

Hspin =
∑

k

α1
(
σx

k σ x
k+1 + σ

y

k σ
y

k+1

) + α2σ
z
k σ z

k+1. (B5)

Here,

α1 = −4t0t1

U01
, α2 = 2

(
t2
0 + t2

1

U01
− t2

0

U00
− t2

1

U11

)
,

and Bz, the magnetic field in z direction, is

Bz = t2
0

U00
− t2

1

U11
.

Thus, we have derived an effective XXZ-spin Hamiltonian
with a magnetic field in the z direction.

APPENDIX C: CONDITION FOR DISCONTINUOUS
BEHAVIOR

Here, we first derive a general condition for the discon-
tinuous behavior in the steady state at a degeneracy point
of a large class of spin Hamiltonians. Next, we focus on
more specific Hamiltonians. We study the steady state of
flip-invariant Hamiltonians outside the degeneracy point and,
starting with the general condition for finding discontinuities
in the steady state, we derive a more precise condition for
flip-invariant Hamiltonians.

1. General condition for discontinuities in steady state

Here, we derive a general condition for discontinuous
behavior in the steady state at the degeneracy point x = x0

of a general Hamiltonian H , where H = H (x) is an analytic
function of x. We consider a system described by the master
equation

ρ̇(t) = (L0 + L1)ρ(t), (C1)

where the Hamiltonian part of the Liouvillian is given by
L0(x) = L0 = −i[H (x),·] and depends on a parameter x, and
the local decay Liouvillian is

L1ρ(t) =
∑

k

γk[2σ−
k ρ(t)σ+

k − {σ+
k σ−

k ,ρ(t)}+]. (C2)

First, we want to describe the system outside the degeneracy
point, i.e., for x �= x0. We assume that in the vicinity of
x0, the Hamiltonian is nondegenerate (for x �= x0) and that
the dissipation is weak. The steady state ρss(x) defined by
(L0(x) + L1)ρss(x) = 0 is, in the limit γ → 0, given by

PD(x)L1PD(x)ρss = 0, (C3)

where PD(x) is the projector onto the kernel(L0). As the kernel
of L0 is spanned by the eigenprojectors |λi(x)〉〈λi(x)| of H

we have for arbitrary A

PDA =
∑

i

|λi(x)〉〈λi(x)|A|λi(x)〉〈λi(x)|, (C4)

where |λi(x)〉 are eigenstates of the Hamiltonian H (x) which
is assumed to be nondegenerate.

Now, let us consider the case that at x = x0, the Hamiltonian
has a degeneracy point at which two or more eigenvalues cross.
At this degeneracy point, we expect a discontinuous behavior
of the steady state that leads to the peaks we observe in our
numerical simulation (see Figs. 6–9). At x = x0 the projector
onto the kernel of L0 has to be extended. It now also projects
onto coherences between eigenstates of H : |λ1〉,|λ2〉 which are
eigenvectors to the degenerate eigenvalues λ1 = λ2. Therefore
the projector on the coherences reads

P�A = |λ1〉 〈λ1| A |λ2〉 〈λ2| + H.c. (C5)

It is convenient to define a continuous extension of the
projector PD at x = x0, which reads

PD(x0) = lim
x→x0

PD(x). (C6)

Thus, at x = x0, the full projector onto the kernel of L0 reads
PD(x0) + P �. Now the condition for the steady state ρss(x =
x0) at the degeneracy point is given by

[PD(x0) + P�]L1[PD(x0) + P�]ρss(x0) = 0. (C7)

We want to find a sufficient condition for the steady state to
change discontinuously. This means that

ρss(x0) − lim
x→x0

ρss(x) �= 0, (C8)

where limx→x0 ρss(x) is the continuous extension of
ρss(x) ∀ x �= x0 to x = x0.

A discontinuity in the steady state as described by Eq. (C8)
can occur only if

[PD(x0) + P�]L1[PD(x0) + P�] lim
x→x0

ρss(x) �= 0 (C9)

holds, since otherwise the continuous extension limx→x0 ρss(x)
would be a steady state as well. The last part of Eq. (C9) can
be simplified using

[PD(x0) + P�] lim
x→x0

ρss(x) = lim
x→x0

ρss(x),

which holds since limx→x0 ρss(x) is per definition in the space
onto which PD(x0) projects and P � is orthogonal to that space.
By Eq. (C3) we then see that Eq. (C9) reduces to the condition

P�L1 lim
x→x0

ρss(x) �= 0. (C10)

If this condition is fulfilled, then ρss(x0) −
limx→x0 ρss(x) �= 0 which means that the steady state
shows discontinuous behavior at the degeneracy point x = x0.
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2. Condition for discontinuous behavior for Ising Hamiltonians

Here, we want to get a better insight into how the condition
given by Eq. (C10) relates to the peaks observed in our
numerical simulation. In the following, we will apply it to the
Ising model in a transverse magnetic field. In the numerical
simulation (see Fig. 8) for the Ising Hamiltonian with periodic
boundary conditions under collective dissipation described by
Eq. (24), we restrict our consideration to a specific subspace
with eigenvalue 1 for the translation operator T and the
reflection operator R: T = R = 1. First, we want to prove
that if the steady state is unique, then it is the fully mixed state
outside the degeneracy points as indicated by our numerical
simulation. Then we show that, starting from the condition
given by Eq. (C10), specialization to the Ising model allows us
to derive a more precise condition for finding a discontinuity
in the steady state at the degeneracy points.

First, we show that 1 satisfies (L0 + L1)1 = 0 outside the
degeneracy point x �= x0. Therefore, for systems with a unique
steady state, it is given by the fully mixed state for x �= x0 in the
limit γ → 0. The Hamiltonian given by Eq. (21) is assumed to
be nondegenerate for x �= x0 and invariant under the spin-flip
operator F = σ⊗N

x , i.e., FHF † = H . Thus, we want to show
that, for x �= x0,

PDL11 = 0, (C11)

where P D is given by Eq. (C4). Then,

PDL1(1) = 2γ (J−J+ − J+J−) ∝ γ J z. (C12)

Therefore, Eq. (C11) reads

PDL1(1) = PDJ z =
∑

i

|λi〉〈λi |J z|λi〉〈λi | = 0. (C13)

If we can show that Eq. (C13),

〈λi |J z|λi〉 = 0 ∀ i, (C14)

then we have shown that the fully mixed state is a steady state of
our system outside the degeneracy points of the Hamiltonian.

As the Hamiltonian is nondegenerate and invariant under the
flip-operator F , the eigenvectors of H are eigenvectors of F :
F |λi〉 = αi |λi〉. Let |α〉 denote an arbitrary eigenvector of H

with F eigenvalue α. Since the spectrum of F is {±1}, we have
|α〉 = α2|α〉 = αF |α〉. Moreover, the flip F changes the sign
of J z, i.e, J z and F anticommute: {F,J z}+ = 0. Therefore,
we can write Eq. (C14) as

〈α|J z|α〉 = α〈α|J zF |α〉
= −α〈α|FJ z|α〉 = −〈α|J z|α〉, (C15)

where we have used α2 = 1. It follows that

〈α|J z|α〉 = 0. (C16)

Consequently, PDL1(1) = 0 and we have shown that in the
limit of weak dissipation, the steady state, if it is unique, is the
fully mixed state. For the Ising model with up to eight atoms
and collective dissipation, we know from our numerics that
the steady state is unique.

To see that the steady state shows discontinuous behavior
at the degeneracy point x = x0, we need now only to show
that the fully mixed state is not the steady state of the system.
Thus, we need to show that

P�L1(1) = P�J z =
′∑

i,j,i �=j

|λi〉〈λi |J z|λj 〉〈λj | �= 0, (C17)

where P� is given by Eq. (C5) and
∑′ sums over the labels of

degenerate eigenvalues. Since the eigenvectors are orthogonal,
Eq. (C17) holds if ∃ i �= j such that

〈λi |J z|λj 〉 �= 0. (C18)

Therefore, Eq. (C18) gives a condition for finding
discontinuous behavior of the steady state of the Ising
model in a transverse field under collective dissipation. Note
that this derivation can be easily extended to all nondegenerate
Hamiltonians that are flip invariant.
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HEIKE SCHWAGER, J. IGNACIO CIRAC, AND GÉZA GIEDKE PHYSICAL REVIEW A 87, 022110 (2013)

[23] E. Charron, E. Tiesinga, F. Mies, and C. Williams, in Quantum
Communication, Computing, and Measurement 3, edited by
P. Tombesi and O. Hirota (Kluwer, New York, 2002),
pp. 227–230.

[24] For details see Eq. (20).
[25] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-

Photon Interactions (Wiley Intersciences, New York, 1992).
[26] I. Marzoli, J. I. Cirac, R. Blatt, and P. Zoller, Phys. Rev. A 49,

2771 (1994).
[27] Note that sin (kbxk) ≈ ηb(ck + c

†
k) where ck are bosonic op-

erators that describe the harmonic oscillator states of the
trapping potential. As explained before, we work in the truncated
subspace of |0〉 and |1〉 due to the anharmonicity of the trap
and the cooling to the ground state such that the ηb(ck + c

†
k) =

ηb(σ−
k + σ+

k ).
[28] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,

Phys. Rev. Lett. 81, 3108 (1998).
[29] Uxx′ is the on-site repulsion of two atoms on lattice site k, where

one atom is in motional state |x〉 and the other one in |x ′〉 with
x, x ′ = 0, 1, respectively.

[30] P. Werner, K. Völker, M. Troyer, and S. Chakravarty, Phys. Rev.
Lett. 94, 047201 (2005).
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We investigate Gaussian quantum states in view of their exceptional role within the space of all
continuous variables states. A general method for deriving extremality results is provided and applied to
entanglement measures, secret key distillation and the classical capacity of bosonic quantum channels. We
prove that for every given covariance matrix the distillable secret key rate and the entanglement, if
measured appropriately, are minimized by Gaussian states. This result leads to a clearer picture of the
validity of frequently made Gaussian approximations. Moreover, it implies that Gaussian encodings are
optimal for the transmission of classical information through bosonic channels, if the capacity is additive.

DOI: 10.1103/PhysRevLett.96.080502 PACS numbers: 03.67.Hk, 03.65.Ud

States with a Gaussian Wigner distribution, so-called
Gaussian states, appear naturally in every quantum system
which can be described or approximated by a quadratic
bosonic Hamiltonian. They are ubiquitous in quantum
optics as well as in the description of atomic ensembles,
ion traps or nanomechanical oscillators. Moreover,
Gaussian states became the core of quantum information
theory with continuous variables.

Besides their practical relevance, Gaussian states play an
exceptional role with respect to many of their theoretical
properties. A particular property of Gaussian states is that
they tend to be extremal within all continuous variable
states if one imposes constraints on the covariance matrix
(CM). The best known example of that kind is the extrem-
ality with respect to the entropy: within all states having
a given CM, Gaussian states attain the maximum
von Neumann entropy (cf. [1]). Similar extremality prop-
erties have recently been shown for the mutual information
[2] and conditional entropies [3,4].

In this Letter we prove extremality results for Gaussian
states with respect to entanglement measures, secret key
rates, and the classical capacity of bosonic quantum chan-
nels. These findings are based on a general method, which
exploits the central limit theorem as a active and local
Gaussification operation. Our main focus lies on the en-
tanglement, which will serve as a showcase for the general
procedure. We prove that for any given CM, the entangle-
ment, if measured in an appropriate way, is lower bounded
by that of a Gaussian state. The same result is shown to
hold true for many other quantities like the distillable
randomness and the secret key rate. This result not only
emphasizes the exceptional role of Gaussian states, it also
leads to a clearer picture of the validity of frequently made
Gaussian approximations. In practice, states deviate from
exact Gaussians and their precise nature remains mostly
unknown. Nevertheless, the CM can typically be deter-
mined, e.g., by homodyne detection, and one is tempted
to calculate the amount of entanglement, or other quanti-
ties, from the CM under the assumption that the state is

Gaussian. The derived extremality of Gaussian states now
justifies this approach as it excludes an overestimation of
the desired quantity, even in cases where the actual state is
highly non-Gaussian. In this sense one stays on the safe
side when a priori assuming the state to be Gaussian. We
will see, however, that some care is in order, since the
extremality property with respect to the entanglement turns
out to depend on the chosen entanglement measure.

Before we derive the main results we will briefly recall
the basic notions. Consider a bosonic system of N modes
characterized by N pairs of canonical operators
�Q1; P1; . . . ; QN; PN� �: R or equivalently by N bosonic
annihilation operators aj � �Qj � iPj�=

���
2
p

. For any den-
sity operator � of the system we define a vector of means
with components dj � tr��Rj�, a CM �kl � tr��fRk �
dk; Rl � dlg�� and introduce a characteristic function
���� � tr�� exp�i� � R��, � 2 R2N . The latter is the
Fourier transform of the Wigner function and it thus com-
pletely characterizes the state [5]. For Gaussian states, the
characteristic function has the form

���� � ei��d�1=4����; (1)

such that they are entirely specified by d and � leading to a
complete description within a finite dimensional phase
space R2N . The underlying Hilbert space H is, however,
infinite dimensional and we will denote the set of all
bounded linear operators on H by B�H �. Note that the
following results also apply to finite dimensional systems
by simply embedding Cd into H .

Our results are based on a noncommutative central limit
theorem, as discussed in [6,7], and operator-topology argu-
ments from [7,8]. We will first state the main ingredient as
a general Lemma and then discuss its applications to
quantum information theory. Readers who are mainly in-
terested in the applications may skip the proof of the
Lemma.

Lemma 1.—Let f: B�H 	N� ! R be a continuous func-
tional, which is strongly superadditive and invariant under
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local unitaries f�U	N�Uy	N� � f���. Then for every den-
sity operator � describing an N-partite system with finite
first and second moments, we have that

f��� 
 f��G�; (2)

where �G is the Gaussian states with the same first and
second moments as �.

Let us first remark on the requirements in Lemma 1.
Continuity is understood in trace norm, i.e., k��n� � �k1 !

0 should imply f���n�� ! f���. In fact, lower semiconti-
nuity suffices, and we may restrict the domain of f to an
appropriate compact subset of density operators like those
satisfying an energy constraint. The latter typically restores
continuity for functionals, which are known to be continu-
ous in the finite dimensional case. Strong superadditivity
means that given a state � acting on �H A1

	H A2
� 	

�H B1
	H B2

� with restrictions �i to H Ai 	H Bi , then
f��� 
 f��1� � f��2�, with equality if � � �1 	 �2. The
latter is referred to as additivity and both properties are
analogously defined for more than two parties.

Proof.—The main idea of the proof is covered by the
following equation:

f��� �
1

n
f��	n� �

1

n
f�~�� (3)



1

n

Xn
k�1

f�~�k� ! f��G�: (4)

In the first line we use additivity of f and set ~� �
U	N�	nUy	N , where U is a suitably chosen local unitary,
which acts on n copies of the state. In the second line we
first exploit strong superadditivity in order to bound f�~��
from below by the sum over all reduced density operators
~�k. Then we argue by the central limit theorem and a
special choice of U, that each of these reduced states ~�k
converges to the Gaussian �G in the limit n!1.

This idea is now made rigorous in two steps. First, we
prove that each characteristic function ~�k converges point-
wise to the corresponding Gaussian �G, and then we argue
that this implies trace-norm convergence on the level of
density operators. To simplify matters we will, without loss
of generality, assume that � has vanishing first moments,
i.e., dj � 0. The general case is then obtained by applying
local displacements, which by assumption will not change
the value of f.

Let us begin with specifying the local unitary U as a
passive symplectic operation acting on the canonical op-
erators on site � 2 f1; . . . ; Ng as

~Q�;k �
Xn
l�1

Hkl���
n
p Q�;l; ~P�;k �

Xn
l�1

Hkl���
n
p P�;l; (5)

with

H �
1 1
1 �1

� �

being a Hadamard matrix and n � 2m. Physically, U cor-
responds to an array of 50:50 beam splitters and half wave
plates. Note that H has only entries �1, so that we can
partition the sum

~Q�;k �
1���
n
p

� Xn�
l:Hkl�1

Q�;l �
Xn�

j:Hkj��1

Q�;j

�
; (6)

and similarly for ~P�;k. Here n� � n� n� is the number of
ones in the kth row of H. Note that either n� � n in the
first row, or n� � n=2 in all other rows.

The characteristic function ~�k of the reduced density
operator ~�k is then given by

~� k�q; p� � tr
�
�	n exp

�
i
XN
��1

q� ~Q�;k � p� ~P�;k

��
(7)

� �
�
����
n
p

�
n�
�
�
�����
n
p

�
n�
; (8)

where � is the characteristic function of � and � � �q; p�.
Following [7] we introduce a function g: R! C by

g�x� � ��x��, which is a classical characteristic function,
i.e., the Fourier transform of a classical probability distri-
bution with second moment �T��=2. To see this, note that
� is the Fourier transform of the Wigner function and recall
that every one-dimensional marginal of a Wigner function
(in particular the one corresponding to the direction �) is
an admissible probability distribution. Characteristic
functions are continuous at the origin, satisfy g�0� � 1,
jg�x�j � 1, and in the case of finite second moments we
can expand up to second order [9], such that

g�x� � 1�
�T��

4
x2 � o�x2�: (9)

Pointwise convergence ~�k ! �G follows then from Eq. (8)
together with setting x � 1 in

lim
n!1

g
�
x���
n
p

�
n�
g
�
�x���
n
p

�
n�
� lim

n!1

�
1�

�T��
4n

x2

�
n

(10)

� exp
�
�

1

4
�T��x2

�
: (11)

For the remaining part we can combine the argumentations
in Refs. [7,8]. In [7] it was proven that pointwise conver-
gence of the characteristic functions implies convergence
of the respective density operators within the weak opera-
tor topology. The latter was, however, shown to be equiva-
lent to the trace-norm topology on density operators in
Ref. [8]. �

A simple application of Lemma 1 is the rederivation of
the maximum entropy principle by setting f equal to minus
the von Neumann entropy S��� � �tr�� log��. Similarly,
in the bipartite case with N � NA � NB and f��� �
S��A� � S���, we recover the recently proven extremality
result for the conditional entropy [4] for which strong
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superadditivity is an immediate consequence of the strong
subadditivity inequality for the entropy.

Entanglement measures.—Grouping the N tensor fac-
tors in Lemma 1 into M � N parties and exploiting that
every entanglement measure is by definition invariant
under local unitaries, yields the following.

Proposition 1.—Let E be a continuous entanglement
measure which is strongly superadditive. Then, for every
density operator � describing an M-partite system with
finite CM (and arbitrary, finite, number of modes per site),
we have that any Gaussian state �G with the same CM
provides a lower bound E��G� � E���.

Most of the entanglement theory developed so far is
devoted to bipartite systems. Whereas for pure states there
is an essentially unique measure of entanglement, the
von Neumann entropy of the reduced state, there are
various different entanglement measures for mixed states
[10]. Two of them have a clear operational meaning: the
distillable entanglement ED quantifies the amount of pure
state entanglement that can asymptotically be extracted by
means of local operations and classical communication
(LOCC), and the entanglement of formation EF (its regu-
larized form, the entanglement cost Ec) measures the pure
state entanglement required in order to prepare the state.
Among all other measures, the logarithmic negativity EN is
the most popular one, as it is comparatively easy to calcu-
late [11]. Let us now discuss the consequences of
Proposition 1 for some entanglement measures:

(i) Distillable entanglement. ED is additive (due to the
asymptotic definition) and strongly superadditive (since
restricted protocols lead to smaller rates). It was shown
to be continuous in the interior of the set of distillable states
[12]. As distillable Gaussian states are always in the in-
terior [13], ED fulfills all the requirements in the Lemma
and analogous reasonings hold true in the multipartite case
where ! is replaced by any M-partite target state.
Moreover, in the bipartite case Prop. 1 leads immediately
to a simple sufficient distillability criterion, since for
Gaussian states it is known that ED > 0 is equivalent to a
simple inequality for the CM [13].

(ii) Entanglement of formation. Continuity of EF was
proven in [14] for finite and in [15] for infinite dimensional
systems with energy constraint. Superadditivity of EF is a
notorious conjecture, which is proven to be equivalent to
additivity of EF and to many other additivity conjectures
[16]. These are known for various special cases (cf.
[4,16,17]) but remain to be proven in general.

(iii) Squashed entanglement. This is indeed strongly
superadditive [18] and its continuity was proven (for finite
dimensions) in Ref. [19].

(iv) Logarithmic negativity. EN is additive, but fails to be
strongly superadditive. In fact, EN does not only fail the
requirements for the proposition—Eq. (2) turns out to be
false in this case. A simple counterexample is given by the
state j’i �

���������������
1� �2
p

j00i � �j11i, with � � 1
4 . In this case

EN�’� ’ 0:57, whereas EN�’G� ’ 0:64 [20]. Hence, de-
spite the fact that EN can easily be calculated, it is not a
faithful entanglement measure in the sense that a Gaussian
approximation of a non-Gaussian state could lead to an
overestimated amount of entanglement.

Finally, it is interesting to note that Gaussian states not
only give a lower bound, but they also provide an upper
bound to the entanglement if only the CM is known. In
fact, it is a simple consequence of the maximum entropy
property that for a given energy (i.e., tr��� fixed) the
entanglement is maximized by a Gaussian state [21].

Secret key distillation.—We will now depart from the
discussion of entanglement and see how Lemma 1 can be
applied to the distillation of a classical secret key from
quantum states under the assumption of collective attacks.
Consider the case where two parties share m copies of a
quantum state �AB and aim at converting these into rm bits
of a secret key under local operations and public commu-
nication. Allowing for the worst case scenario, in which an
eavesdropper is given the entire purifying system of �AB �
trE�j�ABEih�ABEj�, this can be understood as a mapping
�	mABE ! �	rm 	 �E, where the secret bits � � 1

2 �j00i
h00j � j11ih11j� are asymptotically uncorrelated with the
state �E of the eavesdropper. We call the asymptotic su-
premum over all achievable rates r the distillable secret key
Kcoll��AB� of the state. By the same reasoning as for the
distillable entanglement, Kcoll (together with its multi-
partite generalizations with � � 1

2 �j0 . . . 0ih0 . . . 0j �
j1 . . . 1ih1 . . . 1j�) has the properties of being additive and
strongly superadditive. Hence, under the assumption of
continuity Lemma 1 implies the following.

Proposition 2.— Consider an M-partite system with an
arbitrary, finite, number of modes per site. Then for every
given finite first and second moments the Gaussian state �G
provides a lower bound to the distillable secret key
Kcoll��� 
 Kcoll��G�.

Channel capacities.—Let us finally apply Lemma 1 to
the task of transmitting classical information through a
bosonic Gaussian quantum channel T [2,4]. The latter
may describe optical fibers, harmonic chains, or any other
bosonic system for which we can describe the evolution in
terms of a quadratic Hamiltonian H acting on system plus
environment

T��� � trenv�V�� 	 j�ih�jenv�V
y�; V � eiHt: (12)

The classical capacity C of a quantum channel is the
asymptotically achievable number of classical bits that
can be reliably transmitted from a sender to a receiver
per use of the channel. To make this a reasonable concept
in the infinite dimensional setting, one imposes an energy
constraint to the encoding. That is, any allowed set of input
states �i with respective probabilities pi is such that the
average state �� �

P
ipi�i satisfies an energy constraint

�� 2K � f�j
P
j tr��Q2

j � P
2
j ��� � �g. Under this con-

straint the capacity C�T;K� of the channel is
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C1�T;K� � sup
fpi;�ig

�S�T� �����
X
i

piS�T��i���; (13)

C�T;K� � lim
n!1

1

n
C1�T

	n;K	n�: (14)

Consider now a fixed state �� and define � � V� �� 	 j�i
h�jenv�V

y. Then we can write

C1�T; ��� � S�T� ����� EF���: (15)

If the notorious additivity conjecture is true [16], then not
only EF satisfies the requirements of Lemma 1 but also
C1 � C, i.e., the supremum over all �� 2K in Eq. (15)
gives the capacity of T. By Proposition 1 together with the
maximum entropy property of Gaussian states we have
then, however, that C�T; ��� � C�T; ��G� as both terms in
Eq. (15) become extremal for the Gaussian state ��G, which
has the same CM as ��. Since �� 2K iff ��G 2K this
shows:

Proposition 3.—Consider a bosonic Gaussian channel
acting on a finite number of modes. Then there is an
optimal encoding, which achieves the classical capacity
with a Gaussian ��, if the capacity is additive.

For single mode channels for which the optimal � is a
symmetric two-mode Gaussian state we then even know an
optimal ensemble fpi; �ig (which is continuous in this
case). For such two-mode states it has been shown [22]
that EF��� equals the so-called Gaussian entanglement of
formation [23], which in turn implies that the optimal
ensemble consists of coherent states which are distributed
in phase space according to an appropriate Gaussian
distribution.

Summary and outlook.—We presented a general method
which allows to prove extremality of Gaussian quan-
tum states with regard to various applications. This re-
emphasizes the exceptional role of these states and what
is more, it justifies frequently made Gaussian (i.e., qua-
dratic) approximations. As we saw, in particular, the
asymptotic nature of many quantities in quantum informa-
tion theory fits very well to the asymptotic nature of the
central limit theorem. Hence, there are certainly many
other similar applications. It is, for instance, straightfor-
ward to translate some results from the bosonic to the
Fermionic world [24]. Moreover, via a state-channel dual-
ity one might apply similar techniques to channels and
operations instead of states (cf. [6]). In fact, recently,
Gaussian operations turned out to be optimal for certain
tasks concerning classical teleportation and cloning of
coherent states [25].

The authors are grateful to the Benasque Center for
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Michael M. Wolf,1 David Pérez-Garcı́a,2 and Geza Giedke1

1Max-Planck-Institute for Quantum Optics, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
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We investigate the capacity of bosonic quantum channels for the transmission of quantum information.
We calculate the quantum capacity for a class of Gaussian channels, including channels describing optical
fibers with photon losses, by proving that Gaussian encodings are optimal. For arbitrary channels we show
that achievable rates can be determined from few measurable parameters by proving that every channel
can asymptotically simulate a Gaussian channel which is characterized by second moments of the initial
channel. Along the way we provide a complete characterization of degradable Gaussian channels and
those arising from teleportation protocols.
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One of the aims of quantum information theory [1] is to
follow the ideas of Shannon and to establish a theory of
information based on the rules of quantum mechanics. A
key problem along this way is the calculation of the
quantum capacity of noisy quantum channels. That is, the
question how much quantum information (measured in
number of qubits) can be transmitted coherently through
a channel such as a lossy optical fiber, or stored reliably in
a quantum memory—the future version of present-day
hard drives? Despite substantial progress [2,3] a general
computable formula for this capacity, comparable to
Shannon’s seminal coding theorem for classical informa-
tion, is not in sight.

In this Letter, we focus on the special case of bosonic
channels, in which a collection of bosonic modes is used to
transmit (quantum) information. Arguably, this is the prac-
tically most important class of channels, since quantum
information is almost invariably sent using photons: be it
through the ubiquitous optical fibers, in free space, or in the
microwave range via superconducting transmission lines
(cf. [4]). In addition to the transmission in space, bosonic
channels also play a major role for ‘‘transmission in time,’’
i.e., in quantum memories. Several of the most advanced
light-matter interfaces [5] make use of atomic ensembles to
store photonic quantum information in collective atomic
degrees of freedom which are in turn well described by
bosonic modes. The quantum capacity of the correspond-
ing channel is an adequate figure of merit for such devices.

The Letter has two parts in which we first deal with
incomplete knowledge of the physical channel and then
explicitly determine the capacity for some of the most
relevant cases. In the first part we prove that the quantum
capacity of any bosonic channel T is lower bounded by that
of a corresponding Gaussian channel TG, which can be
derived from measurable moments of T. This implies that
for determining and certifying achievable rates for the
transmission of quantum information through T we need
not know the channel exactly (which might be hardly
possible in infinite dimensions), but merely its second

moments, i.e., a few measurable parameters. In the second
part we then explicitly calculate the quantum capacity of a
class of Gaussian channels, which includes the important
case of attenuation channels modeling optical fibers with
photon losses and broadband channels where losses and
photon number constraints might be frequency dependent.
Along the way we provide two tools that might be of
independent interest: a complete characterization of de-
gradable Gaussian channels and of those arising from tele-
porting through Gaussian states.

Preliminaries.—Before we derive the main results we
will briefly recall the basic notions [6,7]. Consider a bo-
sonic system of N modes characterized by N pairs of
canonical operators �Q1; P1; . . . ; QN; PN� �: R for which
the commutation relations �Rk; Rl� � i�kl are represented
by the symplectic matrix � � �Nk�1�i�y�. The exponen-
tials W� :� ei�R, � 2 R2N are called Weyl displacement
operators. Their expectation value, the characteristic func-
tion, ���� :� Tr��W�� is the Fourier transform of the
Wigner function and for Gaussian states

 ���� � ei��d��1=4�����; (1)

with first moments dk � Tr��Rk� and covariance matrix
(CM) �kl :� Tr��fRk � dk; Rl � dlg	�. Note that coher-
ent, squeezed and thermal states in quantum optics are all
Gaussian states.

Gaussian channels [7,8] transform Weyl operators as
W� � WX�e

��1=4��Y� and act on covariance matrices as

 � � XT�X 	 Y: (2)

Particularly important instances of single-mode Gaussian
channels are attenuation and amplification channels for
which X �

����
�
p

1 and Y � j�� 1j1. For 0 
 � 
 1 this
models a single mode of an optical fiber with transmissiv-
ity � where the environment is assumed to be in the
vacuum state. The latter reflects the fact that thermal
photons with optical frequencies are negligible at room
temperature. For �> 1 the channel becomes an amplifi-
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cation channel, where the noise term Y is now a conse-
quence of the Heisenberg uncertainty.

Teleportation channels.—We will now derive the form
of Gaussian channels which are obtained when teleporting
through a centered bipartite Gaussian state. As this is
useful for applying but not necessary for understanding
the following it might be skipped by the reader. Let

 � �
�A �C
�TC �B

� �

be the CM of a Gaussian state of NA 	 NB modes with
NA � NB. Assume Bob wants to teleport a quantum state
of NB modes with CM � to Alice. Using the standard
protocol [9] he sends pairs of modes from � and �B
through 50:50 beam splitters, measures the Q and P quad-
ratures, and then communicates the outcomes. Depending
on the latter Alice applies displacements to the modes in
�A. The simplest way of deriving an expression for the
output is to start with the Wigner representation and to
assume that the state to be teleported is a centered
Gaussian. The Wigner function before the measurement
is up to normalization given by exp���MT

BS�� �
���1MBS��, where MBS corresponds to the beam-splitter
operation. With � � ��A; �B; �B0 � the final Wigner function
is then proportional to

 

Z
d�Bd�B0e

���MT
XM

T
BS�����

�1MBSMX��; (3)

where MX incorporates the displacements, i.e., it is the
identity matrix plus an arbitrary 2NB � 2NB off-diagonal
block which maps the 2NB measurement outcomes onto
the respective displacements. To circumvent integrating
Eq. (3) we can now go to the characteristic function, i.e.,
the Fourier transformed picture. The integration then boils
down to picking out the upper left block of the inverted
matrix �MT

XM
T
BS�� � ��

�1MBSMX�
�1. The inversion is,

however, trivial since M�1
BS � MT

BS and M�1
X is obtained

fromMX by changing the sign of all off-diagonal entries. In
this way we obtain that the input CM is transformed to

 � � XT�X 	 ��A 	 �C�X	 ��C�X�T 	 XT�T�B�X� ;

(4)

where � � diag�1;�1; 1;�1; . . .� and X is such that
���
2
p
X

is the matrix of displacement transformations, i.e., the gain
which is typically chosen to be

���
2
p

1.
Clearly, Eq. (4) has the form (2) and following the above

lines it is straight forward to show that the channel is
Gaussian and maps any (not necessarily centered
Gaussian) input characteristic function �in into

 �out��� � �in�X������ ��X��: (5)

For standard protocols (X � 1) on single modes (NA �
NB � 1) this was derived in [10].

Achievable rates for arbitrary channels.—The subject of
interest is the quantum capacity Q�T� of an arbitrary, a
priori unknown, channel T. We will show how one can

certify achievable rates for the transmission of quantum
information through T by only looking at the CM � of a
state �T � �T � id�� � which is obtained by sending half
of an arbitrary entangled state  through the channel. �
could be determined by homodyne measurements. The
argument combines (i) the relation between entanglement
distillation and quantum capacities observed in [11],
(ii) the extremality of Gaussian states shown in [12], and
(iii) the explicit form of Gaussian teleportation channels
derived in the previous section. All together this leads to
the chain of inequalities

 Q�T�  D ��T�  D �G��T��  Q�TG�: (6)

Here D ��T� is the distillable entanglement under proto-
cols with one-way communication (from Bob to Alice).
Since a classical side channel does not increaseQ�T� this is
clearly a lower bound to the capacity as Alice and Bob
could simply first distill �T and then use the obtained
maximally entangled states for teleportation [11]. The
second inequality uses that replacing �T by a Gaussian
state G��T� with the same CM � can only decrease the
distillable entanglement [12] (see Fig. 1 for an operational
meaning). Finally, if we use the Gaussian state in turn as a
resource for establishing a teleportation channel TG we end
up with the sought inequality Q�T�  Q�TG�. TG is then
the Gaussian channel in Eqs. (4) and (5), which is for a
fixed teleportation protocol (a fixed matrix X) completely
determined by �.

Bounds on the quantum capacity of Gaussian channels
were derived in [13,14] and we will show below that it can
be calculated exactly for some important cases. Note that a
simple bound forQ�T� can be obtained from a lower bound
to D �G��T��, the conditional entropy of the Gaussian
state with CM �, i.e., Q�T�  S��A� � S���.

Before we proceed, two comments on the quality of the
above bound and its operational meaning are in order: The
given argument holds for arbitrary T and  . However,
since we bound by Gaussian quantities the inequality might

 

T

T

Alice Bob

FIG. 1. In order to obtain a Gaussian channel from an arbitrary
quantum channel T Bob (the sender) prepares n instances of an
entangled state  half of which he sends through T�n. After
applying two arrays of 50:50 beam splitters to the output ��nT �
��T � id�� ���n the n reduced states will converge to a Gaussian
state G��T� (with the same CM as �T) which can in turn be used
to establish a Gaussian teleportation channel TG.
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become trivial [i.e., Q�TG� � 0 though Q�T� � 0] if both
T and  are too far from being Gaussian. On the other
hand, if T is Gaussian and j i � �coshr��1P

n�tanhr�njnni
is a two-mode squeezed state, then in the limit r! 1 the
inequality becomes tight, i.e., Q�TG� ! Q�T� with expo-
nentially vanishing gap. This also indicates how (bounds
on) the rate achievable by a given channel can be probed
experimentally: sending part of a two-mode squeezed state
through T and measuring the second moments of the
resulting state allows to computeQ�TG� using the formulas
below.

Quantum capacity of Gaussian channels.—It was
proven in [2] that the quantum capacity of a quantum
channel T can be expressed as

 Q�T� � lim
n!1

1

n
sup
�
J��; T�n�; (7)

 J��; T� � S�T����� S��T � id�� ��; (8)

where  is a purification of � and J is known as the
coherent information. In general, the calculation of Q�T�
from the above formula is a daunting task since (i) the
coherent information is known to be not additive, i.e., the
regularization n! 1 is necessary, and (ii) due to lacking
concavity properties there are local maxima which are not
global ones. On top of this, for bosonic channels the
optimization is over an infinite dimensional space.

Fortunately, for a class of Gaussian channels including
the important case of the lossy channel, these obstacles can
be circumvented by exploiting recent results on degrad-
ability of channels [3,15] and extremality of Gaussian
states [12].

To this end consider a channel T��S� � TrE�U��S �
’E�Uy� expressed in terms of a unitary coupling be-
tween the system S and the environment E which is ini-
tially in a pure state ’E. The conjugate channel Tc��S� �
TrS�U��S � ’E�U

y� is defined as a mapping from the
system to the environment. As shown in [3] the coherent
information can be expressed in terms of a conditional
entropy if there exists a channel T0 such that T0 � T �
Tc; in this case T is called degradable. More precisely, if
~�S0E0 is the extension of the state ~�S0 � T0 � T��� to the
environment E0 of T0, then

 J��; T� � S�~�S0E0 � � S�~�S0 � �: S�E0jS0�: (9)

The conditional entropy S�E0jS0� is known to be strongly
subadditive [1], i.e., for a composite system S�E012jS

0
12� 


S�E01jS
0
1� 	 S�E

0
2jS
0
2�. This has important consequences:

for a set fTig of degradable channels J��;�iTi� 
P
iJ��i; Ti�, where �i are the corresponding reduced states,

and if each Ti is a Gaussian channel, we have in addition

 J��;�iTi� 

X
i

J��i; Ti� 

X
i

J�G��i�; Ti�: (10)

The last inequality follows from the extremality of
Gaussian states with respect to the conditional entropy

[7,12] together with the fact that for Gaussian channels
Tc can be chosen to be Gaussian and the CM is transformed
irrespective of whether the input was Gaussian or not. As a
consequence, if Ti are degradable Gaussian channels, then

 Q��iTi� �
X
i

sup
�G
J��G; Ti�; (11)

where the supremum is now taken only over Gaussian
input states �G. Calculating the latter for Gaussian chan-
nels is now a feasible task which was solved for the single-
mode case in [13] and in [14] for broadband channels under
power constraints using Lagrange multipliers. In fact, if we
impose a constraint on the input energy of the formP
i!iNi � E, where Ni is the average input photon number

of mode iwith corresponding frequency!i, then the above
argumentation still holds, since the constraint just depends
on the CM. The importance of Eq. (11) stems from the fact
that a large class of Gaussian channels is indeed degrad-
able, as shown in [15] and extended below. In particular,
we can apply Eq. (11) to attenuation (amplification) chan-
nels with transmissivity � (gain

����
�
p

). Together with the
optimization carried out in [13] [Eq. (5.9)] this yields (see
Fig. 2)

 Q��� � maxf0; log2j�j � log2j1� �jg: (12)

Note that the quantum capacity of every degradable
Gaussian channel can easily be calculated as J becomes
a concave function of the CM such that local maxima are
global ones.

Degradable Gaussian channels.—We will now investi-
gate the condition under which Eq. (11) was derived and
characterize the set of degradable Gaussian channels, ex-
tending the results of [15]. To this end we represent the
channel in terms of a unitary coupling between the system
with NS modes and a (minimally represented) environment
ofNE 
 2NS modes which are initially in the vacuum state
with CM �E � 1. The interaction is described by a sym-

 

l/ la

Q

2

4

6

8

10

0.2 0.4 0.6 0.8

FIG. 2. Quantum capacity of a channel with photon losses as a
function of the transmission length l in terms of the absorption
length la, i.e., � � e�l=la . For quantum memories l and la are
storage and decay time. The capacity vanishes for l=la � ln2 �
0:693, where the channel can be considered to be part of a
symmetric approximate cloning channel.
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plectic matrix of size 2�NE 	 NS� � 2�NE 	 NS�which we
write in block form as

 S �
A B
C D

� �

[16]. The output CM of the channel T: � � X�XT 	 Y is
then simply the lower right block of S��E � ��ST (i.e.,
D � X and C�ECT � Y), whereas the conjugate channel
Tc corresponds to the upper left block.

Let us first focus on the case NS � NE and assume for
simplicity that the blocks in S are nonsingular. A channel
is degradable if Tc � T�1 is completely positive which is
for a Gaussian trace preserving map equivalent to the con-
dition [8]

 Y 	 i�  iX�XT: (13)

Inserting the above block structure and using [16] shows
that complete positivity of Tc � T�1 is equivalent to

 0 
 �1	 i�� � K�1	 i��KT; K � CTD�T�D�1C:

(14)

Expressing this in terms of X and Y finally gives [16]

 �2X�XT�T � 1�Y  0: (15)

Similarly we can derive a condition for degradability of Tc
(antidegradability of T) which is again given by the ex-
pressions (14) and (15) which have then to be negative
instead of positive semidefinite.

Since for NE � NS � 1 X is a 2� 2 matrix and thus
X�XT�T � 1 detX, condition (15) implies that either T or
Tc is degradable, as shown in [15]. Hence, as antidegrad-
able channels have zero quantum capacity (due to the no-
cloning theorem), the quantum capacity of every Gaussian
channel with NS � NE � 1 can easily be calculated. In
fact, by using the freedom of acting unitarily before and
after the channel (which does not change its capacity) one
can generically bring the channel to a normal form [17,18]
which only depends on the symplectic invariant detX such
that Q�T� of every such channel is given by Eq. (12) with
� � detX.

Let us finally briefly comment on the case NE � NS. If
the environment is smaller than the system, then we can
easily follow the above lines for instance by choosing a
representation of the channel with larger NE equal to NS
[19]. It is worth mentioning that if S corresponds to a
passive (i.e., number preserving) operation, then for NE <
NS there are always unaffected modes such that Q�T� � 1
without additional constraints. If NE > NS then Eq. (15) is
merely a necessary, whereas Eq. (14) is still a necessary
and sufficient condition for degradability [19]. Applying
the latter to a general single-mode channel with NS � 1,
NE � 2 shows that generically one has neither degradabil-
ity nor antidegradability. Hence, it remains open whether
in this case the capacity is given by Eq. (11). However, we
can easily derive an upper bound by exploiting the fact that

every Gaussian channel T can be decomposed as T � T1 �
T2, where T2 is a minimal noise channel [8] for which
NE � NS with X2 � X, Y2 
 Y and T1 is a classical noise
channel for which X1 � 1, Y1 � Y � Y2. Because of the
bottleneck inequality for capacities (cf. [13]) we have
Q�T� 
 Q�T2� where the latter is in the single-mode case
again given by Eq. (12) with � � detX. A lower bound is
always given by the right-hand side of Eq. (11) as calcu-
lated in [13].
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Super-activation for Gaussian channels requires squeezing
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The quantum capacity of bosonic Gaussian quantum channels can be non-additive in a particularly striking
way: a pair of such optical-fiber type channels can individually have zero quantum capacity but super-activate
each other such that the combined channel has strictly positive capacity. This has been shown in [Nature Pho-
tonics 5, 624 (2011)] where it was conjectured that squeezing is a necessary resource for this phenomenon. We
provide a proof of this conjecture by showing that for gauge covariant channels a Choi matrix with positive
partial transpose implies that the channel is entanglement-breaking. In addition, we construct an example which
shows that this implication fails to hold for Gaussian channels which arise from passive interactions with a
squeezed environment.

INTRODUCTION

A question at the heart of information theory—
classical as well as quantum—is, how much informa-
tion can be transmitted reliably through a given noisy
channel. For classical memoryless channels Shannon
posed and answered this questions in his groundbreak-
ing work [1] in which he provided a tractable formula
for the capacity of any such channel. In quantum
information theory, despite considerable progress, no
closed general expression is known for the classical
or quantum capacity. What complicates matters in the
quantum world is that quantum correlations between
different channel uses can improve the performance
or, mathematically speaking, lead to non-additivity ef-
fects. One of the most striking of these issuper-
activationof the quantum capacity: a pair of channels
can individually have zero quantum capacity, but when
combined give rise to a channel whose quantum ca-
pacity is strictly positive [2]. In [3] it was shown that
this effect can occur for Gaussian channels. These de-
scribe evolutions of the continuous degrees of freedom
of light in free space and in optical fibers as well as the
time evolution of quantum memories which are based
on collective excitations [4]. One of the channels used
in the construction in [3] can indeed be regarded as
a simple model of a single-mode optical fiber. The
second channel, however, involves a high degree of
squeezing within the interaction between a two-mode
system and its environment—something considerably
more difficult to realize. The authors of [3] write: “Al-
though an example using only linear optical elements
would be desirable, we suspect, but cannot prove, that
none exist.” The present paper aims at settling this con-
jecture in the affirmative.

Currently, there is basically one approach towards

∗Electronic address: daniel.lercher@ma.tum.de
†Electronic address: giedke@mpq.mpg.de
‡Electronic address: m.wolf@tum.de

super-activation. This is based on the fact that there
are only two classes of channels known, which have
provably zero quantum capacity: channels with a sym-
metric extension and so-called PPT channels. Since
both classes are closed with respect to parallel compo-
sition, the only combination with a chance of success-
ful super-activation is to take one channel from each
class. In this work we show that if we restrict ourselves
to passive Gaussian channels (i.e., those not involving
squeezing), then the set of PPT channels becomes a
strict subset of the set of channels with a symmetric
extension, therefore rendering super-activation impos-
sible.

PREREQUISITES

We begin with recalling basic notions and results
needed for our purpose.

Gaussian states and channels: We consider a
continuous variable system ofn bosonic modes whose
description involvesn pairs of generalized position and
momentum operatorsQk, Pk which may correspond to
the quadratures of electromagnetic field modes. With
the definitionR := (Q1, P1, . . . , Qn, Pn) the canoni-
cal commutation relations read

[Rk, Rl] = i (σn)kl 1, with σn :=

n⊕

i=1

(
1

−1

)

(1)
being the symplectic form.
We associate with every density operatorρ its displace-
ment vectord, with dk := tr [ρRk] and its covariance
matrix Γ with Γkl := tr [ρ{Rk − dk1, Rl − dl1}+],
k, l = 1, . . . , 2n. d andΓ contain the first and sec-
ond moments of the corresponding phase space distri-
bution.
A Gaussian state is defined as a quantum state with a
Gaussian Wigner phase space distribution function, see
[5]. In particular it is completely specified byd andΓ,
the latter being any real symmetric matrix that satisfies
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2

the uncertainty relation

Γ ≥ iσn. (2)

In the following all states are assumed to be centered
(i.e. d = 0) since displacements in phase space are
local unitaries in Hilbert space which are irrelevant for
our purpose.

A completely positive trace-preserving map which
preserves the Gaussian nature of states is calledGaus-
sian channel, see [6]. Again neglecting its effect ond
it can be characterized by its action on covariance ma-
trices, which is given by

Γ 7→ XΓXT + Y, X, Y = Y T ∈ M2n(R). (3)

For a pair of real matricesX andY = Y T to describe
a bona fide Gaussian channel it is necessary and suffi-
cient that

Y + i
(
σn − XσnXT

)
≥ 0. (4)

Unitary Gaussian evolutions then correspond toY = 0
andX being real symplectic, i.e.X ∈ Sp(2n,R) =
{S ∈ M2n(R)| SσnST = σn}. Every Gaussian chan-
nel can be realized by a unitary dilation [7], invoking
nE ≤ 2n environmental modes. This means that there
exist a unitaryU representingS on Hilbert space and a
Gaussian stateρE such that density matrices evolve as

ρ 7→ trE

[
U(ρE ⊗ ρ)U †] . (5)

On the level of covariance matricesΓE andΓ the over-
all evolution then looks like

(ΓE ⊕ Γ) 7→ S (ΓE ⊕ Γ)ST . (6)

In the notationS =

(
S1 S2

S3 S4

)
that reflects the de-

composition of the total system into the environment
and then-modes system, one findsX = S4 and Y =
S3ΓEST

3 .

The Symplectic Orthogonal Group: A special
case of a unitary Gaussian evolutions is the one gen-
erated by a passive Hamiltonian

H =

N∑

k,l=1

hkla
†
kal + h.c., hkl ∈ C, (7)

with annihilation operatorak := (Qk + iPk)/
√

2. Pas-
sive Hamiltonians comprise the set of quadratic Hamil-
tonians, which commute with the total particle number
operator.

A unitary Gaussian evolution generated by a pas-
sive Hamiltonian as in (7) corresponds to a symplec-
tic orthogonal matrixS ∈ K(m) := Sp(2m,R) ∩
O(2m,R). Mathematically,K(m) is the largest com-
pact subgroup of the real symplectic group. Physically,

it corresponds to the set of operations which can be im-
plemented using beam splitters and phase shifters only
[8].

K(m) is isomorphic toU(m) [9]. This can be ver-
ified easily: First one observes that elementsR ∈
M2m(R) in the commutant ofσm have the form

[σm, R] = 0 ⇔ R = (rij)
m
i,j=1, (8)

rij =

(
aij bij

−bij aij

)
, aij , bij ∈ R.

With this result one verifies that the map

Λ : U(m) → K(m) (9)

(cij) 7→ (Cij), Cij =

(
ℜ(cij) ℑ(cij)

−ℑ(cij) ℜ(cij)

)

is indeed a group isomorphism.
At this point we add two observations that will help

us later to exploit the particular structure of real sym-
plectic orthogonals (9). The set

Cn :=

{(
A B

−B A

)∣∣∣∣
A, B ∈
Mn(R)

}
(10)

together with the operation of matrix multiplication
forms a semigroup with neutral element. As such, it
is isomorphic toMn(C). An isomorphism is given by

(
A B

−B A

)
7→ A + iB . (11)

And finally, for complex square matricesA, B ∈
Mn(C) one finds the following criterion for positive-
semidefiniteness [10]

(
A B

−B A

)
≥ 0 ⇔ A ± iB ≥ 0 . (12)

Properties of Gaussian Channels: We call a
quantum channelT PPT (for “positive partial trans-
pose”) ifθ ◦ T is completely positive, whereθ denotes
time reversal, which in Schrödinger representation cor-
responds to transposition. A Gaussian channel charac-
terized by(X, Y ) is PPT iff [11]

Y − i
(
σn + XσnXT

)
≥ 0. (13)

A Gaussian channel is entanglement-breaking if and
only if Y admits a decomposition into real matricesM
andN such that [12]

Y = M + N, M ≥ iσn, N ≥ iXσnXT . (14)

This reflects the fact that any entanglement-breaking
quantum channel consists of a measurement, followed
by a state preparation depending on the outcome of
the measurement [13, 14]. As a consequence, every
entanglement-breakingchannel has a symmetric exten-
sion.
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3

Definition 1. In accordance with [15] we call a Gaus-
sian channel characterized by(X, Y ) “gauge covari-
ant”, if [X, σn] = [Y, σn] = 0.

Definition 2. We call a Gaussian channel “passive”
if it can be generated by a passive HamiltonianH (7)
that couples the system to an environment in a Gibbs
stateρE of a passive HamiltonianH ′:

ρE =
e−βH′

tr [e−βH′ ]
, H ′ =

nE∑

k,l=1

h′
kla

†
kal + h.c. (15)

One can show that, as a consequence of the normal
mode decomposition of Gaussian states, (15) is equiv-
alent to [ΓE , σnE ] = 0, whereΓE is the covariance
matrix of the Gaussian stateρE and σnE is the cor-
responding symplectic form. This implies for passive
Gaussian channels

[Y, σn] =
[
S3ΓEST

3 , σn

]
= 0, (16)

as one derives from the block structure ofS3 (9) and the
analogous structure of the elements in the commutant
of σn (8). Similarly we find[X, σn] = [S4, σn] = 0.
Hence, every passive Gaussian channel is gauge covari-
ant.

MAIN RESULT

Proposition 3. A gauge covariant Gaussian channel is
entanglement-breaking iff it is PPT.

Proof. Evidently, entanglement-breaking implies PPT,
so we have to prove the reverse implication. To this end
it is convenient to reorder the canonical coordinates as
(Q1, . . . , QN , P1, . . . , PN ). In this notation

σm =

(
1m

−1m

)
and Y =

(
Y1 Y2

−Y2 Y1

)
.

The latter follows from (16) together with (8).
We prove first that we can restrict ourselves to the case
X = X̂ ⊕ X̂, where by virtue of the symplectic sin-
gular value decomposition [16] the matrix̂X is diag-
onal and non-negative. Assume, this is not the case.
Then we can replace the passive evolutionU , which
describes the interaction between system and environ-
ment, byU ′ = (1E ⊗ UG)U(1E ⊗ UF ). UF andUG

are passive unitary evolutions that act only on the sys-
tem. They correspond to symplectic transformations
F, G ∈ K(n) in phase space. We denote the resulting
channel byT ′. T is PPT iffT ′ is PPT. The same holds
for the entanglement-breaking property. We find

X ′ = GXF (17)

=

(
G1 G2

−G2 G1

)(
X1 X2

−X2 X1

)(
F1 F2

−F2 F1

)
,

with F1 + iF2, G1 + iG2 ∈ U(n).

Now we can exploit the isomorphism (11) and choose
F1,2 andG1,2 such that(G1 + iG2)(X1 + iX2)(F1 +

iF2) =: X̂ is the singular value decomposition ofX1+
iX2. Hence,X ′ = X̂ ⊕ X̂ with X̂ diagonal and non-
negative.

We will now exploit criterion (14) by showing that
the decomposition ofY into M := Y − X2 andN :=
X2 obeys the required conditions, which read:

N − iXσXT = X(1− iσ)XT ≥ 0, (18)

M − iσ =

(
Y1 − X̂2 Y2 − i1

−Y2 + i1 Y1 − X̂2

)
≥ 0

The first inequality in (18) follows simply from(1 −
iσ) ≥ 0. In order to arrive at the second inequality we
use (12) and rewrite the inequality as

Y1 − X̂2 ± i(Y2 − i1) ≥ 0 ⇔
Y1 ± iY2 − (X̂2 ∓ 1) ≥ 0 ⇔
Y1 ± iY2 − (X̂2 + 1) ≥ 0 ⇔{

Y1 + iY2 + (X̂2 + 1) ≥ 0

Y1 − iY2 − (X̂2 + 1) ≥ 0
⇔

Y1 ± i
(
Y2 − i(1+ X̂2)

)
≥ 0 .

(19)

Here we used two elementary facts: (i) a matrix is pos-
itive iff its complex conjugate is positive, and (ii) the
sum of two positive matrices is again positive. In the
last line, with (12), we recover the PPT criterion (13)

Y − i(σ + XσXT ) = Y − iσ(1+ X2) =

=

(
Y1 Y2 − i(1+ X̂2)

−Y2 + i(1+ X̂2) Y1

)
≥ 0 ,

which concludes the proof.

Proposition 4 (No super-activation without squeez-
ing). Let T1, T2 be passive Gaussian quantum chan-
nels. If each channel either has a symmetric extension
or satisfies the PPT property, thenQ (T1 ⊗ T2) = 0.

Proof. Let Ti (i = 1 or 2) be PPT.Ti is gauge covari-
ant, because it is passive, and according to Prop. 3 it is
thus entanglement-breaking. In particular, it has a sym-
metric extension, which then also holds forT1 ⊗ T2.
Hence, the combined channel has zero quantum capac-
ity.

PASSIVE INTERACTIONS WITH A SQUEEZED
ENVIRONMENT

We now consider an example of a Gaussian channel
T for n = nE = 2. T is generated by a passive interac-
tion, as in (7), but the environment is assumed to be in
a mixed squeezed stateρE (i.e. det ΓE 6= 1, ΓE ≥ iσ2

andΓE � 14). T will be shown to be PPT but not
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entanglement-breaking. We omit the index of12 and
choose

ΓE = 3+
√
13

2




5 3
5 −3

3 2
−3 2


 , (20)

S =
√

1
3




−
√

21

−1
1 √

21

1 √
21√

21

1


 . (21)

S represents two beamsplitters: one of transmittivity
2
3 that couples the first system mode to the first mode
of the environment and a second of transmittivity1

3
that acts between the two remaining modes. The cor-
responding(X, Y ), which characterize the Gaussian
channel, then read

X =
√

1
3

( √
21

1

)
, (22)

Y = 3+
√
13

6




5 3
√

2

5 −3
√

2

3
√

2 4

−3
√

2 4


 .(23)

Proposition 5. The Gaussian channel determined
by (22) exhibits the PPT property but it is not
entanglement-breaking.

Proof. Equations (4) and (13) are satisfied as one veri-
fies explicitly.
It remains to show thatT is not entanglement-breaking.
With the inequalities (14) in mind we observe that this
is equivalent to

max
(λ,M)∈D

λ < 1, where (24)

D =





(λ, M) ∈
R× M4(R)

∣∣∣∣∣∣

M = MT ,
M ≥ λiσ,

Y − M ≥ λiXσXT



 .

This is a semi-definite program [17], so that the corre-
sponding dual program can be used to construct a wit-
ness which certifies (24). Its specific form is given in
the appendix.

DISCUSSION

Squeezing is a useful resource in many contexts,
such as entanglement generation, metrology, informa-
tion coding or cryptography. When restricted to the
practically relevant Gaussian regime, we know that it
is sometimes even a necessary resource. This is the
fact for entanglement generation [18] and, as we have
proven in this work, as well for super-activation of

the quantum capacity. In the latter case, however, the
proof of necessity relies on the framework—the basic
idea behind the construction of all currently known in-
stances of super-activation. In order to make a stronger
statement, we would need to know whether there are
other types of channels with zero quantum capacity
[19].

Another question, which suggests itself, is how
much squeezing is necessary within the given frame-
work. Unfortunately, we do at the moment not see an
approach towards settling this quantitative question.

Acknowledgements: We acknowledge financial
support from the European project COQUIT, the
CHIST-ERA/BMBF project CQC and the QCCC pro-
gramme of the Elite Network of Bavaria.

APPENDIX

In the following we show how to certify (24). Note
that with the notatioñY = 04⊕Y , X̃ = iσ⊕ iXσXT ,
M̃ = M ⊕ −M , the two inequalities in the definition
of D can be rewritten as

λX̃ + Ỹ + M̃ ≥ 0. (25)

In the following we confirm (24) by showing that for
all (λ, M) ∈ D, λ ≤ 0.94. For this purpose, let us
define the witness matrixΩ,

Ω = (A + iB) ⊕ (A + iC). (26)

A =




a1 −a3

a1 a3

−a3 a2

a3 a2


 , a =




0.512
0.722
0.592


 ,

B =




b1 b3
−b1 b3

−b3 b2
−b3 −b2


 , b =




−0.212
0.552

−0.368


 ,

C =




c1 c3
−c1 c3

−c3 c2
−c3 −c2


 , c =




0.39
−0.3
0.368


 .

and state some of its properties:

(i) Ω is positive definite.

(ii) ∀(λ, M) ∈ D : tr
[
ΩM̃

]
= itr [(B − C)M ] =

0, since(B−C) is anti-symmetric andM is sym-
metric.

(iii) tr
[
ΩX̃

]
= 2(b1 + b2 + 2

3c1 + 1
3c2) = 1

(iv) tr
[
ΩỸ

]
=

(
1 +

√
13
3

) (
5a1 + 4a2 − 6

√
2a3

)
<

0.94
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5

Let now be(λ, M) ∈ D. Applying (ii) and (iii) in the
first line and (i) together with (25) in the third line leads
to

λ − tr
[
ΩỸ

]
= −λtr

[
ΩX̃

]
− tr

[
ΩỸ

]
− tr

[
ΩM̃

]

= −tr
[
Ω
(
λX̃ + Ỹ + M̃

)]
(27)

≤ 0.

With (iv) we obtainλ < 0.94.
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The notion of “paired” fermions is central to important condensed-matter phenomena such as superconduc-
tivity and superfluidity. While the concept is widely used and its physical meaning is clear, there exists no
systematic and mathematical theory of pairing that would allow us to unambiguously characterize and system-
atically detect paired states. We propose a definition of pairing and develop methods for its detection and
quantification applicable to current experimental setups. Pairing is shown to be a quantum correlation different
from entanglement, giving further understanding in the structure of highly correlated quantum systems. In
addition, we will show the resource character of paired states for precision metrology, proving that the BCS
states allow phase measurements at the Heisenberg limit.

DOI: 10.1103/PhysRevA.79.012306 PACS number�s�: 03.67.Mn, 05.30.Fk, 71.10.�w

I. INTRODUCTION

The notion of pairing in fermionic systems is at least as
old as the seminal work of Bardeen, Cooper, and Schrieffer
explaining superconductivity �1�. The formation of fermionic
pairs with opposite spin and momentum is not only the
source for the vanishing resistance in solid-state systems, but
it can also explain many other interesting phenomena, like
superfluidity in helium-3 or inside a neutron star.

For instance, with recent progress in the field of ultracold
quantum gases, fermionic pairing has gained again a lot of
attention �2–9�. These experiments allow an excellent control
over many parameters inherent to the system, offering a
unique testing ground for existing theories and an explora-
tion of new and exotic phases. However, the notion of pair-
ing in these systems is less clear and sometimes even con-
troversial. Recent experiments on the BEC-BCS crossover
have caused a heated debate over whether the obtained data
were in agreement with pairing �7,10–12�. In addition, pair-
ing without superfluidity �13� has been observed in these
experiments, raising fundamental questions on quantum cor-
relations in fermionic many-body systems.

Motivated by these exciting experiments and the central
role pairing plays in many physical phenomena, and by the
perceived lack of accepted criteria to verify the presence of
pairing in a quantum state, we propose a clear and unam-
biguous definition of pairing intended to capture its two-
particle nature and to allow a systematic study of the set of
paired states and its properties. We employ methods and
tools from quantum-information theory to gain a better un-
derstanding of the set of fermionic states that display pairing.
In particular, we develop tools for the systematic detection
and for the quantification of pairing, which are applicable to
current experiments. Our approach is inspired by concepts
and methods from entanglement theory, thus building a
bridge between quantum-information science and
condensed-matter physics.

Since they contain nontrivial quantum correlations, paired
states belong to the set of entangled many-body states. How-
ever, pairing will turn out to be not equivalent to any known
concept of entanglement in systems of indistinguishable par-

ticles �14–29� but to represent a particular type of quantum
correlation of its own. We will show that these correlations
can be exploited for quantum-phase estimation. Hence pair-
ing constitutes a resource in state estimation using fermions
as much as entangled states with spins.

This paper is organized as follows. After the introduction
of the language necessary for the description of fermionic
systems in Sec. II, we will introduce the general framework
of pairing theory in Sec. III. This part includes our definition
of pairing and methods for its detection and quantification. In
order to validate the theory, we will apply it to two different
classes of fermionic states in Secs. IV and V. We start out
with pairing in fermionic Gaussian states in Sec. IV. The
interest in this family of states is twofold. First, the pairing
problem can be solved completely in this case, so that Gauss-
ian states are particularly interesting from a conceptual point
of view. Second, there exists a relation between pure fermi-
onic Gaussian states and the BCS states of superconductivity
�see Sec. II D for the details�, which are examples of paired
states par excellence. This enables us to translate methods
developed for the detection and quantification of pairing for
Gaussian states to the BCS states. The reader interested in
the application of our pairing theory to experimental appli-
cation is referred to Sec. V. There we study pairing for
number-conserving states, i.e., states commuting with the
number operator. This class includes the states appearing in
the BEC-BCS crossover, and we will develop tools for the
detection of pairing tailored for these systems. In Sec. VI, we
will show that certain classes of paired states constitute a
resource for quantum-phase estimation, proving that pairing
is a resource similar to entanglement.

II. FERMIONIC STATES

In this section, we review the basic concepts needed for
the understanding of fermionic systems. We start out with
some notation used for the description of fermionic systems
in second quantization in Sec. II A. As pairing is a special
sort of correlation, we continue with a review on quantum
correlations and entanglement in systems of indistinguish-
able particles in Sec. II B. This general part is followed by

PHYSICAL REVIEW A 79, 012306 �2009�

1050-2947/2009/79�1�/012306�20� ©2009 The American Physical Society012306-1

Kraus et al., Phys. Rev. A 2008: “Pairing in fermionic systems:...”

255

http://dx.doi.org/10.1103/PhysRevA.79.012306


the introduction of fermionic Gaussian states and number-
conserving states in Secs. II C and II D. The latter includes
the introduction of BCS states and their relation to the
Gaussian states. As this part is only necessary for the appli-
cation of the pairing theory to these concrete examples in
Secs. IV and V, it is possible to skip this part at the begin-
ning, and then refer to it later on.

A. Basic notation

We consider fermions on an M-dimensional single-
particle Hilbert space H=CM. All observables are generated
by the creation and annihilation operators aj

† and aj, j
=1, . . . ,M, which satisfy the canonical anticommutation re-
lations �CAR� �ak ,al�=0 and �ak ,al

†�=�kl. We say aj
† creates

a particle in mode �or single-particle state� ej, where
�ej��CM denotes the canonical orthonormal basis of H. In
general, for any normalized f �H, we define af ��kf jaj, the
annihilation operator for mode f .

Sometimes a description using the 2M Hermitian Majo-
rana operators c2j−1=aj

†+aj, c2j = �−i��aj
†−aj�, which satisfy

�ck ,cl�=2�kl, is more convenient.
The Hilbert space of the many-body system, the antisym-

metric Fock space over M modes, AM, is spanned by the
orthonormal Fock basis defined by

	n1, . . . ,nM
 = �a1
†�n1

¯ �aM
† �nM	0
 , �1�

where the vacuum state 	0
 fulfills aj	0
=0 ∀ j. The nj
� �0,1� are the eigenvalues of the mode occupation number
operators nj =aj

†aj. The N-particle subspace spanned by vec-
tors of the form �1� satisfying �ini=N is denoted by AM

�N�.
The set of density operators on the Hilbert space H
=AM ,AM

�N� is denoted by S�H�.
Linear transformations of the fermionic operators which

preserve the CAR are called canonical transformations. They
are of the form ck�ck�=�iOklcl, where O�O�2M� is an el-
ement of the real orthogonal group. These transformations
can be implemented by unitary operations UO on AM which
are �for det O=1� generated by quadratic Hamiltonians in the
cj �see, e.g., �30��. The subclass of canonical operations that
commute with the total particle number Nop=�ini are called
passive transformations. They take a particularly simple form
in the complex representation ak�ak�=�lUklal, where U is
unitary on the single-particle Hilbert space H, i.e., they de-
scribe �quasi�free time evolution of independent particles.
Canonical transformations that do not commute with Nop are
called active. They mix creation and annihilation operators.

B. Quantum correlations of fermionic states

The notion of “pairing” used in the description of super-
conducting solids, superfluid liquids, baryons in nuclei, etc.
is always associated with a correlated fermionic system. The
subject of quantum correlations in fermionic systems is vast
�see �31�, and for instance �32–34��. In recent years, there
has been renewed interest from the perspective of quantum-
information theory. There quantum correlations �also known
as entanglement� of distinguishable systems �qubits� play a
crucial role as a resource enabling certain state transforma-

tions or information-processing tasks. The detailed quantita-
tive analysis of quantum correlations motivated by this has
proven to be valuable also in the understanding of
condensed-matter systems �see �35� for a review�.

In contrast to the usual quantum-information setting,
which studies the entanglement of distinguishable particles,
the indistinguishable nature of the fermions is of utmost im-
portance in the settings of our interest. The existing concepts
for categorizing entanglement in systems of indistinguish-
able particles fall into two big classes: Entanglement of
modes �14–22� and entanglement of particles. Entanglement
of particles has been considered, e.g., in �23–29�, leading to
the concept of Slater rank �24,25�, being the generalization
of the Schmidt rank to indistinguishable particles. We show
in Sec. III that our definition of pairing does not coincide
with any of the existing ideas. We refrain from giving an
exhaustive review on the existing concepts, referring the in-
terested reader to the mentioned literature and references
therein, and we restrict ourselves to the following definition:

Definition II.1. A pure fermionic state �p
�N�= 	�p

�N�
��p
�N�	

�S�AM
�N�� is called a product state, if there exists a passive

transformation ak�ak� such that

	�p
�N�
 = �

j=1

N

aj�
†	0
 . �2�

A state �s is called separable, if it can be written as the
convex combination of product states, i.e.,

�s = �
p=1

K

�p�p
�Np�, �3�

where �p=1
K �p=1, �p�0 and all �p

�Np��S�AM
�Np�� are product

states. All other states are said to have “Slater number larger
than 1” and are called entangled �in the sense of �24,25��.

We denote the set of all separable states by Ssep and by
Ssep

�N��Ssep�S�AM
�N�� the set of all separable states of particle

number N.
Note that the sets Ssep, Ssep

�N� of separable states are convex
and invariant under passive transformations. Both properties
will be useful later on.

Separable states have only correlations resulting from
their antisymmetric nature and classical correlations due to
mixing. In the terminology of Refs. �24,25�, they have Slater
number one and describe unentangled particles. These states
will certainly not contain correlations associated with pair-
ing. �Note that they can be mode-entangled for an appropri-
ate partition of modes.�

Besides basis change, there are other operations that do
not create quantum correlations, and it is useful to see that
the set of separable states is invariant under them.

Lemma II.2. Let ��Ssep be a separable state. Then the
state after measuring the particle number nh=ah

†ah in some
mode h is separable for both possible outcomes nh=0,1.
Furthermore, �h� trah

���, the reduced state obtained by trac-
ing out the mode ah, is also separable.

Proof. As Ssep is convex, it is sufficient to prove the claim
for product states �. Let 	�
=� j=1

N af j

† 	0
 be the vector in Hil-
bert space corresponding to �. Our aim is to show that 	�
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= 	�0
+ 	�1
, where 	�l
 are product states and nh= l eigen-
states of the occupation number operator nh. If h is in the
span of �f1�k�N� or orthogonal to it, the state already is an nh
eigenstate and we are done. Otherwise, define fN+1 orthogo-
nal to the fk�N such that h�span�f1�k�N+1� and define an-
other orthonormal basis �gj� for the span with g1=h and g2
� fN+1− �hfN+1�h �here �hfN+1� denotes the inner product on
the single-particle Hilbert space�. Then we can write 	�

=afN+1

afN+1

† 	 j=1
N af j

† 	0
= �xag1
+yag2

�	 j=1
N+1agj

† 	0
 for some x ,y
�C. Hence, 	�
= 	�0
+ 	�1
 with 	�0
=x	 j=2

N+1agj

† 	0
 and
	�1
=−yah

†	 j=3
N+1agj

† 	0
, which both clearly are product states.
The reduced state trh�	�
��	� is the statistical mixture of
	�0
 and 	�1
 and therefore clearly separable. �

C. Fermionic Gaussian states

Fermionic Gaussian states are represented by density op-
erators that are exponentials of a quadratic form in the Ma-
jorana operators. A general multimode Gaussian state is of
the form

� = K exp−
i

4
cTGc� , �4�

where c= �c1 , . . . ,c2M�, K is a normalization constant, and G
is a real antisymmetric 2M
2M matrix. Every antisymmet-
ric matrix can be brought to a block-diagonal form

OGOT = �
j=1

M � 0 − � j

� j 0
� �5�

by a special orthogonal matrix O�SO�2M�.
From Eq. �4�, it is clear that Gaussian states have an in-

terpretation as thermal �Gibbs� states corresponding to a
Hamiltonian H that is a quadratic form in the ck, i.e., H
= i

4cTGc= i
4�k�lGkl�ck ,cl�, and the form Eq. �5� shows that

every Gaussian state has a normal-mode decomposition in
terms of M single-mode “thermal states” of the form
�exp�−�a†a�. From this one can see that the state is fully
determined by the expectation values of quadratic operators
aiaj and ai

†aj. These are collected in a convenient form in the
real and antisymmetric covariance matrix , which is defined
via

kl =
i

2
tr���ck,cl�� . �6�

It can be brought into block-diagonal form by a canonical
transformation,

OOT = �
i=1

M � 0 � j

− � j 0
� . �7�

For every valid density operator, � j � �−1,1�, and the eigen-
values of  are given by �i� j. Hence, every  corresponding
to a physical state has to fulfill i�1 or, equivalently, †

�1, and to each such  corresponds a valid Gaussian density
operator where the relation between G and  is given by
� j =tanh�� j /2�. The covariance matrix of the ground state of
H is obtained in the limit 	� j	→�, i.e., � j→sgn�� j�. In fact,

this shows that every pure Gaussian state is the ground state
to some quadratic Hamiltonian. The purity of the state can be
easily determined from the covariance matrix as a Gaussian
state is pure if and only if 2=−1 �see, e.g., �36��.

As mentioned, Gaussian states are fully characterized by
their covariance matrix and all higher correlations can be
obtained from  by Wick’s theorem �see, e.g., �36�� via

iptr��cj1
¯ cj2p

� = Pf� j1,. . .,j2p
� , �8�

where 1� j1�¯� j2p�2M and  j1,. . .,j2p
is the correspond-

ing 2p
2p submatrix of . Pf� j1,. . .,j2p
�2=det� j1,. . .,j2p

� is
called the Pfaffian.

In some cases it is more appropriate to use a different
ordering of the Majorana operators, the so-called q-p order-
ing c= �c1 ,c3 , . . . ,c2M−1 ;c2 ,c4 , . . . ,c2M�, opposed to the
mode-ordering introduced at the beginning. When using the
q-p ordering, the relation between the real and complex rep-
resentation is given by

cT =�aT, � = � 1 1

i1 − i1
� , �9�

where a= �a1 , . . . ,aM ,a1
† , . . . ,aM

† �. The transformation matrix
� fulfills ��†=21.

In the q-p ordering, the covariance matrix obtains the fol-
lowing block structure:

̃ = � q qp

− qp
T p

� . �10�

Finally, for some purposes it is more convenient to use the
complex representation, where the covariance matrix is of
the form

c =
1

4
�†̃�̄ = �Q R

R̄ Q̄
� , �11�

where Qkl= �i /2�ak ,al�
, Rkl= �i /2�ak ,al
†�
, and Q̄ denotes the

complex conjugate. Note that R†=−R and QT=−Q and hence

c
T=−c. The condition ̃̃†�1 takes the form 4cc

†�1.
The description of � by its covariance matrix is especially

convenient to describe the effect of canonical transforma-
tions, i.e., time evolutions generated by quadratic Hamilto-
nians: if ck��lOklcl in the Heisenberg picture, then
�OOT in the Schrödinger picture. For a passive transfor-
mation ak�ak�=�lUklal, the q-p-ordered Majorana operators
transform as

cT � c�T = OpcT, Op = � X Y

− Y X
� , �12�

where X=Re�U� is the real part of the unitary U, and Y
=Im�U� is the imaginary part. Note that Op is both orthogo-
nal and symplectic. The behavior of c under a passive trans-
formation is particularly simple: Q and R transform accord-
ing to Q�UQUT and R�URU†.

Passive transformations can be used to transform pure fer-
mionic states to a simple standard form, the so-called Bloch-

Messiah reduction �37�. The q-p-ordered CM ̃BCS takes the
form �10�, where
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q = − p = �
k
� 0 − 2 Im�ukvk

*�

2 Im�ukvk
*� 0

� , �13�

qp = �
k
� 	uk	2 − 	vk	2 2 Re�ukvk

*�

− 2 Re�ukvk
*� 	uk	2 − 	vk	2

� . �14�

In Hilbert space, the state in standard form is given by

	�Gauss
�N̄� 
 = �

k

�uk + vkak
†a−k

† �	0
 , �15�

where uk ,vk�C, 	uk	2+ 	vk	2=1, and N̄=�k�ak
†ak
=2�k	vk	2.

This comprises the kind of “paired” states appearing in the
BCS theory of superconductivity �1� with k��k� , ↑ �, −k
��−k� , ↓ �. We will refer to these states as Gaussian BCS
states. We would like to stress the fact that every pure Gauss-
ian state is a Gaussian BCS state in some basis.

D. Number-conserving fermionic states

For the application to physical systems, we are interested
in states for which the particle number is a conserved quan-
tity. We call � a number-conserving state if �� ,Nop�=0,
where Nop denotes the total number operator. Thus, the den-
sity operator of a number-conserving state can be written as
a mixture of Nop eigenstates. In particular, all separable states
as defined in Def. II.1 are number-conserving.

The Gaussian BCS wave function �15� is not number-
conserving �except for the case �k	ukvk	=0 that either uk or
vk vanishes for every mode�, but a relation to these states can
be established via the identity

	�Gauss
�N̄� 
 = �

N=0

2M

�N	�BCS
�N� 
 , �16�

where the number-conserving 2N-particle BCS state is given
by

	�BCS
�N� 
 = CN��

k=1

M

�kPk
†�N

	0
 , �17�

where we have introduced the pair creation operator Pk
†

=ak
†a−k

† . The coefficients �k are related to uk and vk via �k
=vk /uk, and CN is a normalization constant, which is seen to
be

CN = ��N!�2 �
j1�¯�jN

	� j1
	2 ¯ 	� jN

	2�−1/2

by rewriting Eq. �17� as

CNN! �
j1�j2�. . .�jN

�k1
¯ �kN

Pk1

†
¯ PkN

† 	0
 . �18�

The coefficients �N= ��kuk� / �N!CN� can be interpreted as the
probability amplitude of being in state 	�BCS

�N� 
 since
�N	�N	2=1. We will in general drop the term number-
conserving and refer to states of the form �17� as BCS states.

Whenever the distribution of the �N is sharply peaked

around some average particle number N̄, expectation values

of relevant observables for the number-conserving BCS

states 	�BCS
�N̄� 
 are approximated well by the expectation val-

ues of the Gaussian BCS state. This relation will turn out to
be very useful later on, as results on Gaussian states can be
translated into results on number-conserving BCS states.

III. PAIRING THEORY

In this section, we introduce a precise definition of pairing
as a property of quantum states.

A. Motivation and statement of the definition

The simplest system in which we can find pairing consists
of two particles and four modes.1 The prototypical paired
state, for example the spin-singlet of two electrons with op-
posing momenta, is of the form

	�
 =
1
�2

�a1
†a2

† + a3
†a4

†�	0
 . �19�

The states describing many Cooper pairs in BCS theory are
generalizations of 	�
.

The state 	�
 describes correlations between the two par-
ticles that cannot be reproduced by any uncorrelated state,
and it can be completely characterized by one- and two-
particle expectations �consisting of no more than two cre-
ation and annihilation operators each�. This is a characteristic
of the two-particle property “pairing” that we propose to
make the central defining property of paired states in the
general case of many modes, many particles, and mixed
states. Since, moreover, we would call the state 	�
 paired no
matter what basis the mode operators ai refer to and we want
it to comprise all BCS states, we are led to the following list
of requirements that a sensible definition of pairing should
fulfill:

�i� States that have no internal quantum correlation must
be unpaired. These are the separable states �3�.

�ii� Pairing must reveal itself by properties related to one-
and two-particle expectations only.

�iii� Pairing should be a basis-independent property.
�iv� The standard “paired” states appearing in the descrip-

tion of solid-state and condensed-matter systems, i.e., the
BCS states with wave function �17�, must be captured by our
definition.

Further, it would be desirable that there exist examples of
paired states that are a resource for some quantum-
information application.

Let us define the following:
Definition III.1. The set of all operators �O��� on AM,

which are the product of at most two creation and two anni-
hilation operators, is called the set of two-particle operators.
We denote it by A2.

These operators capture all one- and two-particle proper-
ties of a state � and should therefore contain all information
about pairing. We will call a state � paired if it can be dis-
tinguished from separable states by looking at observables in

1For three modes, all pure two-particle states are of product form.
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A2 alone. This is formalized in the following definition:
Definition III.2. A fermionic state � is called paired if

there exists a set of operators �O����A2 such that the expec-
tation values �tr��O��� cannot be reproduced by any sepa-
rable state �s�Ssep. States that are not paired are called un-
paired.

This definition automatically fulfills our first two require-
ments by definition. The third, basis independence, clearly
holds, since the set of separable states is invariant under
passive transformations. We will show that the last require-
ment is met, both for Gaussian and number-conserving BCS
states, i.e., all of them are paired �see Lemma V.3 and Sec.
IV B�. Moreover, in Sec. VI we can show that there exist
paired states that are a resource for quantum metrology.

For states with a fixed particle number, i.e., ��S�AM
�N��, it

is sufficient to compare with expectation values on N-particle
separable states �s

�N��Ssep
�N�, as for all other states the expec-

tation values of ��ini
 and ���ini�2
 differ due to the particle
number constraint. For number-conserving states, only
number-conserving observables lead to nonvanishing expec-
tation values and one can thus restrict to linear combinations
of ai

†aj, ai
†aj

†akal.
For Gaussian states, pairing must reveal itself by proper-

ties of the covariance matrix, as all higher correlations can be
obtained from it via Eq. �8�. This important fact enables us to
give a complete solution of the pairing problem for fermionic
Gaussian states, which we present in Sec. IV.

B. Relation of pairing and entanglement

Paired states are fermionic states exhibiting nontrivial
quantum correlations. In particular, by definition paired
states are inseparable, i.e., entangled in the sense of �24,25�.
This raises immediately the following question: Is pairing
equivalent to entanglement? Below, we provide examples of
entangled but unpaired states that demonstrate that pairing is
not equivalent to entanglement �of particles� but represents a
special type of quantum correlation.2

Lemma III.3. There exist states that are entangled accord-
ing to the Slater rank concept, but not paired.

Proof. Consider the state 	�4
= 1
2 �a1

†a2
†a3

†a4
†

+a5
†a6

†a7
†a8

†� 	0
, which is entangled according to the Slater
rank definition. However, one sees immediately that the one-
and two-particle expectations for 	�4
 are the same as for
�s

�4�= 1
2 	�1
��1 	 + 1

2 	�2
��2	, where 	�1
=a1
†a2

†a3
†a4

†	0
, 	�2

=a5

†a6
†a7

†a8
† 	0
. Since �s

�4� is a product state, 	�4
 is not
paired. One can construct further examples in a similar man-
ner using, e.g., other states with higher Slater rank. �

Since pairing is defined via expectation values of one- and
two-particle operators only, one might wonder whether pair-
ing is related to entanglement of the two-particle reduced
state. To study this relation, we recall the definition of the

two-particle density operator and the closely related two-
particle density matrix �see, e.g., �38��:

Definition III.4. Let � be the density operator of a fermi-
onic state. Then O�ij��kl�

��� =tr��ai
†aj

†alak� is called the two-
particle reduced density matrix �RDM�. It is usually not nor-
malized and fulfills tr�O����= �Nop

2 
− �Nop
. The operator �2
=O��� / tr�O���� is called the reduced two-particle density op-
erator �RDO�.

Note the crucial difference between the two-particle RDM
and the RDO. While the RDM contains all two-particle cor-
relations of �, the RDO corresponds to the two-particle state
of any two particles when the rest of the system is discarded.
We would like to emphasize that pairing is not equivalent to
entanglement of the RDO, and therefore it is a property of
the one- and two-particle expectations:

Lemma III.5. Let 	�BCS
�N� 
 be a number-conserving BCS

state as defined in Eq. �17� with �k=1∀k=1, . . . ,M. Then its
two-particle RDO �see Def. III.4� �BCS,2

�N� is always paired.
However, �BCS,2

�N� is entangled if and only if M�3N−2.
The proof is given in Appendix E.
We would like to stress the point that Lemma III.5 shows

the existence of paired states that are not entangled. Having
assured that our definition of pairing does not coincide with
entanglement, we now turn to methods of detecting and
quantifying pairing.

C. Methods for detecting pairing

Taking Def. III.2, we aim at finding tools that can be used
for the detection and quantification of pairing. These will be
applied to systems of Gaussian states and number-conserving
states in Secs. IV and V, respectively. In this section, we
exploit the convexity of the set of unpaired states to intro-
duce witness operators and obtain a geometrical picture of
the set. The quantification of pairing via pairing measures
will be discussed in Sec. III D.

Given a fermionic density operator, we are interested in
an operational method to determine whether it is paired or
not. As in the case of separability, this simple-sounding ques-
tion will turn out to be rather difficult to answer in general.

Starting from Def. III.2, it is clear that the set of unpaired
states is convex. This suggests the use of the Hahn-Banach
separation theorem as a means to certify that a given density
operator is not in the set of paired states. In analogy to the
entanglement witnesses in quantum-information theory �39�,
we define the following:

Definition III.6. A pairing witness W is a Hermitian op-
erator that fulfills tr�W�u��0 for all unpaired states �u, and
for which there exists a paired state � such that tr�W���0.
We then say that W detects the paired state �.

The witness defines a hyperplane in the space of density
operators such that the convex set of unpaired states lies
wholly on that side of the plane characterized by tr��W�
�0. According to the Hahn-Banach theorem �40�, for every
unpaired state there exists a witness operator that detects it.
In principle, a witness operator can be an operator involving
an arbitrary number of creation and annihilation operators.
However, since definition of pairing refers only to expecta-
tion values of operators in A2, it is enough to restrict to

2Note that our basis-independent definition clearly has no relation
to entanglement of modes, which is basis-dependent. The product
states of Def. II.1 can be mode-entangled for some choice of parti-
tion of modes, e.g., �1 /�2��a1

†+a2
†� 	0
 is entangled in modes a1

† and
a2

†.
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operators from that set. This represents a significant simpli-
fication both mathematically �witness operators from a finite
dimensional set� and experimentally, since operators involv-
ing more than two-body correlations are typically very diffi-
cult to measure.

The construction of entanglement witnesses detecting all
entangled states is an unsolved problem in entanglement
theory, and we will not be able to give a complete solution to
the problem of finding all pairing witnesses either. However,
in Sec. V we will construct witnesses for a large subclass of
BCS states by using the correspondence between number-
conserving and Gaussian BCS states.

Whether a state � is paired can be determined from a
finite set of real numbers, namely the expectation values of a
Hermitian basis �O�� of A2. This allows us to reformulate the
pairing problem as a geometric question on convex sets in
finite-dimensional Euclidean space, describe a complete set
of pairing witnesses, and deduce a relation to the ground-
state energies of quadratic Hamiltonians.

Consider a set �O� ,�=1, . . . ,K��A2 of Hermitian opera-

tors in A2 that are not necessarily a basis. Denote by O� the
vector with components O�. We define the set of all expec-

tation values of O� for separable states

CO� = �v� = tr�O� �s�:�s � Ssep� � RK. �20�

For a state �, let v��� tr�O� ��. By definition, � is paired if
v���CO� . As the set of separable states is convex, so is CO� .
Hence, we can use a result of convex analysis to check if
v���CO� �see, e.g., �41��:

Lemma III.7. Let C�RN be a closed convex set, and let
v� �RN. Then

v� � C ⇔ ∀ r� � RN:v� · r�� E�r�� = inf
w� �C

w� · r� . �21�

For our purposes, this translates into the following result:

Lemma III.8. For a vector of observables O�

= �O1 , . . . ,OK� let H�r��=r� ·O� and E�r��=inf��Ssep
�tr�H�r�����.

Then W�r���H�r��−E�r�� is a pairing witness, whenever
E�r��� infall ��tr��H�r����.

If �O�� form a basis of A2, then W�r�� is a complete set of
witnesses in the sense that all paired states are detected by
some W�r��, i.e., � is unpaired iff tr�W�r�����0∀ r�.

Proof. The witness property of W�r�� is obvious from the
definition of E�r��.

For the second part, “if” is clear and “only if” is seen as
follows: By Lemma III.7, if tr�W�r�����0∀ r�, then v���C,
i.e., the expectation values can be reproduced by a separable
state. But since all expectation values of operators �A2 can
be computed from v��, this implies all two-particle expecta-
tions of � can be thus reproduced, i.e., � is unpaired. �

For an M-mode system with annihilation operators ai, a
standard choice of O� is, e.g., given by the real and imagi-
nary parts of ��ai

†aj
†akal�i�j,k�l , �ai

†aj
†�i�j , �ai

†aj�i�j�, i.e., the
dimension of A2 �as a real vector space� is K=M2�M
−1�2 /2+2M2.

Thus Lemma III.8 gives a necessary and sufficient crite-
rion of pairing and provides a geometrical picture of the
pairing problem. While the proof that a state is unpaired will
in general be difficult as it requires knowledge of all E�r�� and
experimentally the measurement of a complete set of observ-
ables, practical sufficient conditions for pairing can be ob-
tained by restricting to a subset O�A2. We will show in Sec.
V A that for a certain choice of �O���A2, the set CO� has a
very simple form and allows a good visualization of the ge-
ometry of paired states and the detection of all BCS states up
to passive transformations.

To provide a way to determite E�r�� used in Lemma III.8,
we point out an interesting connection to the covariance ma-
trices c �cf. Eq. �11�� of Gaussian states: even for number-
conserving states, E�r�� is given by a quadratic minimization
problem in terms of c.

Lemma III.9. Let E�r�� and H�r�� be as in Lemma III.8 and

let O� = �a†
ia

†
jakal ,a

†
iaj� and group the components of r� in

two subsets �r��ijkl and �r��ij corresponding to the one- and
two-particle observables, respectively. Then E�r�� is given by
a quadratic minimization problem over complex covariance
matrices Eq. �11�, in particular the off-diagonal block R of
c. We have

E�r�� = inf
R=−R†

4R2=−1

���TM�r���� + w�r��T�� � , �22�

where ��� �kl= �a†
kal
=−iRlk+ 1

2�kl and the r�-dependent quanti-
ties are �M�r����ik��jl�=−r�ijkl+r�ijlk and �w�r���kl=r�kl. The mini-
mization can be extended over all �not necessarily pure sepa-
rable� CMs without changing the result.

Proof. The minimum min��Ssep
��H�r��
�� is attained for

pure separable states, i.e., product states. All pure fermionic
product states are Gaussian; then by Wick’s theorem, the
expectation values of the Oijkl=a†

ia
†

jakal factorize as
�a†

ia
†

jakal
�= �a†
ia

†
j
�akal
− �a†

iak
�a†
jak
+ �a†

ial
�a†
jak
.

Since product states are also number-conserving, the first
term vanishes. For the other two we use that �a†

kal
=−iRlk

+ 1
2�kl, i.e., they only depend on the off-diagonal block R.

The pure state condition 2=−1 translates into 4R2=−1 for
product states Q=0.

We could extend over all CMs �c since only the block R
appears in the expression to be minimized over, and since if
c�Q ,R� is a valid CM, then so is c�0,R�. �

This lemma provides a systematic way to construct pair-
ing witnesses.

D. Pairing measures

It would be desirable if a theory of pairing not only an-
swers the question of whether a state is paired, but also quan-
tifies the amount of pairing inherent in a state. For this pur-
pose, we introduce the notion of a pairing measure:

Definition III.10. Let � be an M-mode fermionic state. A
pairing measure is a map

M:�� M��� � R+,

which is invariant under passive transformations and fulfills
M���=0 for every unpaired state �.
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In addition, it is often useful to normalize M such that
M��0�=1 defines the “unit of pairing.” The pair state 	�
 of
Eq. �19� would be an obvious choice for this unit, but as we
see in Sec. IV D for Gaussian states a different unit is more
natural, therefore we do not include normalization in the
above definition.

In the geometric picture of the previous section, a candi-
date for a pairing measure that immediately comes to mind is
the distance of v�� from the set C. This measure is positive,
and it is invariant under passive transformations, as those
correspond to a basis change in the space of expectation
vectors.

The computation of this distance is, in general, very dif-
ficult and there is no evident operational meaning to this
quantity. In the following sections, we will introduce a dif-
ferent measure that can be computed for relevant families of
states and allow a physical interpretation in terms of quanti-
fying a resource for precision measurements.

IV. PAIRING FOR GAUSSIAN STATES

In this section, we study pairing of fermionic Gaussian
states. We start with the construction of pairing witnesses in
Sec. IV A, which will later be a useful guideline for the
construction of pairing witnesses for number-conserving
states. Then we derive a simple necessary and sufficient cri-
terion for pairing of Gaussian states. In Sec. IV C, we show
how pure fermionic Gaussian states can be connected to an
SU�2� angular momentum representation. This picture will
guide us to the construction of a pairing measure.

A. Pairing witnesses for Gaussian states

Pairing witnesses for pure Gaussian states emerge natu-
rally from the property that every such state is the ground
state of a quadratic Hamiltonian �see Sec. II C�. This leads to
the following theorem:

Theorem IV.1. Let 0���1 and let 0� 	vk	2�1−� and
�k	vk	2�0. Then the operator

H = �
k=1

M

2�1 − � − 	vk	2��nk + n−k� − 2vkuk
*Pk

† − 2vk
*ukPk

�23�

is a pairing witness, detecting

	�Gauss
 = �
k

�uk + vkPk
†�	0
 .

Proof. Every Gaussian state is the ground state of a qua-
dratic Hamiltonian. In particular, 	�Gauss
 is seen to be the
ground state of

H0 = �
k=1

M

�	uk	2 − 	vk	2��nk + n−k − 1� − 2vkuk
*Pk

† − 2vk
*ukPk

with the help of Eqs. �13� and �14�, as the Hamiltonian ma-
trix of H0 and  can be brought simultaneously to the stan-
dard forms �5� and �7�, respectively. Subtracting the minimal
energy for separable states,

Emin
sep = − �1 − 2���k�nk + n−k
 − �	uk	2 − 	vk	2�

�note that �Pk
=0 for separable states�, we arrive at the
Hamiltonian �23�. For separable states �, the expectation val-
ues of Pk

† vanish, so that tr�H���0. For the Gaussian BCS
state, however, ��Gauss 	H 	�Gauss
=−4��k	vk	2�0. �

B. Complete solution of the pairing problem
for fermionic Gaussian states

Every Gaussian state is completely characterized by its
covariance matrix, so that the solution of the pairing problem
must be related to it. The pairing problem is completely
solved by the following theorem:

Theorem IV.2. Let � be the density operator of a fermionic
Gaussian state with covariance matrix c defined in Eq. �11�.
Then � is paired iff Q�0.

Proof. First, note that the condition Q=0 is independent
of the choice of basis. If � is not paired, then there exists a
separable state having the same covariance matrix as �. This
implies Q=0, as separable states are convex combinations of
states with fixed particle number, and thus �i /2�ak ,al�
=0.

Now, let c be the covariance matrix of a paired Gaussian
state, and assume that Q=0. As R is anti-Hermitian, there
exists a passive transformation such that Rij =ri�ij, and Q
=0 is unchanged. But such a covariance matrix can be real-
ized by a separable state fulfilling �ni
=ri in contradiction to
the assumption.

Note that Thm. IV.2 implies that a Gaussian state is un-
paired iff it is number-conserving.

C. Angular momentum algebra for Gaussian states

In this section, we will show that pairing of Gaussian
states can be understood in terms of an SU�2� angular mo-
mentum algebra. The expectation values of the angular mo-
mentum operators can be visualized using a Bloch sphere,
giving us further understanding of the structure of pairing in
Gaussian states. It later leads to the construction of a pairing
measure for these states. Define the operators �42,43�

jk
�x� =

1

2
�Pk

† + Pk� ,

jk
�y� =

i

2
�Pk

† − Pk� ,

jk
�z� =

1

2
�1 − nk − n−k� .

They fulfill �jk
�a� , jk

�b��= i�abcjk
�c�, a ,b ,c� �x ,y ,z�, forming an

SU�2� angular momentum algebra. For pure Gaussian states
in the standard form �15�, the expectation values of the an-
gular momentum operators are given by �jk

�x�
=Re�ukvk
*�,

�jk
�y�
=Im�ukvk

*�, and �jk
�z�
= 1

2 �1−2	vk	2�. As j2=�i=x,y,z�jk
�i�
2

= 1
4 independent of uk and vk, the expectation values for ev-

ery pure Gaussian state lie on the surface of a sphere with
radius 1

2 . As we have shown in Thm. 4.2, every unpaired
state �u fulfills �jk

�x�
�u
= �jk

�y�
�u
=0, so that these states are
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located on the z axis. The states on the equator have �jk
�x�
2

+ �jk
�y�
2= 1

4 , i.e. they correspond to 	uk	2= 	vk	2= 1
2 . The situa-

tion is depicted in Fig. 1. Referring to the states on the equa-
tor as maximally paired is suggested by the fact that they
have maximal distance from the set of separable states. This
intuitive picture is further borne out by two observations:
first, the states on the equator display maximal entanglement
between the involved modes �30�. Second, they have the
property3 that they achieve the minimal expectation value of
any quadratic witness operator �up to basis change�. To see
this, recall from Sec. II C that any quadratic Hamiltonian of
two modes k ,−k is �up to a common factor and basis change�
of the form �1+sin ��nk+n−k�+cos ��Pk

†+ Pk�. It is a witness
�i.e., has positive expectation for all product states� if �
� 	max�0,2 sin ��	 and does detect some paired state as long
as sin ��−1. The minimum eigenvalue is sin �−1+� and
the minimum tr�W��=−1 is attained for �= 1

2 �1
+ Pk

†�	0
�0	�1+ Pk�.
The pairing measure, which is the topic of the next sec-

tion, will confirm the characterization as maximally paired.

D. A pairing measure for Gaussian states

The angular momentum representation of paired states de-
picted in Fig. 1 suggests the introduction of a pairing mea-
sure via a quantity related to 	�jk

�x�
�G
	2+ 	�jk

�y�
�G
	2

= 	�a†
ka

†
−k
�G

	2:
Definition IV.3. Let � be a fermionic state, and let Qkl

= i /2 tr���ak ,al��. Then we define

MG��� = 2�Q�2
2 = 2�

kl

	Qkl	2. �24�

Lemma IV.4. MG as defined in Def. IV.3 is a pairing
measure fulfilling MG����M for every M-mode Gaussian
state.

Proof. Under a passive transformation Q�UQUT, and
hence �Q�2

2 is invariant. Further, we know by Thm. 4.2 that
Q=0 for unpaired states.

It remains to show that for an M-mode Gaussian state �
we have MG����M. Let c be the 2M
2M covariance
matrix of � defined in Eq. �11�. We show first that M��� is
maximized for pure Gaussian states. To do so, recall that an
admissible covariance matrix for a Gaussian state in the real
representation has to fulfill i�1 with equality iff  is the
covariance matrix of a pure Gaussian state. This translates
into cc

†�1 with equality iff c belongs to a pure Gaussian
state. Using the form of c given in Eq. �11�, this implies
2 tr�QQ†+RR†�� tr�1�=2M. Hence, �Q�2

2�M − �R�2
2. It fol-

lows that for a fixed value of �R�2
2, the value of �Q�2

2 is
maximal for a pure Gaussian state. Further, the standard form
�15� implies that for every value of �R� such a state exists,
and that the maximal value is given by �Q�2

2

=2�k=1
M 	uk	2	vk	2�M /2, as 	uk	2+ 	vk	2=1. �

Hence, for every pure Gaussian state with standard form
�15� the value of the pairing measure is given by MG���
=4�k=1

M 	uk	2	vk	2. Since 	vk	2=1− 	uk	2, the measure attains its
maximum value for 	uk	2= 	vk	2=1 /2, i.e., for the states al-
ready identified as maximally paired.

MG��� will appear again when we study the use of paired
states for metrology applications, linking the pairing measure
to the usefulness of a state for quantum phase estimation and
giving support to the “resource” character of paired states.

V. PAIRING OF NUMBER-CONSERVING STATES

In the preceding section, we gave a complete solution to
the pairing problem for fermionic Gaussian states. There,
Wick’s theorem lead to a reduction of the problem to prop-
erties of the covariance matrix. For number-conserving sys-
tems, the situation is more complicated, as now also opera-
tors of the form ai

†aj
†akal have to be taken into account.

However, we will derive pairing witnesses capable of detect-
ing all number-conserving BCS states in Sec. V A using the
concept of convex sets. For certain classes of BCS states, we
will construct a family of improved witnesses using the anal-
ogy to the Gaussian states. Witnesses have the drawback that
they depend on the choice of basis. That is, even if a witness
detects �, it does not detect all states related to � by a passive
transformation. We will show that the eigenvalues of the re-
duced two-particle density matrix can be used to obtain a
sufficient criterion for pairing in Sec. V B that is basis-
independent. We close the section with the construction of a
pairing measure in Sec. V C.

A. Pairing of all BCS states and geometry of paired states

In a realistic physical setup, it may not be practical to
perform all the measurements needed according to Lemma
III.8 to check the necessary and sufficient condition for pair-
ing. Having access only to a restricted set of measurements,
necessary criteria for pairing can be derived. In this section,
we consider the simplest case of a symmetric measurement
involving four modes, i.e., we are looking at the following
vector of operators:

O� 3 = �nk + n−k + nl + n−l

nkn−k + nln−l

ak
†a−k

† a−lal + H.c.
� . �25�

Remarkably, these expectation values will turn out to be suf-
ficient to detect all BCS states as paired.

3Maximally entangled states of two qubits share an analogous
property about entanglement witnesses �44�.

( )y

kjmaximally
paired states

unpaired states

( )x

kj

( )z

kj

FIG. 1. �Color online� Bloch sphere representation of the expec-
tation values of jk

�x�, jk
�y�, and jk

�z� for a variational BCS state. All pure
states lie on the surface of the sphere. Unpaired states lie on the z
axis, while the maximally paired states lie on the equator.
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We are interested in C
O� 3

unpaired
= �tr�O� 3�� :� separable�, the

set of all expectation values of O� 3 that correspond to sepa-

rable states. If for some � the vector v��=tr�O� 3�� is found
outside of C

O� 3

unpaired
, then it follows from Lemma III.8 that � is

paired. Membership in C
O� 3

unpaired
can be easily checked by the

following Lemma:
Lemma V.1. A number-conserving state � has expectation

values of O� 3 �see Eq. �25�� compatible with separability if
and only if tr�Hk�

�p����0 for k=1,2 ,3, where

H1�
�p� =

1

2
�nk + n−k + nl + n−l� − �nkn−k + nln−l�

� �ak
†a−k

† a−lal + H.c.� , �26�

H2�
�p� = �nkn−k + nln−l�� �ak

†a−k
† a−lal + H.c.� , �27�

H3�
�p� = 1 −

1

2
�nk + n−k + nl + n−l� +

1

2
�nkn−k + nln−l�

�
1

2
�ak

†a−k
† a−lal + H.c.� . �28�

Hence, the extremal points of the set C
O� 3

unpaired
are given by

tr�Hk�
�p���=0 for three of the witnesses �26�–�28�. The faces of

C
O� 3

unpaired
consist of points for which at least one of the expec-

tation values tr�Hk�
�p��� vanishes. H1�

�p� and H3�
�p� are also pair-

ing witnesses, while H2�
�p� is nonnegative on all number-

conserving states.
Lemma V.2. Every number-conserving fermionic state ful-

fills tr�Hk����0, where

H1 =
1

2
�nk + n−k + nl + n−l� − �nkn−k + nln−l� , �29�

H2� = �nkn−k + nln−l�� �ak
†a−k

† a−lal + H.c.� , �30�

H3� = 2 −
1

2
�nk + n−k + nl + n−l�� �ak

†a−k
† a−lal + H.c.� .

�31�

The extremal points of the set C
O� 3

all
= �tr�O� 3�� :�

�S�AM
�N�� :M ,N�N� are given by tr�Hk���=0 for three of

the witnesses �29�–�31�. The faces of C
O� 3

all
consist of points

for which at least one of the expectation values tr�Hk���
vanishes.

The proofs of the two lemmas can be found in Appendix
B. We denote by Cunpaired and Call the polytopes containing
all expectation vectors v�� corresponding to unpaired states or
all number-conserving states, respectively. They are bounded
by six and five planes, respectively, defined through the wit-
nesses given in Lemmas V.1 and V.2. The situation is de-
picted in Fig. 2.

The witnesses H1�
�p� given in Eqs. �26� allow us to detect

all number-conserving BCS states as paired:
Lemma V.3. The number-conserving BCS state 	�BCS

�N� 


given in Eq. �17� is �except for the trivially unpaired cases
�k=�kk0

and N=M� detected by the witness Hp
�1� by choosing

any two modes �k , l�.
Proof. The first two terms in H1�

�p� are designed such that
their expectation value vanishes for states such as 	�BCS

�N� 
:
Since we either have a pair or no particles in the modes
�k ,−k�, we are in an eigenstate with eigenvalue 0 of the
operators nk+n−k−2nkn−k.

The expectation value of the third term is found
using the representation Eq. �18� as
	CN	2N!2Re��k�l

*�� j1�¯

ji�k,l
� jN−1

	� j1
	2¯ 	� jN−1

	2, which is non-

zero unless N=M or all but one �k�0. The sign can
be adjusted by a passive transformation to give �H1+

�p�
BCS
�N�

�0. �
This shows that indeed all BCS states are paired, as de-

sired.
The witnesses Hp�

�1� , while detecting every BCS state as
paired, are in general far from optimal. As the number-
conserving BCS states appear in many physical setting, like
in the BEC-BCS crossover �45�, it is desirable to construc-
tion improved witnesses tailored for this class of states. For
BCS states realized in nature, it is often appropriate to as-
sume some symmetry of the wave function 	�BCS

�N� ��k�

= ��k=1

2M�kPk
†�N 	0
. For example, if Pk

†=ak�↑
† a−k�↓

† , Pk+M
†

=a−k�↑
† ak�↓

† and if we are dealing with an isotropic setting, �k

=�k+M will hold. It is further often appropriate to assume that
the number of modes is much bigger than the number of
particles, i.e., M�N. For this kind of state we will construct
pairing witnesses via the correspondence to the Gaussian pic-
ture. We sketch the idea of this construction leading to Thm.
V.4, and give the details in the Appendix C.

We have shown in Sec. II D the connection of the Gauss-
ian wave function and the number-conserving wave function

0
2

4

0
1

2

−1

−0.5

0

0.5

1

�nk + n−k + nl + n−l��nkn−k + nln−l�

�a
† k
a† −

k
a
−

la
l
+

h
.c

.�
FIG. 2. �Color online� Expectation values of the vector Eq. �25�.

For all number-conserving states these lie within the convex set C
O� 3

all

indicated by the dashed back lines. The extreme points of the poly-
tope are given by �0, 0, 0�, �2, 0, 0�, �4, 2, 0�, and �2,1 ,�1�.
Unpaired states have expectation values in the smaller convex set
C

O� 3

unpaired �solid red�, which has extreme points �0, 0, 0�, �2, 0, 0�, �4,

2, 0�, and �2,1 /2,�1 /2�.
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via 	�Gauss
=�k=1
N �N	�BCS

�N� ��k�
. Consider a number-
conserving observable O and denote by �O
Gauss and �O
N its
expectation value for the Gaussian and 2N-particle BCS
wave function, respectively. If the distribution of 	�N	2 is

sharply peaked around some average particle number N̄ with

width �, then �O
Gauss��O
N for any integer N� �N̄−� , N̄
+��. In Thm. IV.1, we have constructed witnesses H for all
Gaussian BCS states. As these witnesses are optimal, they
suggest to constitute an improved witness detecting the cor-
responding number-conserving BCS state. But H includes
terms of the form Pk

† that do not conserve the particle num-
ber. Hence, this witness cannot be applied directly to the
number-conserving case. Using Wick’s theorem,
�Pk

†Pk+M
Gauss= ūkvk�Pk
†
Gauss holds under our symmetry as-

sumption. This suggests that we replace the non-number-
conserving operator ukvkPk

† by the number-conserving opera-
tor Pk

†Pk+M. We define operators

Hk = 2�1 − � − 	vk	2�Nk − 4�Pk
†Pk+M + H.c.� , �32�

Nk = nk + n−k + nk+M + n−�k+M�, �33�

where 0� 	vk	2�1−�∀ k for ��0. Further, we introduce the

notation �k=vk /�1− 	vk	2, N̄=�k=1
M 	vk	2 and we denote by N

the biggest integer fulfilling N̄− Ñ�0. Then the following
holds:

Theorem V.4. Let M, Ñ�N and let 1�N�2M. If 1��

�18 /��N̄, the Hamiltonian H��vk��=�k=1
M Hk is a pairing

witness detecting

	�BCS,sym
�N� 
 = CN��

k=1

M

�k�Pk
† + Pk+M

† ��N

	0
 .

The proof is given in Appendix C.

B. Eigenvalues of the two-particle reduced density matrix

In this section, we derive a basis-independent condition
for detecting pairing. The two-particle reduced density ma-
trix O contains all two-particle correlations. As a change of
basis, ai

†��kUikak
† leaves the spectrum of O unchanged

since

O�ij�,�kl�
��� → �U � U��ij�,�mn�O�mn�,�pq�

��� �U � U��pq�,�kl�
† ,

and we are led to the following theorem:
Theorem V.5. Let � be an unpaired state, and let O be its

two-particle RDM O. Then �max�O��2, where �max denotes
the maximal eigenvalue.

Proof. If � is unpaired, then there exists a separable state
�s�Ssep having the same two-particle RDM. Any separable
state is of the form �s=�����

���, where ����= 	����
�����	,
	����
=�ia

†
�i

	0
, and ����=1. Here, �a�i

† �i denotes some ba-
sis of mode operators. The RDM is of the form O���

=����O���, where O��� is the RDM for the state ����. The
RDM is calculated in the basis �ai

†�i, and the different bases
are related by a unitary transformation ai

†=� jUik
���a�k

† , so that
O�ij��kl�

��� =tr�����ai
†aj

†alak�= �U��� � U�����ij��mn�O�mn�,�pq�
��,0� �U���

� U�����pq��kl�
† , where O�mn�,�pq�

��,0� = �a�m

† a�n

† a�q
a�p


����. In the ba-

sis of the �a�i

† �i, the expectation value �a�m

† a�n

† a�q
a�p


���� is
of the simple form �a�i

† a�j

† a�l
a�k


���� =�ik� jl−�il� jk. Hence,
the spectrum of the O��� is given by spec�O����= �0,2�∀ �.

The two-particle RDM is Hermitian as O�ij��kl�
† = Ō�kl��ij�

= �ak
†al

†ajai
= �ai
†aj

†alak
=O�ij��kl�. Then Weyl’s theorem �46�
implies �max�����O��������max�O�����2���2. �

An example of a state detected as paired via criterion is
the BCS state �17� with N=2, M =3, and all �k equal. The
largest eigenvalue of its two-particle RDM is given by
�max=8 /3.

C. A pairing measure for number-conserving states

In Sec. IV D, we have derived a pairing measure for
Gaussian states. The correspondence with number-
conserving BCS states will be a guideline to derive a mea-
sure for number-conserving states. However, the measure of
Def. IV.3 involves expectation values of the form �ak

†a−k
† 
 that

vanish for states with fixed particle number. Yet, Wick’s
theorem suggests that a quantity involving expectation val-
ues of the form �Pk

†Pl
 will lead to a pairing measure. This is
indeed the case, which is the content of the following theo-
rem:

Theorem V.6. Let � be a number-conserving pure fermi-
onic state. Then the following quantity defines a pairing mea-
sure:

M��� = max�max
�ai

†�i

�
kl=1

M

	�Pk
†Pl
�	 −

1

2�
k

�nk
�,0� , �34�

where Pk
†=ak

†a−k
† and the maximum is taken over all possible

bases of modes �ai
†�i. For mixed states �, a measure can be

defined via

M��� = min �
i

piM��i� , �35�

where the minimum is taken over all possible decomposi-
tions of �=�ipi�i into pure states �i.

Proof. The positivity of M and its invariance under pas-
sive transformations follow directly from the definition. It
remains to show that M is zero for separable states. We will
prove in Lemma D.1, Appendix D, that any separable state of
2N particles fulfills �kl	�Pk

†Pl
	�N, and that this bound can
always be achieved, which concludes the proof. �

We close the section by calculating the value of the pair-
ing measure for two easy examples. Let

	�s
 = �
k=1

N 1
�2

�Pk
† + P−k

† �	0
 , �36�

	�BCS
�N,M�
 = CN��

k=1

M

Pk
†�N

	0
 , �37�

the tensor product of N spin-singlet states and the BCS state
with equal weights, respectively. These states have a pairing
measure M�	�s
�=N and M�	�BCS

�N,M�
�=N�M −N�, respec-
tively. Thus, for the spin singlet the pairing measure has in
addition the property that it is normalized to 1 and additive,
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while it is subadditive for 	�BCS
�N,M�
. Further, this example

suggests that the pairing of M�	�BCS
�N,M�
�=N�M −N� is stron-

ger than for 	�s
. We will see indeed in Sec. VI B that states
of the form 	�e
 allow interferometry at the Heisenberg
limit.

VI. INTERFEROMETRY

The goal of quantum phase estimation is to determine an
unknown parameter � of a Hamiltonian H�=�H at the high-
est possible accuracy. The value of � is inferred by measur-
ing an observable O on a known input state that has evolved
under H�. In a region where the expectation value �O���
 is
bijective, � can be inferred by inverting �O���
. In a realistic
setup, however, �O���
 cannot be determined, as this would
require an infinite number of measurements. Instead, one
uses the mean value of the measurement results, o, as an
estimate of �O���
. This will result in an error �� for the
parameter to be estimated, as for a given value of � we have
�O���
=o��Var�o�. Linearizing around the real value of �,
it follows that the uncertainty of � is given by �47,48�

�����2
 =
var�O�

	��O
/��	2
, �38�

where var�O�= �O2
− �O
2, and we have used the fact that
var�O�=var�o�. Further, it can be shown that the minimal
uncertainty of � is bounded by �49,50�

�����2
var�H��
1

4�
, �39�

where � is the number of times the estimation is repeated.
Equation �39� derives from the Cramér-Rao bound and is
asymptotically achievable in the limit of large �.

For a given measurement scheme, i.e., for a given input
state and a given observable O, the uncertainty in � can be
reduced by using N identical input states and average over
the N measurement outcomes. As the preparation of a quan-
tum state is costly, a precision gain that has a strong depen-
dence on N is highly desirable. If these probe states are in-
dependent of each other, the precision scales like 1 /�N. This
is the so-called standard quantum limit �SQL�. Using distin-
guishable or bosonic systems, this limit can be beaten by a
factor of �N by using number-squeezed input states �51–54�,
N-particle path-entangled states ��N ,0	+ �0,N	� �NOON
states�, or maximally entangled GHZ states 1

�2
�	N ,0


+ 	0,N
� �48,55–57�. Achieving this so-called Heisenberg
limit is the big goal of quantum metrology.

Less is known for fermionic states where number squeez-
ing and coherent N-particle states are prohibited by statistics.
Nevertheless, there exist fermionic N-particle states that can
achieve the Heisenberg limit for phase measurements in a
Mach-Zehnder interferometer setup �58�. Taking the exis-
tence of such states as a starting point, we show that paired
fermionic states can be used as a resource for phase estima-
tion beyond the SQL. We will consider two different settings.
The first setting will be the standard Ramsey-interferometer
setup of metrology, where the coupling Hamiltonian is pro-
portional to the number operator. Here, we will see that

paired states lead to a precision gain of a factor of 2 com-
pared to separable states. The second setup involves a more
complex coupling. Here it will turn out that by using paired
states, the Heisenberg limit, i.e., a phase sensitivity ����2

�1 /N2, can be achieved.

A. Ramsey interferometry with fermions

1. General setup

We consider the standard Ramsey interferometer setup
�see Fig. 3� where a state in the modes �akj

† ,alj

†� j=−M
M under-

goes mode mixing at a beam splitter,

a�kj

† → akj
�† =

1
�2

�a�kj

† + a�lj

† � , �40�

a�lj

† → a�lj
�† =

1
�2

�a�kj

† − a�lj

† � , �41�

before evolving under the action of the Hamiltonian

HN = �
j=1

M

�nlj
+ n−lj

� . �42�

Finally, a particle number measurement is performed on the
system, to compute the parity

P = �− 1��jn0
�j�+n1

�j�
, �43�

where n0
�j�=akj

�†akj
� and n1

�j�=a−kj
�† a−kj

� . According to Eq. �38�,
the phase sensitivity is given by

����2 =
1 − �P
2

� �

��
�P
�2 , �44�

where we have exploited P2=1. Due to the fermionic statis-
tics, the parity operator can be written in the form

P = �
j=1

M

�1 − 2�n0
�j� + n1

�j�� + 4n0
�j�n1

�j�� . �45�

In the next section, we will derive the best possible precision
obtainable by using unpaired states, and compare this result
to the precision achievable by using paired states. It will turn
out that already at the two-particle level paired states have
more power than the unpaired states for our setup.

FIG. 3. Scheme of the Ramsey interferometer setup. The incom-
ing wave function 	�in
 enters a beam splitter �BS�. Then particles
in the modes a�l

† evolve under the Hamiltonian �H. At the end, a
particle number measurement is performed on all particles.
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2. Bound on unpaired states for the standard interferometer

In this section, we derive a lower bound on the phase
sensitivity when using an unpaired state of 2N particles as
input states.

Thorem VI.1. For the Ramsey interferometer described
above, the phase sensitivity is bounded by

����2 �
1

2�N
, �46�

when an unpaired state of 2N particles is used as input state.
Proof. We will use Eq. �39� to derive the bound. Hence,

we have to estimate an upper bound for the variance of the
Hamiltonian HN defined in Eq. �42�. As HN as well as HN

2

contain operators from the set A2 only, it is sufficient to
prove the bound for product states, as for every unpaired
state there exists a product state having the same expecta-
tions. In Lemma A.2 of Appendix A, we have shown that for
pure separable states �nknl
= 	Pkl	2− PkkPll+ Pkk�kl, where P
�C4M
4M is a projector of rank 2N. We arrange the indices
as −lM , . . . , lM ,−kM , . . . ,kM and partition the projector P such
that P= � A B

B† C �, where A ,B ,C�C2M
2M. Then

var�HN� = �
i=1

2M

Aii − �
i,j=1

2M

	Aij	2 = tr�BB†� , �47�

as HN only involves the modes −lM , . . . , lM. In the last step
we have used P2= P, implying A−A2=BB†. As rank�P�
=2N, there exists some unitary U such that P=UId2NU†,
where Id2N= �

12N 0
0 0 ��C4M
4M. Partitioning the unitary U

= �
U11 U12

U21 U22
�, where Uij �C2M
2M, i , j=1,2, the projector P is

of the form

P = �U11Id2NU11
† U11Id2NU21

†

U21Id2NU11
† U21Id2NU21

† � .

Using the above representation of P and the cyclicity of the

trace, we can write var�HN�=tr�ÃB̃� with Hermitian matrices

Ã=Id2NU11
† U11Id2N, B̃=Id2NU21

† U21Id2N. The trace can be in-
terpreted as a scalar product maximized for linearly depen-

dent Ã and B̃. Exploiting the unitarity of U, one sees imme-

diately that the variance is maximized for Ã=c / �1+c�Id2N,

B̃=1 / �1+c�Id2N for some constant c. Hence, var�HN�
�c / �1+c�2 tr�12N��N /2. Inserting this into Eq. �39�, we
find that ����2�

1
2�N . �

3. Interferometry with two particles

In this section, we will show that already a two-particle
paired state can beat the bound for the phase sensitivity using
unpaired states �46�. Hence pairing manifests itself as useful
quantum correlation already at the two-particle level. We
show the following:

Theorem VI.2. Using the paired state

	�in
�2�
 = ��

j=1

M

� jakj

† a−kj

† + � jalj

†a−lj

† �	0
 , �48�

with normalization � j	� j	2+ 	� j	2=1 as input state for the
Ramsey interferometer, the optimal phase sensitivity is given
by

����min
2 =

1

2�1 + 2� j=1
M Re�� j� j

*��
�

1

4
. �49�

Proof. Take 	�in
�2�
 as the input state. After an application

of the beam splitter transformation �40� and an evolution
under the Hamiltonian �42�, the measurement outcome of the
parity operator is calculated to be

�P
 = 1 − sin2 ��1 + 2�
j=1

M

Re�� j� j
*�� . �50�

Using Eq. �44�, we obtain Eq. �49�. The bound of 1
4 can be

obtained for a state where �k=�k∀ k. �
Theorem VI.2 shows that there exist two-particle paired

states exceeding the bound on product states �46�.

4. Interferometry with 2N-particle BCS states

Generalizing the result obtained in the last section, it fol-
lows immediately that states of the form 	�in

�2�
�N will lead to
a phase sensitivity ����min

2 =1 / �2N�1+2� j=1
M Re�� j� j

*���. In
this section, we will show that the same result can be
achieved using BCS states.

Theorem VI.3. Let the paired state

	�in
�2N�
 = c���

j=1

M

� jakj

† a−kj

† + � jalj

†a−lj

† �N

	0
 , �51�

where we use the normalization condition � j	� j	2+ 	� j	2=1,
be the input state for the Ramsey-type interferometer defined
above. Then the optimal phase sensitivity is given by

����2 =
1

2N̄�1 + 2� j Re�� j� j
*��

. �52�

Proof. As in previous sections, we will use the correspon-
dence to the Gaussian state,

	�in,Gauss
�2N̄� 
 = c exp�

j=1

M

� jakj

† a−kj

† + � jalj

†a−lj

† �	0
 ,

where 	N− N̄	� N̄ for the calculation. After the state has
passed through the interferometer, the expectation value of
the parity operator is readily computed to be �P
Gauss=� j�1
− 	c	2	� j +� j	2sin2 ��. As only number operators are involved,
�P
Gauss��P
N, where �¯
N denotes the expectation value of
P for the state 	�in

�2N�
. Expanding Eq. �44� for small values

of � and using N̄= 	c	2�k	�k	2+ 	�k	2= 	c	2, one obtains Eq.
�52�, which has minimal value ����2=1 / �4N�. This result is
obtained when � j =� j ∀ j. �

The above result shows that paired states result in a pre-
cision gain of up to a factor of 2 compared to the best pre-
cision obtainable for unpaired states �46�.

KRAUS et al. PHYSICAL REVIEW A 79, 012306 �2009�

012306-12

QIP with Gaussian States and Channels

266



The pairing measure derived in Secs. IV D and V C quan-
tifies the precision gain obtainable by the use of paired states.

To see this, denote by 	�in,Gauss
�2N̄�� 
 the state after the beam

splitter transformation. Then the pairing measure �Def. IV.3�
for this state evaluates to

MG�	�in,Gauss
�2N̄�� 
� =

N2

2 �1 + 2�
j

Re�� j� j
*�� ,

so that

����2 =
N̄

4MG�	�in,Gauss
�2N̄�� 
�

. �53�

The above relation demonstrates that M is indeed quantify-
ing a useful resource present in paired states. Whether this
interpretation can be extended to mixed states will not be
explored here.

B. Interferometry involving a pair-interaction Hamiltonian

So far we have seen that paired states lead to a gain of a
factor of 2 in precision compared to unpaired states in a
Ramsey-type interferometer. This section will show that
paired states are even more powerful and can lead to a pre-
cision gain of a factor of N when measuring the phase of a
pair-interaction Hamiltonian.

We consider a setup where two fermionic states enter the
ports A and B of an interferometer. The particles entering
port A can occupy the modes �ak

†�k=−M
M , while the particles

entering through port B can occupy the modes �bk
†�k=−M

M .
Then the two states evolve under the Hamiltonian Hc to be
defined below and a particle number measurement is per-
formed at the end. The situation is depicted in Fig. 4. We will
compare the power of paired states over unpaired ones for
two different settings. We start by introducing some basic
notation.

1. Prerequisites

We define pair operators Pk
†=ak

†a−k
† and Qk

†=bk
†b−k

† and
their equally weighted superpositions

pM
† =

1
�M

�
k=1

M

Pk
†, qM

† =
1

�M
�
k=1

M

Qk
†. �54�

The operators pM
† and qM

† fulfill the commutation relations

�pM
† ,pM� = − 1 +

1

M
N̂a, �55�

�qM
† ,qM� = − 1 +

1

M
N̂b, �56�

where nk=ak
†ak so that Na=�k�nk+n−k�, and Nb=�k�mk

+m−k� with nk=ak
†ak and mk=bk

†bk being the number opera-
tors for particles in modes ak

† and bk
†, respectively.

We will compare the power of two paired states and two
unpaired states entering through port A and B. The bound for
unpaired states will be derived again via Eq. �39�. As Hc and
Hc

2 will be elements of A2, it is sufficient, as in the last
section, to compare the power of paired states to those of
sparable states. The paired states will be of the form

	�N
�M�
 = 	N
a

�M�	N
b
�M�, �57�

	N
a
�M� = cN

�M��pM
† �N	0
, 	N
b

�M� = cN
�M��qM

† �N	0
 , �58�

with normalization constant cN
�M�= �NM! /MN�−1/2, while the

separable states are given by

	�N
 = 	 �2N�
a	 �2N�
b, �59�

where 	 �2N�
a,b are separable states in the modes ak
† and bk

†,
respectively.

After the input state has evolved under the Hamiltonian
H� into the state 	�N

�M����
=eiHc� 	�N
�M�
, an observable O is

used as an estimator to determine the parameter � to a pre-
cision given by Eq. �38�. Instead of working in the
Schrödinger picture of state evolution, it turns out to be more
convenient to tackle the problem in the Heisenberg picture,
where O evolves according to O→O�=e−iHc�OeiHc�. We are
interested in the phase sensitivity for small �, so that we can
expand Eq. �38� in powers of �, arriving at

O��� = O − i��Hc,O� −
1

2
�2�Hc

2O + OHc
2 − 2HcOHc�

+ O��3� . �60�

If the input state 	�N
�M�
 is an eigenvector of O with eigen-

value 0, we obtain the following simple expressions for �O

and var�O�:

� �

��
�O
�2

= 4�2	�HcOHc
	2 + O��3� , �61�

var�O� = �2�HcO
2Hc
 + O��3� , �62�

so that the phase fluctuation ����2 simplifies to

����2 =
�HO2H


4	�HOH
	2
+ O��� . �63�

An observable fulfilling this property is O= �nM
�−��2, where

nM
�−�= 1

2 �pM
† pM −qM

† qM�.
The commutation relations for pM

† and qM
† �Eq. �55�� im-

ply that in the limit of infinitely many modes M→�, the
operators pM

† and qM
† become bosonic. We will thus start out

with a scenario where the input states are in the bosonic limit
and then turn our attention to a setting that is far from the
bosonic limit.

FIG. 4. Setup that allows interferometry with paired states at the
Heisenberg limit. Particles in modes ak

† and bk
† evolve under the

complex coupling Hamiltonian H �for the detailed form of H, refer
to the text�. In the end, particle numbers are measured.
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2. Bosonic limit

In this section, we will consider the scenario M→�, i.e.,
we are in the bosonic limit, where the limit is taken for the
expectation values of the operators. We will consider a cou-
pling of the form Hc=�H�, where

H� =
1

2
�a�

† b� + a�b�
† � , �64�

and measure �n�
�−��2.

We start deriving the best precision for unpaired states
using Eq. �39�. We will use a finite M for input state, cou-
pling Hamiltonian, and measurement and then take the limit
M→�. To be precise, the calculation will be done for HM

= 1
2 �aM

† bM +aMbM
† � and �nM

�−��2. Then limM→�� a,b	HM	 a,b

=0 due to the conservation of particle number. Hence,

limM→� var�HM� = limM→��HM
2 


= limM→���pM
† pM
 + �qM

† qM
�2 = 0,

as �pM
† pM
= 1

M �kl	�Pk
†Pl
	2�N /M, where the last inequality

results from the bound of the pairing measure on unpaired
states Thm. V.6. The same holds for �qM

† qM
. Hence, in the
limit M→� the variance of H� vanishes. For the setting of
paired states, however, we can obtain the following result:

Theorem VI.4. For paired input states, the interferometer
depicted in Fig. 4 allows us to estimate the coupling param-
eter � to a precision

����inf
2 =

1

2N2 . �65�

Proof. Consider an interferometric setup depicted in Fig.
4, where the 2N-particle input state and the coupling Hamil-
tonian are defined in Eqs. �57� and �64�, respectively. We will
again use a finite M for input state, coupling Hamiltonian,
and measurement and then take the limit M→�, i.e., we use
	�in
= 	N
a

�M�	N
b
�M�, HM = 1

2 �aM
† bM +aMbM

† �, and �nM
�−��2. Mak-

ing use of the relations

pM	N
a
�M� = �N	N − 1
a

�M�, �66�

pM
† 	N
a

�M� = �N+1	N + 1
a
�M�, �67�

where �N=�N�1− �N−1� /M�, a lengthy but straightforward
calculation leads to ����M

2 = 1
2�N+1

2 �N
2 +O��� using Eq. �63�.

Taking the limit M→� leads to the result of the theorem. �

3. Interferometry far from the bosonic limit

In the preceding section, we have studied the power of
paired states in the bosonic limit. As the power of bosonic
particles for interferometry has been known for quite a while,
the use of paired states where the fermionic nature of the
particles survives might be a more interesting question. In
this section, we will show that even far from the bosonic
limit paired states can achieve a precision gain of order N for
quantum metrology.

We will study a coupling Hamiltonian of the form Hc
=�HF, where

HF = �
k=1

�

Pk
†Qk + PkQk

†. �68�

First, we will give a bound for the phase sensitivity achiev-
able by using product states at the input:

Theorem VI.5. Using product states of 2N particles as in-
put states for the interferometric setting depicted in Fig. 4,
the phase � of the coupling Hamiltonian Hc=�HF, where HF
is defined in Eq. �68�, can be measured to a precision
����2�1 / �16N�.

Proof. For every product state of the form �59�, �HF
=0
due to particle number conservation. Hence, var�HF�= �HF

2
.
We will bound this expectation value,

�HF
2
 = �

k�l

�Pk
†Pl
�Ql

†Qk
 + c.c. + �
k

�Pk
†Pk
�QkQk

†


� 2��
k�l

	�Pk
†Pl
	2�1/2��

k�l

	�Qk
†Ql
	2�1/2

+ �
k

�Pk
†Pk
�QkQk

†
 + c.c.

From Lemma D.1 we know that ��k�l	�Pk
†Pl
	2�1/2��N. Fur-

ther, �PkPk
†
= �1− �nk−n−k�2−nkn−k
�1 and �k�Pk

†Pk
�N.
Thus var�Hpq��2�N�N+2N=4N, which leads immediately
to our result via Eq. �39�. �

This bound can be beaten by a factor of �N using paired
states. A lengthy but straightforward calculation leads to the
following result:

Theorem VI.6. Using paired states of the form �57� as
input states for the interferometric setting depicted in Fig. 4,
the phase � of the coupling Hamiltonian Hc=�HF, where HF
is defined in Eq. �68�, can be measured to a precision

����2 =
M�M − 1�

8N�M − N��M − 1 + MN − N2�
. �69�

This theorem implies ����2�1 /N2 for all M�2N. In
conclusion, we have shown that paired states are a resource
for quantum metrology. Theorem VI.6 is the main result of
this section. We have remarked already at the beginning of
this section that it has been proven before that the Heisen-
berg limit can be achieved using fermionic particles �58�.
However, these states were constructed in an abstract way,
while we prove that the BCS states that can be created easily
in an experimental setup are a very powerful resource for
quantum metrology.

VII. APPLICATION TO EXPERIMENTS
AND CONCLUSION

In summary, we have developed a pairing theory for fer-
mionic states. We have given a precise definition of pairing
based on a minimal list of natural requirements. We have
seen that pairing is not equivalent to entanglement of the
whole state nor of its two-particle reduced density operator
but represents a different kind of quantum correlation.
Within the framework of fermionic Gaussian states, we could
solve the pairing problem completely. For number-
conserving states, we have given sufficient conditions for the
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detection of pairing that can be verified by current experi-
mental techniques, e.g., via spatial noise correlations
�59–61�, and we prescribed a systematic way to construct
complete families of pairing witnesses.

To shed some light on the pairing debate �7,10–12�, we
would need access to the proportionality factor linking the
quantity plotted in Fig. 4 of �7� to the local pair correlation
correlation function G2�r ,r�= ��↓

†�r��↑
†�r��↑�r��↓�r�
.

Another important point of our work is the utility of fer-
mionic states for quantum metrology. While it has been
shown that, in principle, fermionic states can achieve the
Heisenberg limit for precision measurements in a Ramsey-
type interferometer �58�, we could prove the usefulness of
states that are available in the laboratory. Furthermore, the
optimal precision for the Ramsey-type setup is proportional
to the pairing measure introduced from an intuitive picture in
Secs. II C and V. This endows the measure with an opera-
tional meaning. The results we have presented are just a first
step in understanding pairing and its relation to other types
of quantum correlations.

We hope that the pairing theory we have developed will
help to get a better understanding of correlated many-body
systems, and can provide a new perspective on quantum cor-
relations and may serve as a starting point for further inquir-
ies.

For example, one might attempt a finer characterization of
pairing, e.g., �k=1

2 Pk
†	0
 and �k=1

M Pk
†	0
 represent paired states

of rather different nature: it would be interesting to develop
witnesses or measures that allow us to determine over how
many modes the pairs in a given states extend and to relate
these differences to applications in metrology or elsewhere.
Moreover, the theory we developed has been concerned with
finitely many modes only and it is an obvious question
whether generalizing to an infinite-dimensional single-
particle space gives rise to new phenomena.

Up to now we have concentrated on fermionic states.
But the question of pairing in bosonic systems might
be equally interesting and relevant for recent experiments
�62�.

What about higher-order correlations? The set of unpaired
states contains both separable and highly correlated states.
This is, for example, reflected in the fact that there are un-
paired states that can be transformed to paired ones by
single-mode particle number measurements �e.g., �a1

†a2
†a3

†

+a4
†a5

†a6
†�	0
 by measuring particle number in mode b=a3

+a6�. A theory of higher-order correlated states could be de-
veloped along the lines discussed here, e.g., by changing the
set of observables on which the states are compared to un-
correlated ones and defining as nth-order correlated those
states whose expectation values on nth-order observables
cannot be reproduced by �m�n�-correlated states.

Tools and methods from entanglement theory have been
very useful in analyzing pairing. One very important such
tool, however, is missing: positive maps, that is, transforma-
tions that do not correspond to a physical operations but
nevertheless, when applied to a subsystem in a separable
state with the rest, map density operators to �unnormalized�
density operators and thus provides strong necessary condi-
tions for separability. Finding an analogy might prove very
useful for the analysis of many-body correlations. Another

important object in the theory of entanglement is the set of
LOCC operations �local operations and classical communi-
cation�, i.e., the operations that cannot create entanglement.
In the case of pairing, the analogous set would contain pas-
sive operations and discarding modes. Are there other physi-
cal transformations that cannot create pairing? Do paired
states, then, possibly allow us to implement such transforma-
tions similar to entanglement enabling non-LOCC opera-
tions?
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APPENDIX A: USEFUL PROPERTIES
OF SEPARABLE STATES

We give two technical lemmas that involve useful prop-
erties of product states.

1. Bound of ai
†aj

†akal+H.c. on separable states

In this section, we prove a bound of a special two-body
operator on product states:

Lemma A.1. Let ��Ssep be a separable state. Then

	tr��ai
†aj

†akal + H.c.��s�	�
1
2 . �A1�

Proof. Let Hijkl be the Hilbert space spanned by ai
†, aj

†, ak
†,

al
† and define Aijkl=ai

†aj
†akal+H.c. Then tr�Aijkl��

=tr���ijkl�Aijkl�, where ��ijkl�=�n=0
4 �ijkl

�n� 	n
�n	 is a mixed sepa-
rable state according to Lemma II.2, and 	n
 denotes the
occupation number basis for the subspace Hijkl. It is easily
checked that Aijkl can have nonvanishing expectation
value only for the two-particle state 	2

= ��r=i,j,k,l�rar

†���s=i,j,k,l�sas
†�	0
. Using 	2 Re�ab�	� 	a	2

+ 	b	2 for any complex numbers a, b and the normalization
conditions �r	�r	2=�r	�r	2=1, one arrives at

	tr�Aijkl��	 = 2	Re���i� j − � j�i���k�l − �l�k�*�	

= �	�i	2 + 	� j	2��	�k	2 + 	�l	2�

+ �	�i	2 + 	� j	2��	�k	2 + 	�l	2�

� 0.25 + 0.25 = 0.5.

�

2. Expectation values of one- and two-body operators
for separable states

In this section, we will prove that the one- and two-body
operators for separable states can be expressed in terms of
matrix elements of projectors.

Lemma A.2. Let ��Ssep
�N� be a pure separable state. Then

�ni
 = Pii, �A2�
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�ai
†aj

†akal
� = �P � P��ij��lk� − �P � P��ij��kl�, �A3�

where P= P2= P† is a projector of rank N.
Proof. Consider M modes. We go into the basis where the

pure separable state is of the form 	�
=�i=1
N a�i

† 	0
. In this
basis �a�i

† a�j

† a�k
a�l


	�
=�il� jk−�ik� jl, i.e., Eq. �A3� for P
=IdN, where IdN=1N � 0M−N�CM
M. Now let ai

†=�kUika�k

† .
Then

�ai
†aj

†akal
�s
�N� = �UIdNU†� � �UIdNU†��ij��lk� − �UIdNU†�

� �UIdNU†��ij��kl�

= �P � P��ij��lk� − �P � P��ij��kl�,

and P is a projector of rank N.
For the one-particle operators, we obtain �ni
= Pii as

�N − 1��ni
 = � j�i�ninj


= � j�iPiiPjj − 	Pij	2

= � jPiiPjj − PijPji

= tr�P�Pii − �P2�ii

= �N − 1�Pii.

�

APPENDIX B: PROOF OF LEMMAS V.1 AND V.2

1. Proof of Lemma V.2

Proof. As H1�
�p� , H2�

�p� , H3�
�p� are built up of operators that are

the product of at most two creation and annihilation opera-
tors, we can prove the lemma for separable states. In the first
step, we will show that the three operators are positive on all
separable states. Then we will show that all states within the
set bounded by H1�

�p� , H2�
�p� , H3�

�p� correspond to a separable
state. Finally we will show there exist states that are detected
as paired by H1�

�p� and H3�
�p� . Positivity of H2�

�p� on all number-
conserving states will be shown in the proof of Lemma V.1
following below.

To show positivity of H1�
�p� , H2�

�p� , H3�
�p� , it is sufficient to

show the positivity for pure separable states, as the result for
mixed states follows from convexity. From now on, let �
�Ssep

�N�.

a. tr[H1±
(p)�]Ð0

In Lemma A.2 �see Appendix A�, we have shown that the
expectation values of number-conserving one- and two-body
operators can be expressed in terms of matrix elements of
projectors. Let P be the rank N projector such that

�ai
†aj

†akal
�= �P � P��ij��lk�− �P � P��ij��kl�, �ni
= Pii, and let P̃
= 	P	k−k,l,−l the 4
4 principal submatrix of P where the indi-
ces run over k, −k, l, −l. Then we have the following in-
equalities:

�nkn−k
 = PkkP−k−k − 	Pk−k	2 �
1

2
�	Pkk	2 + 	P−k−k	2� − 	Pk−k	2,

�B1�

	�ak
†a−k

† a−lal + H.c.
	 = 2	Re�PklP−k−l − Pk−lP−kl�	 �B2�

�2�	Pkl		P−k−l	 + 	Pk−l		P−kl	�

� �	Pkl	2 + 	P−k−l	2 + 	Pk−l	2 + 	P−kl	2� .

�B3�

These results imply

tr��H1�
�p� ��

1

2
tr�P̃ − P̃2� + 	Pk−k	2 + 	Pl−l	2. �B4�

We use the inclusion principle �46�, stating that the eigenval-
ues of an r
r principal submatrix Mr of an n
n Hermitian
matrix M fulfill �k�M���k�Mr���k+n−r�M�, where the ei-
genvalues are arranged in increasing order. As P is a projec-

tor, we have 0��k�P���k�P̃���k+M−r�P��1. Hence,

tr�H1�
�p����

1

2
tr�P̃ − P̃2��

1

2�
k

�k�P̃��1 − �k�P̃��� 0.

�B5�

b. tr[H2±
(p)�]Ð0

Define O1=nkn−k+nln−l�0, O2
�=1�ak

†a−k
† a−lal

+H.c.�0. Then H2�
�p� =O1O2

�, and as �O1 ,O2
��=0 we con-

clude that H2�
�p� =O1O2

��0.

c. tr[H3±
(p)�]Ð0

We will need the Lemma II.2: tr�H3�
�p���=tr�H3�

�p��kl�,
where �kl=�n=0

4 �n	n
�n	, �n�0, �n=0
4 �n=1, and 	n
, n

=0, . . . ,4 are separable n-particle states. Let �H3�
�p� 
n

= �n	H3�
�p� 	n
. Then a straightforward calculation leads to

�H3�
�p� 
0=1, �H3�

�p� 
1= 1
2 , �H3�

�p� 
2= 1
2 , �H3�

�p� 
3=0, and �H3�
�p� 
4=0.

Linearity of the trace implies tr�H3�
�p����0. Hence, all sepa-

rable states lie within the set bounded by the planes defined
by the witness operators H1�

�p� , H2�
�p� , H3�

�p� .
Next, we show that each point within the polytope

Cunpaired corresponds to a separable state. As Ssep is convex, it
is sufficient to check that for every extreme point of Cunpaired

there exists a separable state. This is indeed the case: The
extreme points of Cunpaired are �0, 0, 0�, �2, 0, 0�, �4, 2, 0�,
�2,1 /2,�1 /2�, which correspond, for example, to the sepa-
rable states 	0
, ak

†al
†	0
, ak

†a−k
† al

†a−l
† 	0
, and �ak

†

+al
†��a−k

† �a−l
† � /2	0
, respectively.

It remains to show that H1�
�p� and H3�

�p� are pairing
witnesses. Define 	�
= 1

�2
�ak

†a−k
† +al

†a−l
† �	0
. Then

tr�H1�
�p� 	�
��	�=tr�H3�

�p� 	�
��	�=−1. �

2. Proof of Lemma V.2

Proof. It is sufficient to prove the lemma for ��S�AN�,
as the result for a general number-conserving state follows
from convexity.

a. tr[H1�]Ð0

H1= 1
2 �nk−n−k�2+ 1

2 �nl−n−l��0.
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b. tr[H2±�]Ð0

Shown in the proof of Thm. V.2.

c. tr[H3±�]Ð0

Let �kl=�n=1
4 �n	0
�n	 be the reduced density operator in

the modes �k, �l. We can rewrite H3� in the form H3=2
− 1

2 �nk+n−k+nl+n−l��1! �ak
†a−k

† a−lal+H.c.��. Defining O2!
=1! �ak

†a−k
† a−lal+H.c.�, we obtain �O2!
0= �O2!
1= �O2!
3

= �O2!
4=1, �O2!
2�2. This implies tr��H3���4− ��1
+2�2+3�3+4�4��4−�n=0

4 n�n=4−tr��nk+n−k+nl+n−l��kl�
�0

As in the proof of Lemma V.1, it remains to show that the
extreme points of Call correspond to some fermionic state. It
has been shown in the proof of Lemma V.1 that �0, 0, 0�, �2,
0, 0�, and �4, 2, 0� can be reached by some separable state.
The remaining two extreme points, �2,1 ,�1�, correspond,
for example, to the state 1

�2
�ak

†a−k
† +al

†a−l
† �	0
. �

APPENDIX C: PROOF OF THM. V.4

In this section, we will provide all the details leading to
Thm. v.4, starting with the bound on separable states:

Lemma C.1. Let ��Ssep with tr�Nop��=N and let H��vk��
be as in Thm. V.4. Then tr�H��vk���s��0.

Proof. The operator Hk acts nontrivially only on the
modes ak

†, a−k
† , ak+M

† , a−�k+M�
† . Denote by �k the reduced den-

sity operator obtained when tracing out all but these four
modes. According to Lemma II.2, �k=�n=0

4 �k
�n�	n
�n	 is a con-

vex combination of separable n-particle states 	n
�n	. We
proved in Lemma A.1 that 	tr��Pk

†Pk+M +H.c.��s�	�1 /2.
Hence �H��vk��
�2N�1−��−2�k=1

M �	vk	2�Nk
+�k
�2��. Now

2�k� �Nk
�4 and 	vk	2�1−� so that 	vk	2��Nk
+�k
�2���4.

Due to the particle number constraint �k=1
M �Nk
=N, this value

can be taken for k=1, . . . ,N /4. Hence, −2�k=1
M �	vk	2�Nk


+�k
�2���−2
4�1−��N /4 so that �H��vk��
�0. �
To show the witness character of H��vk��, we also have to

prove that there exists a BCS state that is detected by the
Hamiltonian. We will need the following theorem about the
distribution described by the 	�N	2 in Eq. �16�:

Theorem C.2. Let 	�Gauss
=�N=0
M �N

�M�	�BCS
�N� 
 like in Eq.

�15� and �17�. If �k=1
M 	uk	2	vk	2=O�N�� for some ��0, then in

the limit N→� the 	�N	2 converge to a normal distribution,

	�N	2 =
1

�2�"N̄

exp−
�N − N̄�2

2"
N̄

2 � , �C1�

where 2N̄=2�k=1
M 	vk	2 is the mean particle number for the

variational state, and the variance is given by "
N̄

2

=4�k=1
M 	vk	2	uk	2.

Proof. For the proof we will need a theorem from prob-
ability theory known as Lyapunov’s central limit theorem
�63�:

Theorem C.3. �Lyapunov’s central limit theorem�. Let X1,
X2 , . . . be independent random variables with distribution
functions F1, F2 , . . ., respectively, such that EXn=�n and var
Xn="n

2��, with at least one "n�0. Let Sn=X1+ . . . +Xn and
sn=�var�Sn�=�"1

2+ . . . +"n
2. If the Lyapunov condition

1

sn
2+��

k=1

n

E	Xk − �k	2+� →
n→�

0

is satisfied for some ��0, then the normalized partial sums
Sn−ESn

sn
converge in distribution to a random variable with nor-

mal distribution N�0,1�.
Consider the observables Xk=nk+n−k ,k=1, . . . ,M, where

n�k=0,1 is the number of particles with quantum numbers
�k, respectively. The Xk can be considered as classical ran-
dom variables since they commute mutually. In the varia-
tional BCS state, the random variable SM =�k=1

M Xk is distrib-
uted according to the probability distribution

P�SM = 2N� = �
k1�¯�kM=1

M

	vk1
	2 ¯ 	vkN

	2	ukN+1
	2 ¯ 	ukM

	2

= ��
k

	uk	2� �
k1�¯�kM=1

M 	vk1
	2 ¯ 	vkN

	2

	uk1
	2 ¯ 	ukN

	2
�C2�

=
	C	2

�N!�2	CN	2
= 	�N

�M�	2. �C3�

With the help of Thm. C.3 applied to the random variable
SM, we can now complete the proof of Thm. C.2, i.e., show
that �N

�M� converges to a normal distribution for large M. We
start calculating the expectation value �k of Xk. For a BCS
state, Xk=0,2, as particles with quantum numbers �k always
appear in pairs. As P�Xk=0�= 	uk	2, P�Xk=2�= 	vk	2, we get

�k=2	vk	2 and E�SM�=2�k	vk	2�2N̄. For calculating the
variance, note that Xk

2=nk
2+n−k

2 +2nkn−k=0,4, and P�Xk
2=0�

= 	uk	2, P�Xk
2=4�= 	vk	2. Hence

var�Xk� = 4	uk	2	vk	2, sM
2 = 4�

k

	uk	2	vk	2. �C4�

To apply the central limit theorem, we consider
E�	Xk−�k	4�. Using P�	Xk−�k	4=�k

4�= 	uk	2, P�	Xk−�k	4
= �2−�k�4�= 	vk	2, and �k=2	vk	2, we arrive at

E�	Xk − �k	4� = 16	uk	2	vk	2�	uk	6 + 	vk	6�

� 16	uk	2	vk	2�	uk	2 + 	vk	2�

= 16	uk	2	vk	2. �C5�

Setting �=2 in the Lyapunov condition, we obtain

1

sM
4 �

k=1

M

E�	Xk − �k	4��
4

sM
2 = O�N−�� → 0, �C6�

where we have applied the assumption of the theorem
�k=1

M 	vk	2	uk	2=O�N�� in the last step. The central limit theo-
rem implies that SM converges to a normal distribution with

expectation values 2N̄=2�k	vk	2 and variance "
N̄

2

=4�k	vk	2	uk	2. �
With this result at hand, we can prove the following:
Lemma C.4. Let H��vk�� and 	�BCS

�N� 
 be defined as in Thm.
5.4. If ��18 /��N, then

��BCS,sym
�N� 	H��vk��	�BCS,sym

�N� 
� 0.

PAIRING IN FERMIONIC SYSTEMS: A QUANTUM-… PHYSICAL REVIEW A 79, 012306 �2009�

012306-17

Kraus et al., Phys. Rev. A 2008: “Pairing in fermionic systems:...”

271

http://dx.doi.org/10.1103/PhysRevA.79.012306


Proof. We will use the correspondence of variational and
number-conserving BCS states, deriving first a bound for
	�H��vk��
var− �H��vk��
N	, where 	�Gauss
=�k=1

2M�n	�BCS,sym
�n� 


with 	�BCS,sym
�n� 
 like in Thm. 5.4. To do so, we will need that

the 	�n	2 are normally distributed. From 	uk	2=1− 	vk	2��,
where ��18 / ��2�N̄� and �k=1

2M 	vk	2= N̄, it follows that "N̄

=�k=1
2M 	vk	2	uk	2��N̄=O��N�. Hence, we know from Thm.

C.2 that the 	�n	2 describe a normal distribution around N̄
�N with standard deviation "N̄.

Now, write H��vk��=H0−2W+2�1−���k=1
M Nk, where

H0 = − 2�
k=1

M

	vk	2Nk,

W = 2�
k

Pk
†Pk+M + Pk+M

† Pk.

We start with a bound for 	�H0
var− �H0
N	�T1+T2, where

T1 = � �
���−"

N̄

2
,"

N̄

2
�

	�N+�	2��H0
N+� − �H0
N�� ,

T2 = � �
���−"

N̄

2
,"

N̄

2
�

�	�N+�	2��H0
N+� − �H0
N��� . �C7�

A bound for T2 can be easily derived noting that

	�H0
n − �H0
n�	 = 8��
k

	vk	2��nk
n − �nk
n��� , �C8�

and for n=N+�� =N we have �k	vk	2��nk
n− �nk
N�
��k	vk	2�nk
n�n, as 	vk	2�1. Hence,

T2 � 16� �
���0,"

N̄

2
�

	�N+�	2	N + �	�
� 8

"N̄

�2�
e−"N

2 /2 + 4N�1 − erf�"N̄/�2��

� 8
"N̄

�2�
+ 4N�1 − erf�"N̄/�2�� , �C9�

where we have approximated the sum by an integral in the
second step. For bounding T1, we will show first that for n
=N+�, where �� �−"

N̄

2
,"

N̄

2 �, we have �nk
n− �nk
n−1�0. Ex-
panding the BCS wave function

	�BCS,sym
�n� 
 = Cnn! �

j1�¯�jn=1

2M

� j1
¯ � jn

Pj1
†
¯ Pjn

† 	0
 ,

�C10�

the expectation value of the number operator is easily calcu-
lated to be �nk
n= 	Cn	2�n!�2	�k	2Sk

�n−1�, where

Sk
�n� = �

j1�¯�jn=1

ji�k

2M

	� j1
	2 ¯ 	� jn

	2. �C11�

If 0� 	vk	2�1−�, there exists a lower bound on the coeffi-
cients 	�k	2= 	vk	2 /�1− 	vk	2�b∀k. Then Sk

�n−1� and Sk
�n−2� are

related via

Sk
�n−1� � b

2M − �n − 1�
n − 1

Sk
�n−2�.

In the proof of Thm. C.2, we show that

	�n	2

	�n−1	2
=

	Cn−1	2��n − 1�!�2

	Cn	2�n!�2 , �C12�

resulting in

�nk
n − �nk
n−1 � �b
2M − �n − 1�

n − 1
−

	�n	2

	�n−1	2�

	Cn	2�n!�2	�k	2Sk

�n−2�. �C13�

For n=N+� and �� �−"N
2 ,"N

2 �, the normal distribution of
the 	�n	2 implies 	�n	2 / 	�n−1	2=exp��2�−1� / �2"N

2 ���e.

Hence, b 2M−�n−1�
n−1 −

	�n	2

	�n−1	2�0⇔b�e n
2M−�n−1��3 n−1

2M−�n−1� . For
M =q�n−1�, this is equivalent to 	�k	2�3 / �2q−1�, which
can be achieved for q�1. The last condition is satisfied, as

we are considering dilute systems, where M� N̄. Thus,
�nk
n− �nk
n−1�0, implying �k	vk	2��nk
n− �nk
n−1��1, as
	vk	2�1. Using Eq. �C8� and a telescope sum, we conclude
that

T1 � 8� �
���−"N̄,"N̄�

	�N+�	2	�	�
� 8��

�

	�N+�	2	�	�
= 16

"N̄

�2�
. �C14�

Next, we derive the bound for the operator W. Its expec-
tation value is given by

�W
n = 	Cn	2�n!�22�
k

	�k	2 �
j1�¯�jn−1

ji�k,k+M

2M

	� j1
	2 ¯ 	� jn−1

	2.

�C15�

For n� �N−� ,N+��, we use the same argumentation we
have used for bounding �nk
n− �nk
n−1, to obtain

�W
n − �W
n−1 � 2. �C16�

Further, �nk
n= �Pk
†Pk−M

† +H.c.
n /2+ �nknk+M
n due to the
symmetry �k=�k+M. Hence, �W
n�2n. Thus, up to a factor
of 2 we obtain the same bound as for H0. Putting all the
pieces together, we find that

KRAUS et al. PHYSICAL REVIEW A 79, 012306 �2009�

012306-18

QIP with Gaussian States and Channels

272



	�H��vk��
var − �H��vk��
N	� 2�1 − �� +
72

�2�
"N

+ 12N�1 − erf�"N/�2�� .

�C17�

In the limit of large x, the error function erf�x /�2�� can be
approximated by the following formula:

1 − erf�x/�2� = 2
exp�− x2/2�

�2�
�x−1 − x−3 + ¯ � . �C18�

As "N=O��N�, we conclude

12N�1 − erf�"N̄/�2��� 24"N̄ exp�− "
N̄

2 /2�/���2�� → 0

for N�1. A straightforward calculation results in
�H��vk��
var=−4N�, leading immediately to the statement of
the theorem. �

APPENDIX D: LEMMA FOR THE PROOF
OF THM. 5.6

Lemma D.1. Every pure separable state ��S�AN� fulfills
�kl=1

M 	�Pk
†Pl
�	�N /2, and this bound is tight.

Proof. Using Lemma A.2, we obtain

�
k,l=1

M

	�Pk
†Pl
	 = �

k,l=1

M

	PklP−k−l − Pk−lP−kl	 , �D1�

where P= P2= P† and tr�P�=N. Using the triangle inequality,
we get

�
k,l=1

M

	�Pk
†Pl
	�

1

2�
k,l

�	Pkl	2 + 	P−k−l	2 + 	Pk−l	2 + 	P−kl	2�

=
1

2
tr�P2� = N/2.

In the last step, we have used the property that the sum of the
squares of a normal matrix is equal to the sum of squares of
its eigenvalues. Taking the square root, we obtain the bound
of our claim.

The bound is tight, as P=12N
implies �kl	�Pk

†Pl
	=N /2,
which is obtained for 	�
=�i=1

N ai
†	0
. �

APPENDIX E: PROOF OF LEMMA 3.5

Proof. Let 	i , j
=ai
†aj

†	0
 and consider the subspace
spanned by the states �	k ,−k
 , 	l ,−l
 , 	k , l
 , 	k ,−l
 , 	−k , l
 , 	
−k ,−l
�. In this basis, the two-particle RDO �2

�N� of 	�BCS
�N� 
 is

of the form

�2
�N� =

1

4 + 2a1�
a1 a2 0

a2 a1 0

0 0 14
� , �E1�

where a1= �M −1� / �N−1�, a2= �M −N� / �N−1�. The witness
operator H1

�p� of Thm. 5.1 has a negative expectation value on
�2

�N�, hence the state is paired in these modes.
For solving the entanglement question, we will use the

following theorem �25� applicable to mixed fermionic states
of two particles each living on a single-particle Hilbert space
of dimension 4:

Theorem E.1. Let the mixed state acting on A4 have a
spectral decomposition �=�i=1

r 	�i
��i	, where r is the rank
of �, and the eigenvectors 	�i
 belonging to nonzero eigen-
values �i are normalized as ��i 	� j
=�i�ij. Let 	�i

=�a,bwabaa

†ab
†	0
 in some basis, and define the complex sym-

metric r
r matrix C by

Cij = �
abcd

�abcdwab
i wcd

j , �E2�

which can be represented using a unitary matrix as C
=UCdUT, with Cd=diag�c1 , . . . ,cr� diagonal and 	c1	� 	c2	
�¯� 	cr	. The state has Slater number 1 if and only if

	c1	��
i=2

r

	ci	 . �E3�

The spectral decomposition of �2
�N� is given by

�2
�N� = 	�+
��+	 + 	�−
��−	 + 	�kl
��kl	 + 	�k−l
��k−l	

+ 	�−kl
��−kl	 + 	�−k−l
��−k−l	 ,

where 	�+
=� a+

5+a+
	�+
, 	�−
=� 1

5+a+
	�−
, and 	��k,�l


=� 1
5+a+

	�k ,� l
. Here 	��
= 1
�2

�	k ,−k
� 	l ,−l
� and a+

= �2M −N−1� / �N−1�. Defining �2=1 / �5+a+�, one obtains

C = �2�
a+ 0 0 0 0 0

0 − 1 0 0 0 0

0 0 0 − 1 0 0

0 0 − 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

� , �E4�

with spectrum spec�C�=�2�a+ ,1 ,1 ,−1 ,−1,−1�. For M�N,
the state 	�BCS

�N� 
 is separable, so we can take M�N. Hence,
a+�

2 is the eigenvalue with the biggest absolute value. Ac-
cording to Thm. E.1, the reduced state in the subspace of the
four modes is entangled iff 	c1	��i=2

r 	ci	. For our example,
this holds iff M�3N−2. �

PAIRING IN FERMIONIC SYSTEMS: A QUANTUM-… PHYSICAL REVIEW A 79, 012306 �2009�

012306-19

Kraus et al., Phys. Rev. A 2008: “Pairing in fermionic systems:...”

273

http://dx.doi.org/10.1103/PhysRevA.79.012306


�1� J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 �1957�.

�2� M. Greiner, C. Regal, and D. Jin, Nature 426, 537 �2003�.
�3� S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C.

Chin, J. H. Denschlag, and R. Grimm, Science 302, 2101
�2003�.

�4� M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
S. Gupta, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 91,
250401 �2003�.

�5� M. Zwierlein, J. Abo-Shaeer, A. Schirotzek, C. Schunck, and
W. Ketterle, Nature 435, 1047 �2005�.

�6� M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ket-
terle, Nature 442, 54 �2006�.

�7� G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and
R. G. Hulet, Phys. Rev. Lett. 95, 020404 �2005�.

�8� M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403
�2004�.

�9� C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 �2004�.

�10� G. B. Partridge, W. Li, R. I. Kamar, Y. Liao, and R. G. Hulet,
Science 311, 503 �2006�.

�11� M. W. Zwierlein and W. Ketterle, Science 314, 54a �2006�.
�12� G. B. Partridge, W. Li, R. I. Kamar, Y. Liao, and R. G. Hulet,

Science 314, 54b �2006�.
�13� C. Schunck, Y. Shin, A. Schirotzek, M. Zwierlein, and W.

Ketterle, Science 316, 867 �2007�.
�14� P. Zanardi, Phys. Rev. A 65, 042101 �2002�.
�15� P. Zanardi and X. Wang, J. Phys. A 35, 7947 �2002�.
�16� D. Larsson and H. Johannesson, Phys. Rev. A 73, 042320

�2006�.
�17� M. M. Wolf, Phys. Rev. Lett. 96, 010404 �2006�.
�18� D. Gioev and I. Klich, Phys. Rev. Lett. 96, 100503 �2006�.
�19� M. Cramer, J. Eisert, and M. B. Plenio, Phys. Rev. Lett. 98,

220603 �2007�.
�20� Y. Shi, Phys. Rev. A 67, 024301 �2003�.
�21� R. Paskauskas and L. You, Phys. Rev. A 64, 042310 �2001�.
�22� M.-C. Banuls, J. I. Cirac, and M. M. Wolf, Phys. Rev. A 76,

022311 �2007�.
�23� H. M. Wiseman and J. A. Vaccaro, Phys. Rev. Lett. 91, 097902

�2003�.
�24� J. Schliemann, J. I. Cirac, M. Kus, M. Lewenstein, and D.

Loss, Phys. Rev. A 64, 022303 �2001�.
�25� K. Eckert, J. Schliemann, D. Bruss, and M. Lewenstein, Ann.

Phys. �N.Y.� 299, 88 �2002�.
�26� M. R. Dowling, A. C. Doherty, and H. M. Wiseman, Phys.

Rev. A 73, 052323 �2006�.
�27� J. Schliemann, D. Loss, and A. H. MacDonald, Phys. Rev. B

63, 085311 �2001�.
�28� N. Schuch, F. Verstraete, and J. I. Cirac, Phys. Rev. A 70,

042310 �2004�.
�29� N. Schuch, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 92,

087904 �2004�.
�30� S. Bravyi, Quantum Inf. Comput. 5, 216 �2005�.
�31� G. D. Mahan, Many-Particle Physics, 3rd ed. �Kluwer Aca-

demic, Dordrecht, 2000�.
�32� P. Giorda and A. Anfossi, Phys. Rev. A 78, 012106 �2008�.
�33� C. Hainzl, E. Hamza, R. Seiringer, and J. P. Solovej, Commun.

Math. Phys. 281, 349 �2008�.
�34� C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 �2000�.
�35� L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.

Phys. 80, 517 �2008�.
�36� V. Bach, E. Lieb, and J. Solovej, J. Stat. Phys. 76, 3 �1994�.
�37� C. Bloch and A. Messiah, Nucl. Phys. 39, 95 �1962�.
�38� A. Coleman and V. Yukalov, Reduced Density Matrices

�Springer-Verlag, Berlin, 2000�.
�39� M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 1 �1996�.
�40� W. Rudin, Functional Analysis, 2nd ed. �McGraw-Hill, New

York, 1991�.
�41� R. Rockafellar, Convex Analysis �Princeton University Press,

Princeton, NJ, 1970�.
�42� P. W. Anderson, Phys. Rev. 112, 1900 �1958�.
�43� R. A. Barankov and L. S. Levitov, Phys. Rev. Lett. 93, 130403

�2004�.
�44� R. A. Bertlmann, K. Durstberger, B. C. Hiesmayr, and P.

Krammer, Phys. Rev. A 72, 052331 �2005�.
�45� A. Leggett, Modern Trends in the Theory of Condensed Mat-

ter, edited by A. Pekalsky and R. Przystawa �Springer-Verlag,
Berlin, 1980�.

�46� R. Horn and C. Johnson, Matrix Analysis �Cambridge Univer-
sity Press, Cambridge, UK, 1985�.

�47� D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen,
Phys. Rev. A 50, 67 �1994�.

�48� J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,
Phys. Rev. A 54, R4649 �1996�.

�49� S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439
�1994�.

�50� S. L. Braunstein, C. M. Caves, and G. Milburn, Ann. Phys.
�N.Y.� 247, 135 �1996�.

�51� K. Eckert, P. Hyllus, D. Bruss, U. V. Poulsen, M. Lewenstein,
C. Jentsch, T. Muller, E. M. Rasel, and W. Ertmer, Phys. Rev.
A 73, 013814 �2006�.

�52� B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33,
4033 �1986�.

�53� M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355
�1993�.

�54� P. Bouyer and M. A. Kasevich, Phys. Rev. A 56, R1083
�1997�.

�55� C. C. Gerry, Phys. Rev. A 61, 043811 �2000�.
�56� W. J. Munro, K. Nemoto, G. J. Milburn, and S. L. Braunstein,

Phys. Rev. A 66, 023819 �2002�.
�57� S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B.

Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 �1997�.
�58� B. Yurke, Phys. Rev. Lett. 56, 1515 �1986�.
�59� E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A 70,

013603 �2004�.
�60� T. Rom, T. Best, D. van Oosten, U. Schneider, S. Foelling, B.

Paredes, and I. Bloch, Nature 444, 733 �2006�.
�61� M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin, Phys.

Rev. Lett. 94, 110401 �2005�.
�62� S. Riedl, E. R. S. Guajardo, C. Kohstall, A. Altmeyer, M. J.

Wright, J. H. Denschlag, R. Grimm, G. M. Bruun, and H.
Smith, Phys. Rev. A 78, 053609 �2008�.

�63� P. Billingsley, Probability and Measure, 3rd ed. �Wiley-
Interscience, New York, 1995�.

KRAUS et al. PHYSICAL REVIEW A 79, 012306 �2009�

012306-20

QIP with Gaussian States and Channels

274



8 Bibliography

[1] Aaronson, S., Quantum Computing since Democritus. Cambridge University Press (2013).

[2] Abragam, A., Principles of Nuclear Magnetism. Clarendon Press, Oxford (1961).
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[118] Hüttel, A. K., Weber, J., Holleitner, A. W., Weinmann, D., Eberl, K., and Blick, R. H., Nuclear
spin relaxation probed by a single quantum dot . Phys. Rev. B 69, 073302 (2004).
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[169] Maletinsky, P., Lai, C.-W., Badolato, A., and Imamoğlu, A., Nonlinear dynamics of quantum
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